
A Time-Free Byzantine Failure Detector for Dynamic Networks

Fabı́ola Greve, Murilo Santos de Lima
Federal University of Bahia,

Computer Science Department, Salvador, Brazil
E-mail: [fabiola,murilolima]@dcc.ufba.br

Luciana Arantes, Pierre Sens
Université Pierre et Marie Curie,

CNRS - INRIA - REGAL, Paris, France
E-mail: [luciana.arantes, pierre.sens]@lip6.fr

Abstract—Modern distributed systems deployed over wire-
less ad-hoc networks are inherently dynamic and the issue of
designing dependable services which can cope with the high
dynamics of these systems is a challenge. Byzantine failure
detectors provide an elegant abstraction for implementing
Byzantine fault tolerance. However, very few works have
been proposed for the new distributed system scenario. This
paper presents a model and a protocol able to implement an
unreliable Byzantine failure detector adequate for dynamic
networks with unknown membership. The protocol has the
interesting feature to be time-free, that is, it does not rely on
timers to detect omission failures. To the best of our knowledge,
the adoption of a time-free Byzantine failure detection is
novel and this paper provides a first insight towards the
understanding and implementation of such an approach in
networks with unknown membership.

Keywords-Byzantine fault-tolerance, failure detectors, Byzan-
tine failures, dynamic distributed systems, wireless networks

I. INTRODUCTION

Modern distributed systems, deployed over ad-hoc net-
works, such as wireless mesh networks (WMN), wireless
sensor networks (WSN) are inherently dynamic. They are
composed by a dynamic population of nodes, which ran-
domly join and leave the network, at any moment of the ex-
ecution, so that only a partial knowledge about the system’s
properties can be retained. Global assumptions, such as
the knowledge about the whole membership, the maximum
number of failures, complete or reliable communication, are
no more realistic. Therefore, classical distributed protocols
are no longer appropriate for this new context, since they
make the assumption that the whole system is static and its
composition is previously known.

Byzantine fault tolerance (BFT) [1] plays an important
role on the development of dependable dynamic distributed
systems. It deals with a number of security problems by
tolerating the presence of corrupted processes, which may
behave in an arbitrary manner, trying to hinder the system to
work accordingly to its specification. The implementation of
BFT techniques is a major challenge on dynamic distributed
systems as many factors favor the action of malicious agents,
e.g., the dynamic population, the wireless communication
medium, the necessity to cooperate in order to achieve
fundamental tasks (e.g., routing).

An Unreliable failure detector, namely FD, is a funda-
mental distributed service that provides an elegant approach
to design secure, dependable and modular systems [2]. It can
informally be seen as a per process oracle which gives hints
(via a list of suspicions) on which processes in the system
are faulty. The failure detector is unreliable in the sense that
it may erroneously add to the list a process which is actually
correct. But if the detector later believes that suspecting this
process is a mistake, it then removes the process from the
list. Therefore, the FD may repeatedly add and remove the
same process from its list of suspected processes.

Many important secure and dependable services (e.g.,
group membership, atomic commitment, consensus) and
middleware (e.g., group communication, replicated and
transaction servers) make direct use of FDs. FDs exempts
the overlying service to deal with the failure treatment and
synchrony requirements, so that it can just take care about
its inherent task. The service is designed and proved correct
based only on the formal properties provided by a FD
class and it is exempted to deal with low-level aspects.
The FD implementation and practical assumptions can be
addressed independently. In this sense, the implementation
can be better adapted to the particular characteristics of each
environment; moreover, one FD implementation can serve
many applications. An advantage of providing a FD for
dynamic networks is that existing applications that already
run on top of static networks using FDs could be more easily
ported to the new context. Thus, seeking for conditions and
protocols to implement Byzantine FDs in dynamic networks
is of utmost interest.

But, differently from FDs for crash or “benign” failures,
in which the FD implementation and practical assumptions
can be addressed independently, FDs for Byzantine failures
must rely on the detection on the application algorithm
that uses it as an underlying oracle. This is because the
detection is made according with the message contents and
communication pattern followed by the specific algorithm.
This inherent symbiosis between the FD and application
algorithm is perhaps at the cause of the very little work
done until now in the domain of Byzantine fault detection.

