
Hierarchical token based mutual exclusion algorithms

Marin Bertier, Luciana Arantes, Pierre Sens

Laboratoire d’Informatique de Paris 6, Université Paris 6, CNRS, INRIA

marin.bertier@lip6.fr, luciana.arantes@lip6.fr, pierre.sens@lip6.fr

Abstract

Mutual exclusion is a basic block of distributed syn-

chronization algorithms. One of the challenge in highly

distributed environments (like peer-to-peer or Grid con-

figurations) is to provide scalable synchronizations taking

into account the hierarchical network topology. This paper

proposes hierarchical mutual exclusion algorithms. These

algorithms are extensions of the Naimi-Trehel’s token

algorithm, reducing the cost of latency and the number of

messages exchanges between far hosts. We propose three

main extensions : (1) hierarchical proxy-based approach,

(2) aggregation of requests, and (3) token preemption by

closer hosts.

We compared the performance of these algorithms on

an emulated Grid testbed. We study the impact of each of

the extensions, showing that the combination of them can

greatly improve performances of the original algorithm.

I. Introduction

Basic classical algorithms are commonly used by dis-

tributed applications. However, with the emergence of

peer-to-peer and Grid computing, these applications spread

over a larger number of nodes. Furthermore, in such

environments latency gaps between hosts interconnects are

very important. Therefore, distributed algorithms should be

adapted to take into account those characteristics. A well-

known example of such algorithms is mutual exclusion

algorithm, which ensures exclusive access to a shared

resource.

Many algorithms have been proposed to solve the

problem of mutual exclusion in distributed systems. They

can basically be divided into two groups: permission-

based (Lamport [1], Ricart-Agrawala [2], Carvalho-

Roucairol [3], Maekawa [4]) and token-based (Suzuki-

Kazami [5], Raymond [6], Naimi-Trehel [7], Neilsen-

Mizuno [8], Chang, Singhal and Liu [9]). The first group of

algorithms are based on the principle of consensus between

hosts, i.e., a host gets into a critical section only after

having received permission from all other hosts. In the

secong group of algorithms, a system-wide unique token is

shared among hosts and the possession of it gives a host the

exclusive right to enter into the critical section. Permission-

based algorithms generally suffer from limited scalability.

In contrast, token-based algorithms have an average low

message cost and usually result in logarithmic message

complexity O(log(N)) with regard to the number of hosts.

The majority of O(log(N)) token-based algorithms are

tree-based, i.e., a logical tree structure expresses the dif-

ferent token requests and token propagation paths at a

given time. Raymond’algorithm [6] organizes the hosts in

a static logical tree structure. This tree remains unchanged,

but the direction of its edges can change dynamically as

the token propagates. Consequently, the directions of the

edges always point to the possible token holder. Neilsen

and Mizuno [8] extended this algorithm by passing the

token directly to the requesting host instead of through

intermediate hosts. Naimi-Trehel’s algorithm [7] maintains

a dynamic logical tree, such that the root of the tree

is always the last host that will get the token among

the current requesting ones. Chang Singhal and Liu [9]

improved this algorithm, aiming at reducing the number

of messages to find the last requesting host in the logical

tree. Mueller [10] also proposed an extension to Naimi-

Trehel’s algorithm, introducing the concept of priority in

it. A token request is associated with a priority and the

algorithm first satisfies the requests with higher priority.

Although all those O(log(N)) token-based algorithms

achieve better performance with respect to the average

number of messages exchanged per critical section entry

when compared to other mutual exclusion algorithms, they

do not consider latency differences in hosts interconnects.

We propose distributed token-based mutual exclusion al-

gorithms, based on Naimi-Trehel’s algorithm, which takes

into account network topology, specially the latency gap

between local and remote clusters of machines. Our algo-

rithms reduce the numbers of inter-cluster messages and



give a higher priority to local mutual exclusion requests.

We have chosen to adapt Naimi-Trehel’s algorithm because

it uses a changeable logical tree structure to control mutual

exclusion requests. This dynamic property of the tree is

strongly exploited in our solution in order to tolerate higher

latencies.

