
DRing: A Layered Scheme for Range Queries
over DHTs

Nicolas Hidalgo∗, Erika Rosas∗, Luciana Arantes∗, Olivier Marin∗, Pierre Sens∗ and Xavier Bonnaire†
∗Université Pierre et Marie Curie, CNRS

INRIA - REGAL, Paris, France
E-mail: [nicolas.hidalgo, erika.rosas, luciana.arantes, olivier.marin, pierre.sens]@lip6.fr

† Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile
E-mail: xavier.bonnaire@inf.utfsm.cl

Abstract—Traditional DHT structures provide very poor sup-
port for range queries, since uniform hashing destroys data
locality. Several schemes have been proposed to overcome this
issue, but they fail to combine load balancing, low message
overhead, and low latency in search operations.

In this article we present DRing, an efficient layered solution
that directly supports range queries over a ring-like DHT
structure. We improve load balancing by using only the nodes
that store data, and by updating neighbour information through
an optimistic approach. DRing produces low overhead and low
latency in environments where queries significantly outnumber
data insertion operations. We analyze DRing through simulation
and show that our solution does not rely on data distribution.

Keywords-Peer-to-Peer, DHT, Information Retrieval, Range
Queries.

I. INTRODUCTION

P2P networks are autonomous, self-organised and highly
scalable systems with the potential to grow up to millions of
nodes. Distributed Hash Tables (DHTs) provide the infrastruc-
ture in order to build large scale, decentralised applications
over P2P networks. The most desirable properties one expects
of a DHT are high data availability, fault tolerance, scalability
and load balancing.

DHTs usually achieve load balancing and scalability by
using a uniform hash that maps data to a node in a common
name-space. They are particularly efficient in exact match
queries. P2P overlays, such as Chord [1], Pastry [2] and
Kademlia [3], can perform a lookup operation in O(log(N))
hops, where N is the size of the network.

Range queries, on the other hand, are not supported effi-
ciently since the use of uniform hashing destroys data locality.
Yet range queries are required in a wide variety of distributed
applications like, music or movie storage, P2P persistent
games, scientific computation, data mining, and many types
of large scale distributed databases. A range query retrieves
all the objects with values within a given range. For example:
“find all the computers with memory capacity between 1GB
and 3GB” or “find all the movies between years 2000 and
2011”.

Since the appearance of DHTs, several schemes have been
proposed as an attempt to support range queries [4], [5],
[6], [7]. Among these, approaches that build an index over
the DHT preserve the properties of the underlying overlay.

Unfortunately, none of these solutions manage to provide load
balancing, low message overhead, and low search latency
simultaneously while preserving the scalability of the DHT.

In this paper we present DRing, an efficient approach that
aims at improving range query searching in environments
where queries significantly outnumber data insertion opera-
tions. Our solution supports range queries whilst achieving
good load balancing among the nodes, a very low search
latency, and low message traffic overhead.

Our main contribution focuses on the search process rather
than on the mapping of data onto nodes. The main property of
DRing is that it performs independently of the data distribution
and can perform range queries in the order of O(log(m)) steps,
where m is the number of nodes that store data.

The rest of this paper is organised as follows. Section II
briefly describes Chord and the indexing structure over which
we build our solution. Section III presents the structure and op-
erations of DRing. In Section IV we present simulation results,
discussing cost and performance results. Finally, Section V and
Section VI give an overview of some important related work
and our concluding remarks respectively.

II. BACKGROUND

Our solution is based on the the Prefix Hash Tree (PHT)
indexing structure [4] and is build on top of the Chord
overlay [1]. In this section we briefly describe both systems.

A. Chord

DHT networks are self-organising structured peer-to-peer
overlay networks in which any data can be located within
a bounded number of routing hops. Systems like Chord [1],
Pastry [2] or Tapestry [8] logically organise the nodeId space
of nodes into a ring.

Our work uses Chord [1], a ring-like structured DHT. Every
node in Chord is assigned with a unique nodeID in a m-bit
space using the hash function SHA-1. Each node maintains a
successor and a predecessor in the identifier circle. Any key k,
in the same name-space as the node’s identifiers, is assigned
to the first node whose identifier is equals or follows k. In [1],
they define as successor(k) the node that is responsible for
the key k.