A. Related Work

Failure detectors have been proposed by Chandra and
Toueg [2] as a way to circumvent the impossibility to solve
consensus deterministically in an asynchronous distributed
system prone to crash failures [3]. Roughly, consensus is
a fundamental agreement problem which allows a set of
processes to agree on a common proposal output value. It
is at heart of many other dependable services, e.g., group
membership, atomic broadcast, replicated servers, etc.

In the context of arbitrary failures, Malkhi et al. [4] extend
the theory of Chandra and Toueg [2] and define a FD able to
identify processes that prevent the progress of the algorithm
using it. Doudou et al. [5] introduce the concept of muteness
failure detectors in which the oracle detects when a process
is mute, that is, when it ceases sending messages required
by the algorithm. While these two works are restricted to
a small subset of failures, the work of Kihlstrom et al. [6]
extend the classical model of FDs for crash failures [2] to
propose new classes able to consider more generic Byzantine
failures and to solve consensus. Baldoni et al. [7] provide
a framework to solve consensus which integrates muteness
failure detectors (for mute crashes) and a byzantine behavior
detector (for other Byzantine failures).

All these previous contributions about Byzantine failure
detection [4], [5], [6], [7] consider a classical distributed
system in which the communication graph is complete and
the number and set of participants are globally known. An
exception is [8], but it solves only a subset of the Byzantine
failure detection problem to the specific application of
routing.

Recently, Haeberlen et al. [9] presented the PeerReview
system and propose a concrete solution to the Byzantine
fault problem based on the use of accountability to detect
and expose node faults. The solution is suitable for dy-
namic systems which span multiple administrative domains,
e.g., P2P and overlay multicast systems, but it does not
consider the case of systems in which the membership
is unknown since the beginning of the execution. In a
subsequent work [10], the same authors provide a formal
study of the generic fault detection problem. They give a
formal definition of commission (or security) and omission
(or progress) faults [6] and identify some bounds on the costs
of solving a weak definition of failure detection problem in
asynchronous systems with authenticated channels.

All the Byzantine FDs proposed so far adopt the timer-
based model to detect progress failures. This is a common
design principle which supposes that eventually some bound
on the transmission delays will permanently hold. However,
these bounds are not known and they hold only after
some unknown time [2]. An alternative approach suggested
by [11] is time-free and considers that the system satisfies
a message exchange pattern on the execution of a com-
munication primitive. It does not rely on timers to detect

crash failures and assumes that the responses from some
stable known process to a query launched by other processes
permanently arrive among the first ones. This idea has been
exploited by [12] to develop a FD for dynamic networks, but
for the crash failure model. While the timer-based approach
imposes a constraint on the physical time (to satisfy message
transfer delays), the time-free approach imposes a constraint
on the logical time (to satisfy a message delivery order).
Both approaches (timer-based and time-free) are orthogonal
and cannot be compared.

In dynamic networks, since the communication delays
may frequently vary due to failures, arrivals and departures
of nodes, the statement of the transmission bounds required
by the timer-based detection becomes a big challenge. In this
sense, the time-free model appears as a suitable alternative
for being used in a dynamic set [13], [14].

B. Contributions

This paper advocates the use of the time-free approach
to provide Byzantine failure detection [14]. It proposes a
model, a specification, and an algorithm to implement an
unreliable Byzantine FD adequate for dynamic networks
with unknown membership and partial communication con-
nectivity. To the best of our knowledge, the adoption of
a time-free Byzantine detection in networks with unknown
membership is novel and this paper provides a first insight
towards the understanding and implementation of such an
approach.

The rest of the paper provides the model (Section II),
time-free additional assumptions (Section III), the algorithm
(Section IV), its correctness proofs (Section V) and the
conclusion (Section VI).

II. MODEL FOR BYZANTINE FAILURE DETECTION IN
DYNAMIC NETWORKS

A. System Model

We are particularly interested in systems deployed over
wireless ad-hoc networks, such as WSNs and WMNs. The
system is a set of nodes communicating by broadcasting
messages via a packet radio network. It is asynchronous:
there are no assumptions on the relative speed of processes
or on message transfer delays. There is no global clock
known to the processes, but to simplify the presentation,
we take the range T of the clock’s tick to be the set of
natural numbers.