It is worth reminding that some authors [11] [12] have

proposed mutual exclusion algorithms where nodes are, for

some reason, gathered into groups. They basically propose

hybrid approaches where the algorithm for intra-group

requests is different from the inter-group one. However,

they do not consider difference in network latency between

hosts as a factor for grouping hosts. In [13], the authors

propose to adapt the mutual exclusion mechanism of a

DSM system to the latency hierarchy of an interconnection

of clusters. Contrary to our proposal, their solution is based

on a centralized token-based mutual exclusion protocol.

In the rest of the paper, we consider a general model

where each host has a local memory and can send

messages to any other. Communication between hosts is

assumed to be perfect. Hosts are divided into clusters.

We distinguish local hosts belonging to the same cluster

from remote hosts belonging to remote clusters. Further-

more, the words hosts and nodes are interchangeable.

Section II describes Naimi-Trehel’s algorithm. In sec-

tion III, we present our hierarchical versions of Naimi-

Trehel’s algorithm, which limit the propagation of requests

between clusters. The three extensions to Naimi-Trehel’s

algorithm that we propose, per cluster proxy, aggregation

and token preemption, are also described in this section.

Section IV presents comparative performance evaluation

of these algorithms, while the last section concludes our

work.

II. Naimi-Trehel’s algorithm

Naimi-Trehel’s algorithm is a token-based algorithm,

which maintains a logical dynamic tree structure such that

the root of the tree is always the last node that will get the

token among the current requesting nodes.

Each node i stores the following variables:

� The owner variable, which represents the probable

owner of the token.

� The next variable, which represents the node that will

receive the token when the critical section is released

by i.

� The boolean token variable, whose value is true if

the process owns the token, or false otherwise.

� The boolean requesting variable, whose value is true

if the process requests the token, or false otherwise.

The identifier of i is represented by the variable self,

while Ele
ted node identifies a unique node, among all

nodes, that initially holds the token.

Figure 1 summarizes Naimi-Trehel’s algorithm.

An example of Naimi-Trehel’s algorithm execution with

4 nodes is shown in figure 2. Solid lines represent owner

links, while dashed ones represent next links. The dark

node keeps the token. Initially (a), A is the Ele
ted Node

which holds the token. The owner of all nodes points to

A. In (b), B asks for the token, sending a request to its

owner (A), and becomes the new root (owner
B

= ;).

Then, A updates its next and owner to point to B. In

(c), C asks A for the token, then the request is forwarded

to B which updates its next to C. Both A and B update

their owner to C, since the latter is the last requester of

the token (C becomes the root of the tree). When A will

release the critical section, the token will be sent to B

(next).

III. Hierarchical algorithms

Since inter-cluster latencies are higher than intra-cluster

ones, the three extensions we proposed to Naimi Trehel’s

algorithm is based on the idea of limiting the propagation

of requests between nodes of different clusters. To this end,

we apply the following three extensions to Naimi-Trehel’s

algorithm:

� First, we introduce on each cluster, excepting the one

that initially holds the token, a dedicated process,

called proxy, which is in charge of storing the last

request to remote clusters. Before asking for a token

which it believes belong to a node of a remote cluster,

a node i first sends a request to its corresponding

proxy. If another node j of the same cluster has

recently asked for the token and the proxy is aware

of it, the proxy redirects the request to j avoiding

transmission to the remote cluster. In fact, the proxy

operates like a cache of remote requests. This hierar-

chical algorithm is presented in section III-A.

� The second extension aims at reducing the num-

ber of inter-cluster messages by aggregating remote

requests. When a request has to be redirected to

a probable owner, belonging to a remote cluster,

the request is not sent to it but stored in a queue.

This queue accumulates therefore requests for remote

clusters. It is stored in the last node which will enter

the critical section within the cluster. We name this

node the local root. We must remind that queuing

of requests has been used by other Naimi-Trehel’s-

based algorithms as in [10]. However, in our case, it

is applied only for remote cluster requests.