To achieve efficient and scalable key location in the ring,
the nodes in Chord store a finger table, which is a routing
table with at most m entries. The ith entry in the table at
node n contains the address of successor(n + 2i−1). At
each step of the routing process, a node forwards the key to
the node that is the closest successor of the key. Using this
small amount of information, Chord can route gracefully a
key through a sequence of O(log(N)) other nodes towards
the destination [1].

Although we describe and implement our approach with
Chord [1], the use of any other DHT is straight-forward for
ring-like structures like Pastry [2] or Tapestry [8].

B. Indexing Structure

Data in DRing is distributed following the PHT ap-
proach [4]. PHT is a binary prefix tree (binary trie) indexing
data structure over DHT-based P2P networks. Keys of objects
to be indexed are within the domain {0, 1}D, where D is the
length of the string. Notice that such an assumption can be
made without loss of generality [4].

The left branch of a node is labeled 0 and the right branch
is labeled 1. Each node n of the trie is identified with a chain
of P bits (prefix) produced by the concatenation of the labels
of all branches in the path from the root to n. PHT builds a
prefix tree in which objects are stored at leaf nodes. Hence,
an object with key k is stored at a leaf node with a label that
is a prefix of k.

The trie is completely distributed among the peers in the
network. This is achieved by hashing the prefix labels of the
PHT nodes over the underlying DHT identifier space. As a
consequence, each node of the trie will have an assigned node
in the DHT. Figure 1 illustrates an example of mapping. We
denote internal nodes those nodes that belong to the PHT trie
which are not leaves. On the other hand, the nodes that do not
belong to the PHT trie are denoted external nodes.

Fig. 1. PHT indexing structure: Mapping trie nodes over the DHT.

Classic searches in PHT are performed following a linear
or binary approach. Linear search starts looking for the node
that corresponds to the smallest prefix possible of a given key
k. Then, until a leaf node is reached, a new DHT lookup
operation with a one-bit longer prefix is performed. This
search method produces a number of DHT-lookups in the order
of D. Binary search is a half-interval process that starts by
querying a middle prefix of D. If the prefix corresponds to an
internal node of the PHT, the search discards the lower half
of the interval and continues querying a new middle prefix of
the remaining interval. If the prefix corresponds to an external
node, the search discards the upper half of the interval. This
search method produces a number of DHT-lookups in the order
of log(D) and returns the searched leaf node.

In order to improve the performance of range queries, PHT
maintains a double list which links all leaf nodes (Threaded
leaves), as shown in Figure 1 with dashed lines.

III. DRING: BUILDING A DOUBLE RING

DRing is a two layer structure that effectively supports range
queries. Search in DRing exploits previous search information
about the nodes that store data. When performing a query, such
information is used to contact directly a second ring layer thus
reducing search latency.

A. DRing Architecture

Data are uniformly distributed among the nodes of the
DHT without an specific order. DRing keeps a second ring
structure on top of the overlay which aims at improving
performance of range queries. This second overlay, called Leaf
Ring, comprises only leaf nodes, i.e., nodes that store data.
The identifier of a node in this second ring is its respective
identifier in the prefix trie. Organizing the prefix labels of
the leaf nodes into a ring structure improves sequential data
search, and therefore, easily provides range queries.

In the Leaf Ring, each node references its successor and
predecessor leaf in the trie. Figure 2 presents the proposed
architecture, where nodes in grey represent leaf nodes.

Fig. 2. DRing double structure: Leaf Ring over the overlay ring

Additionally, each node of the Leaf Ring stores a Leaf Table
that keeps references to other leaf nodes. Figure 3 shows an

example of a Leaf Table. At each entry i, the node stores the
reference to a node that is at a distance of 2i. The maximum
number of entries of the Leaf Table is the maximum object key
size D. Each entry is composed by a prefix label of the leaf
node, as well as a static reference (IP Address). Maintaining
the prefix label helps in dynamic environments, where static
references become useless. When a static reference fails, a
lookup over the DHT can be performed in order to contact
the leaf node by hashing the stored prefix.