Finite arrival model [15]. The network is a dynamic
system composed of infinitely many processes; but each
run consists of a finite set Π of n > 3 nodes, namely,
Π = {p1, . . . , pn}. This model properly expresses dynamic
networks where nodes join and leave the system as they
wish. It is suitable for long-lived or unmanaged applications,
as for example, sensor networks deployed to support crises
management or help on dealing with natural disasters.

The membership is unknown. Processes are neither aware
about Π nor n, because, moreover, these values can vary
from run to run [15]. There is one process per node; each
process knows its own identity, but it does not necessarily
knows the identities of the others. Nonetheless, they can
make use of the broadcast facility of the wireless medium
to know one another. Thus, we consider that a process knows
a subset of Π, composed of nodes with whom it previously
communicated.

Process failure model. Processes are subject to Byzantine
failures [1], i.e., they can deviate arbitrarily from the algo-
rithm they are specified to execute and work in collusion
to corrupt the system behavior. A process pi that does not
follow its algorithm specification is said to be Byzantine;
otherwise, it is correct, in this case, the predicate correct(pi)
is true. In particular, a Byzantine process may send messages
not previously defined by its algorithm or may omit to send
messages it is supposed to. In this sense, a process that
crashes can be regarded as Byzantine. Notice that the sets
of correct and Byzantine processes form a partition of Π.
Every process is uniquely identified and a Byzantine process
cannot obtain more than one identifier. Thus, it is impossible
to launch a sybil attack against the system [16].

Communication graph is dynamic. Due to arbitrary joins,
leaves, and failures, the network is represented by a commu-
nication graph with a dynamic topology, thus the relations
between nodes take place over a time span T ⊆ N.
Following [17], we consider that the dynamics of the sys-
tem is represented by a time-varying graph, namely TVG,
G = (V,E, T , ρ, ζ, ψ), where: (1) V = Π represents the
set of nodes, (2) E ⊆ V × V represents the set of logical
links between nodes, (3) T ⊆ N is a time span, (4)
ρ : E×T → {0, 1} is an edge presence function, indicating
whether a given edge e ∈ E is available at a given time
t ∈ T , such that ρ(e, t) = 1 iff e is present at t, otherwise
ρ(e, t) = 0, (5) ζ : E × T → N is a latency function,
indicating the time taken to cross a given edge e if starting
at a given time t; since the system is asynchronous, there
is no bound for this time, thus, we consider that ζ exists
but cannot be estimated, (6) ψ : V × T → {0, 1} is a
node presence function, indicating whether a given process
pi ∈ V is up at a given time t ∈ T , such that ψ(pi, t) = 1
iff node pi is up at t, otherwise ψ(p, t) = 0.

Let Ri be the wireless transmission range of pi in the
network, then all the nodes that are at distance at most Ri

from pi in the network are considered 1-hop neighbors,
belonging to the same neighborhood. We denote N t

i to
be the set of 1-hop neighbors from pi at time t ∈ T .
The neighborhood relationship establishes the edge set, in
such a way that pj ∈ N t

i iff (pi, pj) ∈ Et
i , such that

ρ((pi, pj), t) = 1. The degree of pi at time t is defined
to be Degti = |Et

i |.
Given a TVG G, the graph G = (V,E) is called the

underlying graph of G. G should be considered as a sort

of footprint of G which flattens the time dimension and
indicates only the pair of nodes that have relations at
some time in T . Formally, a sequence of couples J =
{(e1, t1), (e2, t2), . . . , (ek, tk)}, such that {e1, e2, . . . , ek} is
a walk in G, is a journey in G if and only if ρ(ei, ti) = 1
and ti+1 ≥ ti + ζ(ei, ti) for all i < k. If a journey exists
from pi to pj , we say that pi reaches pj or more simply,
pi pj .

Authenticated channels. We assume a public key cryp-
tosystem in which every process pi holds a private key Ki

with which it can sign its messages (e.g., RSA [18]) and
every process in the system can obtain the public key of
every other node in order to authenticate the sender of any
signed message, even if another process has relayed that
message. Byzantine processes cannot subvert the crypto-
graphic primitives. Without authenticated channels, it is not
possible to tolerate process misbehavior in an asynchronous
system since a single faulty process can play the roles of all
other processes to some (victim) process.