� Finally, we perform a local preemption of the token

giving a higher priority to requests originating from

the local cluster in order to exploit cluster locality. We

define a threshold that defines the degree of locality

and avoids starvation. When the number of local



Every node i:

Initialization

resquesting false

next ;

owner Ele
ted node

if owner = self then

token true

owner ;

else

token false

Request CS

requesting true

if owner 6= ; then

fThe process hasn’t the token, request for it:g

Send hResquest; S
i

i to owner

owner ;

Wait for receiving message hTokeni

Release CS

requesting false

if next 6= ; then

Send hTokeni to next

token false

next ;

Receive Request CS(S
j

)

fS

j

is the requesting processg

if owner = ; then

fTerminal nodeg

if resquesting = true then

fThe node asked for CSg

owner S

j

if next = ; then

next Sj

else

fFirst request to the token since the last CS,g

fdirectly send the token to the requesting processg

token false

Send hTokeni to S

j

else

fNon-ternimal node, following the resquestg

Send hRequest; S
j

i to owner

owner S

j

Receive Token

fReceive the token from node kg

token true

Fig. 1. Naimi­Trehel’s algorithm

AC

B

D

(c)

AC

B

D

(a)

AC

B

D

(b)

Fig. 2. Sample execution of Naimi­Trehel’s

algorithm

request is below this threshold, the requesting path is

modified in order to serve local requests first. These

last two extensions are presented in section III-B.

A. Proxy­based algorithm

We modify Naimi-Trehel’s algorithm presented in sec-

tion II as follows:

The LocalCluster variable, added on each node i, iden-

tifies the cluster to which node i belongs.

On each cluster Ci, excepting the one that has the

Ele
ted node, a node is elected among Ci’s nodes to

have a specific initialization role. This node is called the

Proxy

i

.

Initially, the owner variable of Proxy
i

points to the

Ele
ted Node as well as the owner variable of the nodes

that belong to Ele
ted node’s cluster. On the other hand,

the owner variable of the other nodes points to the Proxy
i

of their respective cluster.

Figure 3 summarizes our hierarchical proxy-based ver-

sion of Naimi-Trehel’s algorithm.

Every proxy Proxy
i

:

Initialization

owner Ele
ted node

Every node i:

Initialization

resquesting false

next ;

if Ele
ted node 2 Lo
alCluster then

owner Ele
ted node

if owner = self then

token true

owner ;

else

token false

else

owner Proxy

i

token false

Request CS

fUnchanged g

Release CS

fUnchanged g

Receive Request CS(S
j

)

fUnchanged g

Receive Token

fUnchanged g

Fig. 3. Proxy­based algorithm

Figure 4(a) presents an example of an initial configura-

tion with two clusters, C0 and C1, where nodes A, B, and



C belong to cluster C0, and nodes D, E and P1 belong to

C1. P1 is the Proxy of C1. Initially, A has been elected

to have the token (the Ele
ted Node). We consider that

A is in the critical section (CS).

In 4(b), B asks A for the token. A and B belong to the

same cluster. Since A is in the CS, A sets both its owner

and next variable to B.

In 4(c), D, which does not belong to the same cluster

of the token holder, asks for the token. It sends then a

request to its proxy P1, which redirects the request to A.

P1 sets its owner to D. When arriving at A, the request is

forwarded to the root (B) which simply updates its next

and owner variables to D. E asks then for the token.

The proxy P1 locally redirects the request to D which

updates its next and owner variables to E. At the end

of each critical section execution, the token will follow

the path pointed by next variables. This scenario shows

the advantage of the algorithm since E request was not

forwarded to the remote cluster C

0

, as it would be the

case in the original Naimi-Trehel’s algorithm.

C0

B

C1

(c)D and E ask for CS

C0

C

B

(a) Initial configuration A holds the Token

C1

A P1 E

D

C0 C1

(b) B asks for CS

A E

DB

C P1

C A P1 E

D

Fig. 4. Hierarchical proxy­based algorithm

execution scenarios

B. Aggregation and preemption algorithms

We have modified the proxy-based algorithm of the

previous section III-A to reduce even more the number

of inter-cluster messages. This improvement is based on

aggregation of messages and preemption of the token by

local nodes.

On each node i, we added the following variables:

� The R Queue variable, which is a queue of requests

issued from remote clusters.

� The nb preempt variable, which represents the num-

ber of local requests that have preempted requests

issued from remote clusters.

Figures 5 and 6 describe the algorithm.

Similar to the original Naimi-Trehel’s algorithm, a

request for entering a critical section (CS) follows the

owner’s path until it reaches its lo
al root (the node of

the same cluster whose owner variable is set to ;, i.e.,

the last node of the cluster to have requested the critical

section).

When a node receives a request, if it is not a lo
al root

node (owner 6= ;), it forwards the request and updates

its owner (only if the request is issued from the local

cluster in order to avoid redirection to remote clusters).