A node stores information about past queries it issued which
allows to directly access the Leaf Ring, avoiding thus internal
levels of the trie-structure (see Section III-C). Within the
second layer, search is performed as the underlying DHT
structure: using a greedy technique that forwards the search
to the node which is the numerically closest successor to the
key.

Fig. 3. A Leaf Table of a node

A node iteratively fills its Leaf Table the first time it join
the Leaf Ring. To complete the entry 2i+1 of the Leaf Table,
a node X asks the node at a distance of 2i for the ith entry
of its Leaf Table. For example, to find the node that is at a
distance 21, X can obtain the information from its successor
(since it is at a distance 20) and to find the node at a distance
25 has to contact the node at a distance 24 which provides
information about the 4th entry of its table.

The part of our approach described above performs effi-
ciently if the trie is balanced. However, such an assumption is
not realistic. Join and leave operations induce a global change
in the tables of the nodes in Leaf Ring, that grows linearly
with the number of nodes. This is the result of taking into
account distances instead of static partition of the namespace
which, on the other hand, is not efficient since when the trie
is unbalanced, the load is also unbalance.

In order to solve this issue and repair the Leaf Tables of
nodes an optimistic approach is used which consists in only
updating tables when a range query is performed (Section
III-D). We argue this is enough to achieve a good performance
in scenarios where queries highly outnumber data insertion
operations.

B. Split Operation

Each split operation in the logical PHT trie, induces two
joins and one leave operation in the Leaf Ring.

Starting from the root node in the PHT trie, when node X
achieves its maximum storage capacity B, the trie splits into

two children. The left child will have the prefix label of its
parent concatenated with 0 and the right child with 1. The
information stored in X is distributed among both children.
The left child will be the successor and predecessor of the
right one (in the beginning there are only two leaf nodes that
store data).

Whenever a node splits, this node, denoted parent, must
inform its children about the identifier of its predecessor and
successor nodes: the predecessor of the left child is its parent’s
predecessor and its successor is its right brother; similarly,
the predecessor of the right child is its left brother and the
successor is its parent’s successor. The children Leaf Tables are
thus initialised with the information provided by their parent
node and are further updated in an optimistic way as described
in Section III-D.

Figure 4 shows an example of a split operation in the Leaf
Ring. Node with identifier 01 reaches its storage capacity and
is replaced by two other nodes with prefixes 010 and 011. The
information of the node with prefix 01 is moved to its children
in order to update the successor and predecessor links.

Fig. 4. A split operation in DRing

In case of concurrent splits of neighbor nodes of the Leaf
Ring, the obtained information that a child gets from its parent
might be out of date. Thus if the parent’s successor, Y , is no
longer in the Leaf Ring, the right child will contact the left
child of Y . Notice that the prefix label of Y ’s left child can
be obtained by the concatenation of Y ’s prefix label with ’0’;
similarly, if the parent’s predecessor, Z is no longer in the Leaf
Ring, the left child will contact Z’s right child. The identifier
of the latter is composed by the concatenation of Z’s prefix
label with ’1’.

C. Range Query Strategies over DRing

A range query corresponds to an interval of data to be
searched. It has the form Rq = [L,U], where L is the lower
bound and U is the upper bound. To collect the data in the
range, one of the bounds is searched in the network. Then,
the search will follow the successor or predecessor links of
the Leaf Ring in order to retrieve all the data contained in the
range query.

Each node in the DHT maintains a Leaf List, that contains
the leaf nodes that have been previously contacted. These
contact nodes are the access to the Leaf Ring and become
the starting point of the search.

The node can start the range query search either by the
lower or the upper bound. Such a decision is based on the
common prefix with the nodes in its Leaf List, i.e., the node
starts the search from the bound that has the greatest common
prefix.

The size of the Leaf List is a parameter λ of the system.
Each of its entries store a static reference and the prefix label
that identifies the leaf node in the trie (and in the Leaf Ring).
In the case the access to the first fails, a DHT lookup operation
will find the new contact node by applying the hash function
over the prefix label of the entry. When the Leaf List is full,
the replacement strategy removes an entry following a least
recently used (LRU) policy.