Communication is fair-lossy. A message m sent by a
correct process pi an infinite number of times is received
by every correct process pj in its neighborhood an infinite
number of times, or pj is Byzantine. That is, if pi starts
to send m at time t an infinite number of times, then, if
ρ((pi, pj), t

′) = 1,∀t′ ∈ (t,∞), pj receives m an infinity
number of times if pj is correct. In addition, there is no
message duplication, modification or creation; this means
that a Byzantine node is not allowable to interfere on
message transmissions by correct processes, and even if it
sends multiple versions of a message, the message will be
perceived by the others as only one message with the same
contents [19], [20]. The fair-lossy assumption seems to be
inadequate for the dynamic environment; above all, wireless
channels are inherently unreliable and can in addition suffer
from a number of attacks, e.g., a malicious node can raise a
collision attack in messages sent by honest nodes, preventing
reception. Fortunately, some works about ensuring reliability
under these conditions have recently appeared. For example,
[20] presents an approach to implement a reliable local
broadcast primitive with probabilistic guarantees in a wire-
less network with lossy channels and Byzantine adversaries.

B. Byzantine Failures

Two requirements must be satisfied in a system prone
to Byzantine failures: (i) correct processes must have a
consistent view of the messages sent by every process;
(ii) correct processes must be able to verify if a message
is consistent with the requirements of the algorithm in
execution. Thus, Byzantine failure detection is defined as
a function of some algorithm A. The first requirement
may be addressed by two distinct techniques: information
redundancy or unforgeable digital signatures; the second can
be met by adding certificates to the messages, so that its
content may be validated [21].

Two superclasses of Byzantine failures can be distin-
guished [6]: detectable, when the external behavior of a
process provides evidence of the failure and non-detectable,
otherwise. Non-detectable failures are grouped in unobserv-
able, when other processes cannot perceive the occurrence
of a failure (e.g., when a faulty process informs a parameter
different from the supplied by the user) and undiagnosable,
when it is not possible to identify the perpetrator of failure
(e.g., the processes receive an unsigned message).

This work deals with detectable failures. They are clas-
sified in omission (or progress) failures and commission (or
security) failures [6]. Omission failures hampers the termi-
nation of the computation, since a faulty process does not
send the messages required by the specification. Commission
failures violate invariant properties to which processes must
obey, and can be defined as the noncompliance of one of
the following restrictions: (i) a message sent by a process
to other processes must have the same contents (no mutant
message); (ii) the messages sent must conform the algorithm
A under execution.

C. Stability Assumptions

One important aspect on the design of FDs for dynamic
networks concerns the time period and conditions in which
processes are connected to the system. During unstable peri-
ods, certain situations, as for example, connections for very
short periods or numerous joins or leaves along the execution
(characterizing a churn) could block the application and
prevent any useful computation. Thus, to implement any
global computation, the system should present some stability
conditions that when satisfied for long enough time will be
sufficient to satisfy the requirements of the application and
terminate.

In order to implement FDs with an unknown membership,
processes should interact with some other process that never
departs from the system to be known. If there is some
process such that the rest of processes have no knowledge
whatsoever of its identity, there is no algorithm that im-
plements a FD with weak completeness [22]. Completeness
characterizes the FD capability of suspecting every faulty
process permanently. In this sense, the characterization of
the actual membership of the system, that is, the set of
processes which might be considered for the computation
is essential.

We consider then that a process pi joins the network at
some point t ∈ T in time. Subsequently, pi must somehow
communicate with the others in order to be known. In a
wireless network, this can be done by simply broadcasting its
identity to the neighbors. Due to this initial communication,
every process pj is able to gather an initial partial knowledge
Πj ⊆ Π about the system’s membership which increases
over the time along pj’s execution. Let Πj(t) be the partial
knowledge of pj by time t. A process is known if, after
having joined the system, it has been identified by some

stable process. A stable process is thus a correct process that,
after had entered the system for some point in time, never
fails (by deviating from the algorithm specification, crashing
or leaving the network); otherwise, it is faulty. When pi
leaves the network at time t′ > t, it can re-enter the system
with a new identity, thus, it is considered as a new process.
Notice that sybil’s attacks are not authorized. Processes may
join and leave the system as they wish, but the number of
re-entries is bounded, due to the finite arrival assumption.