If the receiver is a lo
al root node (owner = ;) which

waits for the token (requesting = true), we distinguish

two cases: (1) The received request is the first one since

the node waits for the token (i.e. next = ;). Then, the

next is set to the requester because after the node obtains

and releases the critical section, it will have to send the

token to the requester. The owner is also updated only if

the request came from the local cluster. (2) The next is

already set. Since the receiver is a lo
al root, the next

inevitably points to a remote node. In this case, if the

requester is local, and the number of preemptions is below

the threshold, we perform a local preemption of the token

by setting next to the requester and memorizing the old

next in the beginning of R Queue. Each time a node

becomes the new lo
al root, the R Queue is sent to it.

The R Queue is also included in the token message.

Figures 7 and 8 show some samples of the algorithm’s

execution. We consider the same configuration presented

in figure 4(b) where B asks A for the token. A third cluster

C2, with nodes F , G and P2 (Proxi
2

) is included in the

figure. Threshold of preemption is equal to 2.

In figure 7(a), the node D asked for the token. It sends

a request to its proxy P1, which redirects it to A, setting

its own owner to A. On A the request is propagated to

the lo
al root (B), which simply updates its next (the

owner of A and B are not updated since the requester is

a remote node). Then, F belonging to cluster C
2

asks A for

the token. The request is forwarded to the lo
al root (B).



Every proxy Proxy

i

:

Initialization

owner Ele
ted node

Every node i:

Initialization

requesting false

next ;

R Queue ;

if Ele
ted node 2 Lo
alCluster then

owner Ele
ted node

if owner = self then

token true

owner ;

else

token false

else

owner Proxy

i

token false

Request CS

requesting true

if owner 6= ; then

fThe process hasn’t the token, request for it:g

Send hRequest; S
i

i to owner

owner ;

R Queue ;

Wait for receiving message hTokeni

Release CS

requesting false

if next 6= ; then

if next =2 Lo
alCluster then

fThe token will be sent to a remoteg

nb preempt 0

if R Queue 6= ; then

owner Queue(R Queue)

else

owner next

Send hToken;R Queue;nb preempti to next

token false

next ;

Fig. 5. Aggregation and preemption algo­
rithm: request and release critical section

Since B’s next is already set (next = D), the requester

(F ) is inserted in the R Queue.

In figure 7 (b), node E of C1 asks for the token. The

proxy P1 locally redirects the request to D (the lo
al root

of C
1

) which updates its next and owner to E. At the

same time, C reclaims the token. The request is redirected

to B. Since B’s next points to a node of a remote cluster

and the number of local preemption is below the threshold,

the next and owner paths are changed: the next and

owner of B are updated to designated the local node C.

The old value of B’s next (D) is added at the beginning

of R Queue (it is not shown in the figure). C is the new

Every node i:

Receive Request CS(S
j

)

fS

j

is the requesting processg

if owner = ; then

fTerminal nodeg

if resquesting = true then

fThe node asked for CSg

if next = ; then

next Sj

if S
j

2 Lo
alCluster then

owner S

j

else

if S
j

2 Lo
alCluster and

nb preempt < Threshold then

fLocal preemption of the token by the senderg

nb preempt nb preempt+ 1

R Queue next+ R Queue

next S

j

owner S

j

Send hQueue;R Queue;nb preempti to owner

R Queue ;

else

fAdd the sender to the end of R Queueg

R Queue R Queue+ S

j

else

fFirst request to the token since the last CS,g

fdirectly send the token to the requesting processg

token false

Send hToken;R Queue;nb preempti to S

j

else

fNon-ternimal node, following the resquestg

Send hRequest; S
j

i to owner

if S
j

2 Lo
alCluster then

owner S

j

Receive Token(R Queue

k

; nb preempt

k

)

fReceive the token from node kg

token true

R Queue R Queue

k

+ R Queue

if k 2 Lo
alCluster then

nb preempt nb preempt

k

if next = ; then

next Head(Q)

R Queue R Queue�Head(Q)

Receive Queue(Q;nb)

nb preempt nb

if next = ; then

next Head(Q)

R Queue R Queue�Head(Q)

Fig. 6. Aggregation and preemption algo­

rithm: message handlers



lo
al root, receiving then the R Queue. When C receives

the R Queue, it removes the head value of it (= D) and

sets its next to this value.