If a node has never performed any query yet, its Leaf List is
empty: it knows no contact node. In order to fill its Leaf List,
a node first asks for the Leaf List of its neighbors. However,
if such an information is not available either, it applies one of
the PHT search mechanisms (linear or binary) [4].

Other complex queries are also directly supported by DRing.
For instance Min/max queries look for the smallest and largest
value of the indexed data. DRing carries them out with a
single lookup operation. K-NN queries return the k nearest
data values to a given key. The successor and predecessor links
of the Leaf Ring allow to find the required data efficiently.

D. Optimistic Table Maintenance
We propose to use the information obtained when a range

query is performed to optimistically repair the routing tables,
i.e., the entries are updated using the information from neigh-
bors only when a range query takes place.

In the case of Chord [1], the data corresponding to leaf node
with prefix A is stored in the successor(SHA(A)). Chord
will route to the node in the overlay with the identifier which
is the successor of the searched key. Since DHT nodes can
crash or leave the network, Chord can replicate data on several
nodes in the numerical vicinity of SHA(A) so as to avoid
information loss. Therefore in dynamic environments, the node
responsible for given key can change. When a leaf node leaves
the network or crashes, its static reference is no longer valid.
In this case, Chord falls back on the new current node whose
identifier is the successor of SHA(A) as the holder of the data.
Given the prefix label, this new node can easily be contacted
through a DHT lookup operation and the static reference to
its IP address is updated.

Every split of a leaf node of the trie produces inconsistency
in the Leaf Tables. Similarly, this information is only updated
when a range query takes place. Upon receiving the query,
the node looks into its Leaf Table and forwards a message to
the i reference which is the closest to the searched node, also
including its table reference i + 1 in the message. The node
that receives the message checks if this reference corresponds
to its own at row i in its table. If such is not the case, it passes
on its entry reference to the sender which will then update its
table.

Evaluation results (see Section IV) show that this up-
date mechanism provides good performance, producing low
overhead, even when the distribution of the data is highly
unbalanced.

IV. SIMULATIONS & ANALYSIS

In this section we discuss the performance of DRing by
comparing it with PHT searches[4]. Our simulations were

conducted on top of Peersim simulator [9].

A. Traffic Message Overhead

Traffic message overhead is directly related with latency. We
measure the number of messages generated by range queries
over our system and compare it with the PHT [4] linear
and binary search. To this end, we use both the Uniform
and Gaussian data distributions which respectively generate
a balanced and unbalanced trie-structures. When there is no
known contact node in DRing, the default search can be the
linear or binary search.

In our experiments, we consider a network composed of
10, 000 peers. Each node stores at most 50 objects. Each
simulation starts by inserting 20, 000 objects in the network,
which covers the first 20% of the simulation. In the rest of
the simulation, the system generates a range query request
and an object insertion operation with a probability of 0.9
and 0.1 respectively. The presented results also include the
maintenance messages but the latter represent only 0.1% of
the total traffic of range queries messages.

Figure 5(a) shows the message traffic when linear search
is performed using DRing and PHT. We consider both the
Uniform and Gaussian distributions. We can observe that
DRing highly decreases the number of messages generated
by the search process. In the case of the Uniform distribution,
the number of messages is reduced in more than 40% and the
improvement reaches near 50% for the Gaussian distribution.
In the case of PHT, there is a degradation of performance
when the data distribution is Gaussian. Since the latter gen-
erates unbalanced tries which store clustered information in
the deeper levels of the trie, PHT search suffers from high
latencies. On the other hand, DRing directly accesses leaf
nodes without going through internal nodes, as PHT search
does. As a result, DRing search is more efficient and its
performance is independent of data distribution.

Binary search results are presented in Figure 5(b) and 5(c).
DRing and PHT perform similarly in the case of binary search.
For both distributions the amount of messages is around 8, 000
at each step of simulation, when the Leaf Tables are full.
However, we must point out that binary search has a major
drawback: if an internal node fails or leaves the system, it
might be impossible to locate a given leaf node and the search
has to restart generating extra message traffic [4].