Definition 1: Process Status. A process pi may assume
the following status in the system.
joint(pi)⇔ ∃t,∀s < t, ψ(pi, s) = 0 ∧ ψ(pi, t) = 1
stablet(pi)⇔ correct(pi) ∧ ∃t,∀t′ ≥ t, ψ(pi, t

′) = 1
crasht(pi) ⇔ ∃s, t, s < t, ψ(pi, s) = 1 ∧ ∀t′ ≥

t, ψ(pi, t
′) = 0

faultyt(pi)⇔ ∃t, crasht(pi) ∨ pi deviates from A at t
knownt(pi)⇔ ∃pj ,∃t, stablet(pj) ∧ pi ∈ Πj(t)
The failure pattern of the system, namely F (t), is the set

of processes that have failed in the system by time t. That
is, F (t) = {pi : faultyt(pi)}. Similarly, S(t), is the set of
processes that are stable in the system by time t. That is,
S(t) = {pi : stablet(pi)}.

Definition 2: Membership. The membership of the sys-
tem is the KNOWN set.

STABLE
def
=

⋃
t∈T S(t)

FAULTY
def
=

⋃
t∈T F (t)

KNOWN
def
= {pi : ∃t ∈ T , pi ∈ STABLE ∪ FAULTY ∧

knownt(pi)}

D. Connectivity Assumptions

Let VKS = KNOWN ∩ STABLE and EKS ⊆ VKS × VKS .
The graph GKS = (VKS , EKS) ⊆ G is the graph induced
from the stable known nodes in Π, defining the TVG GKS =
(VKS , EKS , T , ρ, ψ) ⊆ G.

We can identify classes of TVG based on the tempo-
ral properties established by the entities. The classes are
important because they imply necessary conditions and
impossibility results for distributed computations. Notably,
Class 3 (Connectivity over time) [17] is important for our
study. It means that the TVG is connected over time.

Assumption 1: Network with Byzantine Coverage. The
system, represented by the TVG GKS , has Byzantine cov-
erage if and only if:
(1) ∃t ∈ T ,∀t′ ≥ t, ∀pi, pj ∈ VKS , pi pj (pi reaches pj).
That is, after t, there is a journey J , ∀pi, pj ∈ KNOWN ∩
STABLE. For a communication purpose, we assume that each
edge ei of J remains available until a message is delivered,
thus ρ(ei, t) = 1,∀t ∈ [ti, ti + ζ(ei, ti)].
(2) the minimum degree of a node pi in GKS is Degri >
2fi,∀r ∈ T .

Connectivity Assumption (1) states that, in spite of
changes in the topology, from some point in time t, the TVG
GKS is connected over time. This is a common assumption,

mandatory to ensure reliable dissemination of messages to
all stable processes in a dynamic network [23], [17] and thus
to ensure the global properties of the failure detector [2],
[22], [13], [19], [24], [25]. In practice, whenever a higher
number of faults occur, the network may be disconnected for
a while and then the progress may be compromised. But, the
most important is to ensure the safety of the protocol during
these bad periods. As soon as the network starts presenting
stability, the connectivity assumption will be satisfied and
the protocol progresses.

Recent works about Byzantine radio communication ad-
vocate a “local” fault model, instead of a “global” fault
model, as an adequate strategy to deal with the unreliability
of wireless channels in spite of Byzantine failures [19],
[26], [24], [20], [25]. They define bounds on the maximum
number of local failures in order to reliably deliver data. Pre-
cisely, [24], [25] show that it is possible to achieve reliable
broadcast if less than 1/4 of nodes in any neighborhood are
Byzantine and impossible otherwise. Locality of failures can
be interpreted as an uniform distribution of failures across
the network and represents more accurately the reality of
wireless channels. Following these recent works, the local
fault model is the approach adopted in our work. Thus, we
consider that fi is the maximum number of faulty processes
in pi’s neighborhood.