In figure 8(a), A releases the token. It sends it to its next

node (B). B releases then the CS and sends the token to

C. A and B set their next to ;. In (b), C ends the execution

of the CS and sends the token with the R Queue to the

remote node D. It also sets it owner to F . At the end of its

section, D will send the token to E according to its next.

In (c), when D ends executing the CS, it sends the token

to E and the R Queue. When receiving the message, E

updates its next variable to F .

D

EP1

C1

FG P2
C2

F

C

B

A

C0

FG P2
C2

P1 E

D

C1

A

C0

B

C

(a) D then F ask for CS
F

(b)E and C ask for CS

Fig. 7. Aggregation and preemption algorithm

execution: Inter­clusters requests

IV. Performance evaluation

This section presents the performance evaluation of

several experiments which compare the efficiency of mu-

tual exclusion algorithms. We compare the six following

algorithms:

� Centralized token-based algorithm. In this classical

algorithm, a unique host, the lo
k manager, man-

ages all token requests and granting messages. When

a host wants to enter into the CS, it sends a request to

the lo
k manager; when a host ends the CS it gives

back the token to the lo
k manager, which forwards

it to the next requesting host.

� Broad
ast algorithm, which implements the

permission-based Ricart-Agrawala algorithm [2].

A node wishing to enter into the CS sends a

request to every other node and waits for their

permission. When a node receives a request, it sends

its permission to the requesting node if either it is

FG P2
C2

FG P2
C2

P1 E

D
F

C1

C A

B

C0

G P2 F
C2

P1 E

D

C1

C A

B

C0

A

C0

B

C

D

EP1

C1F

(a)A then B end CS

(b) C ends CS

(c) D and E end CS

Fig. 8. Aggregation and preemption algorithm
execution: Token transmission

not requesting itself the token or another node’s

request precedes its own.

� NaimiTrehel algorithm, which implements the

Naimi-Trehel’s token-based algorithm presented in

section II.

� Proxy algorithm, which implements the algorithm

presented in section III-A.

� PreemptAggregation algorithm, which implements

the algorithm presented in section III-B, which pro-

vides token preemption and message aggregation ap-

proaches.

� Preempt algorithm, which just disables the aggrega-

tion mechanism of PreemptAggregation algorithm.

To emulate a Grid environment with multilevel network

latencies, we have used a specific distributed test platform,

that allows injection of network delays. We establish a

virtual router by using DUMMYNET [14] and IPNAT.

We use IPNAT, an IP masquering application, to divide

our network into virtual LANs. DUMMYNET is a flexible

tool originally designed for testing network protocols. It

simulates bandwidth limitations, delays, packet losses. In

practice, it intercepts packets, selected by address and port

of destination and source, and passes them through one

or more objects called queues and pipes which simulate

the network effects. In our experiment, each message

exchanged between two different LANs passes through this



specific host.

A. Evaluation experiment configuration

The experiment described in this section was performed

on a non dedicated cluster of nine PCs. We consider a

heterogeneous network composed of two Pentium III 600

MHz and six Pentium IV 2 GHz linked by a 100 Mbits/s

Ethernet. The algorithms were implemented in Java (Sun’s

JDK 1.4) on top of a Linux 2.4 kernel.

PCs are spread in 3 clusters of 3 hosts. The topology

is preliminary known by every system member as well as

the initial owner of the token.

For these experiments, we introduce a delay of 300 ms

for inter-cluster communication. Every involved site pro-

duces 20 mutual exclusion requests.

These requests are characterized by :

� � is the time taken by a node to execute the critical

section,

� � specifies the mean time between releasing the

critical section and requesting it again,

� � is the preemption threshold only for Preempt and

PreemptAggregation algorithms.

The performance measures include :

� the number of exchanged messages, divided in two

categories : messages exchanged between two hosts

in the same cluster (local messages) and messages

between two hosts of different clusters (global mes-

sages).

� obtaining time is the time for an host between the

moment when it requests the critical section and the

moment when it get into it.