Figure 5(d) presents simulation results for different sizes of
the trie structure. The generated tries are the results of 20, 000,
40, 000 and 80, 000 insertion operations of data objects in
the network. Data insertions make the trie structure grow.
The number of leaf nodes that store data is approximately
500, 1000 and 2000 leaf nodes respectively. The results were
obtained using linear search and Uniform data distribution.
The insert operations were performed before the beginning of
the simulation. PHT linear search latency increases with the
number of levels of the trie: one more level implies one more
message. As the trie is a hierarchical structure, the number of
messages will increase in the same amount if we double the

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 20 40 60 80 100

#
 o

f
M

e
s
s
a
g

e
s

% Simulation

Dring - Uniform
Dring - Gaussian

PHT - Uniform
PHT - Gaussian

(a) Traffic - Linear

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 20 40 60 80 100

#
 o

f
M

e
s
s
a
g

e
s

% Simulation

Dring - Uniform
PHT - Uniform

(b) Traffic - Binary - Uniform

 7000

 7500

 8000

 8500

 9000

 0 20 40 60 80 100

#
 o

f
M

e
s
s
a
g

e
s

% Simulation

Dring - Gaussian
PHT - Gaussian

(c) Traffic - Binary - Gaussian

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100
#

 o
f

M
e

s
s
a
g

e
s

% Simulation

Dring - 20.000 inserts
Dring - 40.000 inserts
Dring - 80.000 inserts
PHT - 20.000 inserts
PHT - 40.000 inserts
PHT - 80.000 inserts

(d) Traffic - Data Insertion Operations

Fig. 5. Traffic Comparison

number of insert operations, as is shown in Figure 5(d). In the
case of DRing, its structure allows that a query to be routed in
O(log(m)) steps, where m is the number of leaf nodes, which
greatly improves the results of a linear search. The grow of
the trie slightly degrades performance, but which is almost
unobservable in Figure 5(d). After approximately 20% of the
simulation, the nodes in DRing fill its respective Leaf Tables
and the routing process is thus improved.

Maintenance operations in DRing increase with the number
of split operations in the trie structure. Figure 6 shows how
the number of maintenance messages grows in a simulation
when 20%, 15%, and 10% of the total of messages correspond
to data insertion operations. DRing performs optimally in an
environment where range queries are higher than data insertion
operations since such difference makes DRing to fill its tables
in an optimistic way. However, if the latter is equal or higher
to the former, the nodes in DRing can not update its respective
tables and the performance is therefore degraded.

In highly dynamic churn environments, where nodes go in
and out of the system frequently, the performance will also
be affected. However, DRing uses the indexing trie-structure
of PHT [4], which makes easy to find the new node which
correspond to a key. With a good replication scheme exploiting
the neighbours of every leaf node, the dynamism problem can
be mitigated.

B. Load Balancing
One of the main advantages of the DRing approach, is

that the traffic is balanced among the leaf nodes of the trie.

 1600

 1700

 1800

 1900

 2000

 2100

 2200

0.20 0.15 0.10

#
 o

f
M

e
s
s
a

g
e

s

Insert Probability

Fig. 6. Maintenance operations in DRing

Generally, search over tree-based approaches traverse part of
the trie structure to find data. The upper levels of the trie
are highly overloaded, since queries are distributed among a
small number of nodes which introduces bottlenecks. DRing
diverts queries from the upper levels directly to the leaf nodes,
and, therefore, search is performed only at the leaf level. As
a consequence, messages are distributed to a greater number
of nodes.

A linear PHT search, for example, sends messages to each
level of the trie, producing bottlenecks where the number of
nodes in the level is small (closer to the root). Notice that
at the level e of the trie there is 2e nodes. The worst case
is the first level, where only 21 nodes answer queries. On
the other hand, at lower levels the messages are distributed

among a higher number of nodes. DRing avoids bottlenecks
by distributing these messages at the lowest level.

C. Fault Resilience

In PHT [4] linear and binary searches, nodes are queried
about their position in the trie, and each step is used to
compute the next one. If a node crashes or leaves the network,
the search process will also fail. Moreover, the crash of a node
at an upper level of the trie impacts heavily on the search of
its sub-trees.