Connectivity Assumption (2) establishes a bound to toler-
ate Byzantine node faults. It is a guarantee that information
from/to process pi is going to be sent/received to/from a
minimum of stable nodes in its neighborhood. Precisely, at
least fi +1 stable nodes can communicate with pi, ensuring
that initially pi ∈ Πj of at least fi + 1 stable processes.
Afterwards, if pi is faulty, eventually at least fi + 1 stable
processes will suspect pi and may spread the suspicion to the
remaining of the system, so that the completeness property
of the FD can be satisfied (see next Section). As we will
show in the correctness proofs (Section V), Connectivity
assumption (2), i.e., Degri > 2fi is sufficient and necessary
for the failure detector protocol to tolerate Byzantine node
faults. However, additionally, as it has been proved by [24],
[25], to implement fair-lossy channels and tolerate Byzantine
failures on channels, the condition Degri > 4fi,∀r ∈ T is
necessary as well.

E. Byzantine Unreliable Failure Detector Specification

Kihlstrom et al. [6] define Byzantine FD classes which
differ from those described by Chandra and Toueg [2],
since the latter deals only with crash failures. Let A be
an algorithm that uses the failure detector as an underlying
module. The class ♦S(Byz,A) is an adaptation of the ♦S
class to Byzantine failures. It is the focus of our work.
Nonetheless, its properties should be adapted to a dynamic
network. With this aim, we define the class of Eventually
Strong Byzantine Failure Detectors with Unknown Member-
ship, namely ♦SM (Byz,A). It keeps the same properties of

♦S(Byz,A), except that they are now valid to stable known
processes. Informally, these properties are:
• Strong Byzantine completeness (for A): eventually, every
stable known process suspects permanently every process
that has detectably deviated from A;
• Eventual weak accuracy: eventually, one stable known
process is never suspected by any stable known process.

Definition 3: ♦SM (Byz,A) Eventually Strong Byzantine
FD with Unknown Membership. Let t ∈ T . Let pi, pj
be nodes. Let suspj be the list of nodes that pj currently
suspects of being faulty. The ♦SM (Byz,A) class contains
all the failure detectors that satisfy:

Strong Byzantine completeness (for A)
def
= {∃t ∈

T , ∀t′ ≥ t, ∀pi ∈ KNOWN ∩ FAULTY ⇒ pi ∈
suspj , ∀pj ∈ KNOWN ∩ STABLE};

Eventual weak accuracy def
= {∃t, ∀t′ ≥ t, ∃pi ∈

KNOWN ∩ STABLE ⇒ pi 6∈ suspj , ∀pj ∈ KNOWN ∩
STABLE}.

III. TOWARDS A TIME-FREE ♦SM (Byz,A) BYZANTINE
FAILURE DETECTOR

A. Local Message Exchange Pattern

Most of the protocols for crash failure detection are
based on the exchange of heartbeat messages by the failure
detector. Nevertheless, in a Byzantine environment such a
mechanism is no longer enough. A Byzantine process may
correctly answer the FD messages, yet without guaranteeing
progress and safety to the algorithm under execution. There-
fore, the failure detection should be based on the pattern of
the messages sent during the execution of the algorithm A
which uses the FD as a building block.

We advocate the use of the time-free approach to raise
suspicions and propose a FD protocol whose detection does
not use timers but is based on the exchange of messages
required by algorithm A. Thus, when algorithm A requires
the processes to exchange a message m, every process pi
waits until the reception of m from at least αi distinct
senders; for the remaining processes of its partial knowledge
(∈ Πi), it raises an omission failure suspicion. In this
case, pi will send a SUSPICION message to processes in its
neighborhood, carrying out its local view about suspicions.
The detection follows a local message exchange pattern,
i.e., between the nodes in the neighborhood [12]; thus, αi

corresponds to the minimum amount of stable known nodes
in the neighborhood of pi, i.e., αi = Degti−fi. Knowing that
|Degti | > 2fi, αi ≥ fi + 1 (from the Byzantine coverage).
The actual value of αi depends on the type of dynamic
network considered (WSN, WMN) as well as the topology
of the network during execution.