B. Results and Discussion

The aim of these experiments is to observe evolution of

the behavior of each algorithm when the relation between

� and � varies and � increases. Figures 9 and 10 show the

obtaining time as a function of �, � and �. Figure 9 com-

pares our PreemptAggregation algorithm with classical

algorithms : NaimiTrehel, Centralized and Broad
ast

algorithms. While figure 10 compares the same algorithm

PreemptAggregation with our other algorithms : Proxy

and Preempt. The figure 11 compares the number of

messages exchanged between hosts during an experiment

where � = � = 500ms and table I summarizes the same

experiment. To represent in the same figure the number

of messages exchanged in the broadcast experiment, this

number of messages is represent by a scale four times

greater than the scale of the other algorithms.

For all algorithms when the ratio �=� decreases the

obtaining time decreases too, simply because statistically

when an host requests the token, there are less requesting

hosts and they stay less time in the CS. The first remark

about these experiments is that for each algorithm which

uses the preemption, the obtaining time decreases when

the preemption threshold increases. We can easily explain

this result by the fact that local communication is cheaper

than global communication. As shown in figure 11, the

number of local messages increases when the number of

preemption increases while the number of global message

decreases. This also explains why all the algorithms pre-

sented in figure 10 are more efficient than the classical

algorithms presented in figure 9.

3

5

7

9

11

13

15

17

19

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1500 1000 500 500 500

500 500 500 1000 1500

T
im

e
 (

s
)

NaimiTrehel

PreemptAgg

Centralized

Broadcast

ε

β (ms)

α (ms)

Fig. 9. Comparison algorithm : obtaining time

3

5

7

9

11

13

15

17

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1500 1000 500 500 500

500 500 500 1000 1500

T
im

e
 (

s
)

Proxy

PreemptAgg

Preempt

ε
α (ms)

β (ms)

Fig. 10. Comparison algorithm : obtaining
time

The PreemptAggregation algorithm is the most effi-

cient algorithm presented here. The Aggregation mech-

anism reduces the number of messages exchanged in the

Preempt algorithm. In the Proxy algorithm, the fact that

initial inter-Lan requests are intercepted by the local cluster

leader allows to decrease the number of global messages.

One avantage of the PreemptAggregation algorithm

is that global requests are not transmited to the host which

has requested the critical section. Therefore, as long as

the token has not arrived in a cluster, no hosts in the

cluster know that a remote host has requested the token.

Consequently, the number of preemption is not limited



Type � Obtaning time (s) Average Total Nb of messages
average standard path path local global %

deviation length length

Naimi-Trehel 7.157 1.351 2.37 419 148 393 0.39

Proxy 5.858 1.016 2.35 414 237 299 0.84

0 6.037 1.186 4.14 731 261 185 1.53
PreemptAgg 1 4.704 1.757 4.56 806 359 140 2.56

2 4.287 2.269 4.53 804 395 120 3.34
3 3.992 2.573 4.68 840 395 120 3.34

0 5.858 0.999 2.75 486 402 196 2.11
Preempt 1 4.897 2.053 2.69 473 466 124 3.76

2 4.640 2.517 2.66 470 477 109 4.37
3 4.540 2.884 2.62 463 482 79 6.12

Centralized 10.161 1.981 119 353 0.34

Broadcast 8.007 1.010 720 2159 0.33

TABLE I. Summary of experiement with � and � equals to 500ms

1500 0 15,157 14,41 14,999 14,401 12,846 17,983 16,276 500 1500 0 138 464 193 420 141