Our approach aims at reducing the traditional hierarchical
search of tries, while maintaining the good properties of
assigning one prefix label to a node in the DHT. It minimizes
access to PHT internal structure as much as possible: most
queries are directly diverted to leaf nodes. Internal nodes
avoidance not only improves search performances but also
reduces the potential impact of faulty nodes.

V. RELATED WORK

Many solutions that support range queries exploiting DHT
have been proposed in the literature. They are basically divided
into two classes: Overlay-dependent and Over-DHT.

Overlay-dependent indexing solutions adopt either a DHT-
free indexing approach which re-designs its own overlay, or a
DHT-modification approach in order to provide data locality.
MAAN [10] and Mercury [5] are some examples. Generally
they present load balancing and traffic message overhead
issues because they do not maintain the DHT properties.

Our approach can be categorized as an Over-DHT index,
since it builds an index over the DHT. The created index
preserves data locality providing support for complex queries.
The advantages of these solutions are their portability to any
DHT, their easy implementation and the fact that they preserve
the DHT properties. We have focused on this class of solutions
due to space limitations.

An over-DHT solutions generally relies in tree-based in-
dexing structure [11], [7], [4], [6]. Distributed Segment Tree
(DST) [11] is a trie-based indexing solution which replicates
data over the internal nodes of the trie. To process a range
query in DST, the query range is decomposed in several
sub-ranges each corresponding to an internal node. Due to
data replication, high-levels of the structure can be easily
overloaded becoming bottleneck. To address this issue, authors
in [7] proposed a Range Search Tree (RST). RST extends DST
by introducing a novel data structure called Load Balancing
Matrix (LBM) in order to improve load balance among nodes.
The main problems of these two solutions are the maintenance
cost, the data lost and load balance.

LIGHT [6] is a solution that stores data in all nodes of
the indexing structure using a new naming function. It avoids
part of the maintenance overhead produced when making a
copy of the data in the children nodes. To search over the
data, they introduce a new distributed data structure: the leaf
bucket. A leaf bucket stores data information and summarises
the partition tree structural information. However, load balance
in search is still an issue.

VI. CONCLUSION

In this paper we have presented DRing, a new approach
to support range queries in ring-like DHTs systems. DRing
builds a second ring overlay with nodes that store the data
(leaf nodes). We have also proposed an efficient method to
access DRing using the information obtained from past range
queries which allows to easily locate a node to start the search
over DRing.

Simulation results show that our system outperforms
PHT [4] linear search, reducing the traffic of messages in
more than 40% in environments where queries are higher
than data insertion operations. DRing balances the load of
nodes, avoiding bottleneck in the upper levels of the indexing
structure.

Exploiting different data distributions, simulation results
have confirmed that the performance of our approach is
maintained, even in the presence of skewed data.

Range queries is still a major concern when the number of
attributes grows significantly. Our future work is to perform
simulations indexing multi-attributed data.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11, pp.
17–32, February 2003.

[2] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK:
Springer-Verlag, 2001, pp. 329–350.

[3] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in Revised Papers from the
First International Workshop on Peer-to-Peer Systems, ser. IPTPS ’01.
London, UK: Springer-Verlag, 2002, pp. 53–65.

[4] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker,
“Prefix hash tree: An indexing data structure over distributed hash
tables,” in In Proceedings of ACM PODC, St. Johns, Canada, July 2004,
2004.

[5] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” SIGCOMM Comput. Commun.
Rev., vol. 34, pp. 353–366, August 2004.

[6] J. X. Yuzhe Tang, Shuigeng Zhou, “Light: A query-efficient yet low-
maintenance indexing scheme over dhts,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 22, pp. 59–75, 2010.

[7] J. Gao and P. Steenkiste, “An adaptive protocol for efficient support
of range queries in dht-based systems,” in Proceedings of the 12th
IEEE International Conference on Network Protocols. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 239–250.

[8] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[9] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator,” http://peersim.sf.net.

[10] M. Cai, M. Frank, J. Chen, and P. Szekely, “Maan: A multi-attribute
addressable network for grid information services,” in Proceedings of
the 4th International Workshop on Grid Computing, ser. GRID ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 184–.

[11] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed segment tree:
Support of range query and cover query over dht,” in IPTPS ’06, 2006.