It is worth noticing that, since the detection adopts a time-
free approach in which suspicions are based on message
exchange and not on the expiration of a timeout, the com-
munication pattern followed by processes in algorithm A

should be distributed. That is, whenever A requires a process
pi to broadcast a message m in some step, then this same
message m must be broadcast by all the other processes in
p′is neighborhood. In practice, if the communication pattern
followed by algorithm A is not distributed, one can simulate
this pattern by requiring processes to relay the messages
received to the other processes. Thus, when process pj
receives a message m for the first time, before proceeding
with the computation, it must broadcast m to all processes
in its neighborhood. Without this behavior, since the under-
lying system is asynchronous, one could not distinguish an
omission failure of pi from a delay on the delivering of the
message m from pi [2]. The distributed pattern will finally
ensure the reception of at least αi messages required by the
time-free failure detector protocol.

B. Behavioral System Property

With a time-free approach [11], [13], in order to satisfy
eventual weak accuracy property of the ♦SM (Byz,A) FD
class, there must exist a stable known process pi whose
messages from some point on are always among the first
messages received by its neighbors, at every request of
A. Thus, eventually pi will no longer be suspected by
any stable known process. The Byzantine responsiveness
property characterizes this desired behavior.

Property 1: ByzRP (Byzantine Responsiveness Prop-
erty). Let Xj(t

′) be the set of processes from which pj
received the message required by algorithm A at its last
step in execution until t′ ∈ T . Process pi satisfies ByzRP
at time t if:
ByzRPt(pi)⇔ ∃t ∈ T , stablet(pi) ∧

pi ∈ Xt′

j ,∀pj ∈ N t′

i ,∀t′ ≥ t ∨ faultyt
′
(pj)

Thus, the following behavioral assumption should be sat-
isfied in the network in order to implement ♦SM (Byz,A):
∃pi ∈ KNOWN ∩ STABLE : ByzRPt(pi) eventually holds.
As a matter of comparison, in the timer-based model, the
ByzRPt(pi) property would approximate the following:
there is a time t after which the output channels from a
stable process pi to every other process pj that knows pi are
eventually timely. That assumption coincides to the classical
one used to implement ♦S FDs in traditional networks [4],
[6], [7].

C. Practical Issues

WSNs and WMNs are a good examples of networks
which would satisfy the assumptions of our model, specially
the ByzRP property and network assumptions. In a WMN,
the client nodes move around a fixed set of nodes (the
backbone of the network) and each node eventually connects
to a fix node. A WSN is composed of stationary nodes and
can be organized in clusters, so that communication over-
head can be reduced; one node in each cluster is designated
the cluster head (CH) and the other nodes, cluster mem-
bers (CMs). Communication inter-clusters is always routed

through the respective CHs which act as gateway nodes
and are responsible for maintaining the connectivity among
neighboring CHs. For all these platforms, special nodes (the
fixed nodes for WMN, CHs for WSN) eventually form a
strongly connected component of stable nodes; additionally,
some of these nodes can be regarded as fast, so that they
will always answer messages faster than the other nodes,
considered as slow nodes. Thus, one of these fast nodes may
satisfy the ByzRP property. The stability conditions and the
ByzRP may seem strong, but in practice they should just
hold during the time the application needs the completeness
and accuracy properties of FDs of class ♦SM (Byz,A), as
for instance, the time to execute a consensus algorithm [7].

IV. A TIME-FREE BYZANTINE FAILURE DETECTOR OF
THE CLASS ♦SM (Byz,A)

This section describes our protocol for implementing a
FD of class ♦SM (Byz,A) for a network of unknown
membership that satisfies the model and assumptions stated
in Sections II and III.

Security Failure Detection: In order to enable the
commission (or security) failure detection, a message format
must be established for algorithm A. Every message m must
also include a certificate that enables other processes to
verify its consistency with algorithm A. A message m is
valid if (i) m is properly signed, that is, it has been sent by a
process i with a valid key Ki and (ii) m is properly formed
with regard with the algorithm specification, that is, it is
syntactically correct and has the expected format and type
for the specific algorithm. If a stable process detects the non
validity of a received message, either for not obeying to the
format or for a non valid authentication, it will permanently
suspect the sender and will forward a SUSPICION message to
the remaining processes, so that the suspicion is propagated.