1 12,059 12,577 12,316 500 1500 1 346

2 11,159 12,355 12,009 500 1500 2 380

3 10,5 12,108 11,744 500 1500 3 421

1000 0 10,096 10,095 9,03 9,58 8,894 14,096 11,77 500 1000 0 206 339 212 330 285

1 8,297 8,717 8,414 500 1000 1 347

2 7,675 8,475 8,103 500 1000 2 379

3 7,205 8,382 7,878 500 1000 3 409

500 0 7,157 5,858 6,037 5,858 5,04 10,161 8,007 500 500 0 148 393 237 299 261

1 4,704 4,897 4,597 500 500 1 359

2 4,287 4,64 4,293 500 500 2 395

3 3,992 4,54 4,116 500 500 3 441

500 0 5,246 5,657 4,694 5,134 4,57 9,725 7,746 1000 500 0 216 320 205 336 351

1 4,209 4,407 4,076 1000 500 1 384

2 4,225 4,25 4,044 1000 500 2 367

3 4,097 4,105 3,903 1000 500 3 406

500 0 6,648 4,528 4,34 4,174 4,142 9,226 7,266 1500 500 0 125 468 269 322 278

1 4,119 4,09 4,145 1500 500 1 266

2 4,109 4,092 4,14 1500 500 2 261

3 4,114 4,091 4,146 1500 500 3 262

5,061

1,26525

0

100

200

300

400

500

600

700

800

N

b

m

e

s

s

a

g

e

s

0 1 2 3 0 1 2 3

Proxy PreemptAggregation Preempt Broadcast

Global

Local

Naimi-Trehel Centralized

720

2159

ε

Fig. 11. Comparison algorithm : Number of

messages exchanged

by � but by n + � where n is the number of hosts in the

cluster. The locality mechanism is more exploited but the

absence of starvation is preserved.

V. Conclusion

We have presented in this paper a new approach to

optimize mutual exclusion algorithms in a GRID envi-

ronmement. The main idea is to adapt the algorithm

according to network topology in order to confine most

communications to intra-cluster. This improvement allows

to optimize the obtaining time of the token at the expense

of fairness.

This behavior is particulary shown with the

PreemptAggregation algorithm presented in section

III-B. As we have seen in the performance evaluations,

this algorithm allows to decrease significally the obtaining

time with respect to the other algorithms presented but

specially with NaimiTrehel or Centralized algorithms.

References

[1] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21, no. 7,

pp. 558–564, July 1978.
[2] G. Ricart and A. Agrawala, “An optimal algorithm for mutual

exclusion in computer networks,” CACM: Communications of the
ACM, vol. 24, 1981.

[3] O. S. F. Carvalho and G. Roucairol, “On mutual exclusion in
computer networks,” Communications of the ACM, vol. 26, no.
2, pp. 146–147, 1983.

[4] M. Maekawa, “A
p

N algorithm for mutual exclusion in decen-
tralized systems,” ACM Transactions on Computer Systems, vol. 3,
no. 2, pp. 145–159, May 1985.

[5] I. Suzuki and T. Kasami, “A distributed mutual exclusion algo-
rithm,” ACM Transactions on Computer Systems (TOCS), vol. 3,
no. 4, pp. 344–349, 1985.

[6] K. Raymond, “A tree-based algorithm for distributed mutual
exclusion,” ACM Transactions on Computer Systems (TOCS), vol.
7, no. 1, pp. 61–77, 1989.

[7] M. Naimi, M. Trehel, and A. Arnold, “A log (N) distributed mutual
exclusion algorithm based on path reversal,” Journal of Parallel and

Distributed Computing, vol. 34, no. 1, pp. 1–13, 10 Apr. 1996.
[8] M. L. Neilsen and M. Mizuno, “A dag-based algorithm for

distributed mutual exclusion,” in Proceedings of the 11th Inter-
national Conference on Distributed Computing Systems (ICDCS),
Washington, DC, 1991, pp. 354–360, IEEE Computer Society.

[9] I. Chang, M. Singhal, and M. T. Liu, “An improved log (N) mutual
exclusion algorithm for distributed systems,” in Proceedings of the

1990 International Conference on Parallel Processing, Aug. 1990,
pp. 295–302.

[10] F. Mueller, “Prioritized token-based mutual exclusion for distributed
systems,” in Proceedings of 12th Intern. Parallel Proc. Symposium

& 9th Symp. on Parallel and Distr. Processing, Mar. 1998, pp. 791–
795.

[11] I. Chang, M. Singhal, and M. T. Liu, “A hybrid approach to
mutual exclusion for distributed system,” in Proceedings of the 14th

IEEE Annual International Computer Software and Applications

Conference, 1990, pp. 289–294.
[12] A. Housni and M. Trehel, “Distributed mutual exclusion by groups

based on token and permission,” in Proceedings of the ACS/IEEE

International Conference on Computer Systems and Applications,
June 2001, pp. 26–29.

[13] L. Bouge G. Antoniu and S. Lacour, “Making a DSM consistency
protocol hierarchy-aware: an efficient synchronization scheme,” in
Proceedings of the Workshop on Distributed Shared Memory on
Clusters, 2003, pp. 516–521.

[14] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,” ACM Computer Communication Review, vol.
27, no. 1, pp. 31–41, 1997.