Notice that it is also necessary to detect mutant messages.
This anomaly happens when a process sends two or more
different versions of the same message. One way to deal
with this problem it to require stable processes to for-
ward every received message. Additionally, processes should
maintain a history of messages received by every process.
This approach can be used in the case of point-to-point
communication [6]. In our model, processes communicate
through local broadcast under fair-lossy channels. Based on
the recent advances to implement reliable wireless channels,
we can assume that a message broadcast will be received
with equal content by every stable known process [19], [26],
[24], [20], [25], so that the protocol do not have to deal with
mutant messages.

Suspicion Generation: Every SUSPICION message of
an omission fault raised over pj is related to a message
m required by A. That is, pj is suspected of not sending
the messages of A it should. Thus, messages must have
unique identifiers. Let m.id be the identifier of message
m. Suspicions are propagated on the network and a stable

process will adopt a SUSPICION not generated by itself if
and only if it receives a SUSPICION message properly signed
from at least fi + 1 different senders. This requirement
denies a Byzantine process to impose suspicions on stable
processes. Since the network has a Byzantine coverage
(Assumption 1), at least (fi + 1) neighbors of pi are stable
and shall spread a suspicion of its failure to their respective
neighbors. Since, moreover, there is a time at which a
journey is formed by each pair of stable processes in the
system, eventually a stable process in the network receives
at least fi + 1 occurrences of this suspicion and may adopt
it. This ensures the satisfaction of the strong Byzantine
completeness property of the ♦SM (Byz,A) FD.

Mistake Generation: Let pi be a process that has been
suspected of not sending a message m from A. If eventually
a stable process pj receives m properly signed from pi, pj
will declare a mistake on the suspicion and will spread m
to the remaining nodes, so that they can do the same. In a
network with Byzantine coverage, there will be at least one
journey formed only by stable known processes between
pj and every stable known process. Then, every other stable
process will receive m and will be able to remove the related
suspicion. This behavior allows a Byzantine process to
provoke a suspicion and revoke it continuously, masking part
of the omission failures and degrading the failure detector
performance. Nevertheless, it is not possible to distinguish
that situation from the slowness of a process or an instability
on a channel.
VARIABLES:
• outputi: stores the failure detector output, i.e., the set of
processes identities that pi suspects of having failed;
• knowni: stores the set of processes that have
communicated with pi. It is updated at the reception
of SUSPICION messages or messages required by A;
• extern suspi: matrix that stores external suspicions
(generated by other nodes). The matrix is indexed by a
process identifier q and a message identifier idm. Every
entry stores the set of processes from which pi has received
suspicions about q and message(idm);
• intern suspi: array of internal suspicions indexed by
process ids. An internal suspicion is generated by not
receiving a message required by A or by the presence of at
least fi + 1 external suspicions on a pair process-message;
• mistakei: array that stores, for every process pj , the set
of mistakes related to pj . A mistake is stored as a message
required by A about which a suspicion has been raised;
• byzantinei: set of tuples in the form 〈process, message〉
that prove Byzantine behavior on the related process. The
notation 〈p,−〉 means “any tuple related to process p”;
• rec fromi: set of processes from which pi received the
message required by A.

PRIMITIVES:
• m.id – returns the identifier of message m;

• message(idm) - returns the message related to identifier
idm;
• broadcast m – broadcasts a message m to the neighbors
of pi;
• keys(v) – returns the index set of a dynamic array v;
• ids(s) – returns the set of ids of the messages in set s.

AUXILIARY PROCEDURES:
• AddInternalSusp(q, m) (lines 26-28, A1): adds an internal
suspicion on process q and message m;
• ValidateReceived(q, m) (lines 30-45, A1): verifies if the
message m received from q is valid (well-formed), removing
any suspicions related to the pair (q, m) in the affirmative
case, otherwise generating a security failure suspicion. Also,
updates the set of nodes known by pi (knowni) and call the
UpdateSuspicions() function for the message;
• UpdateSuspicions(q, m) (lines 13–35, A2): if m is of the
type SUSPICION, updates the internal state of pi with the
information in m.
• AddByzantine(q, m) (lines 1-3, A2): adds q permanently
to the list of Byzantine processes (and, consequently, to the
FD output), along with the message m as a proof of the
Byzantine failure;
• AddMistake(q, m) (lines 5-11, A2): adds a mistake on
a previous suspicion about process q and message m,
removing any corresponding internal or external suspicions.
If q has no other suspicions and has not presented Byzantine
behavior, removes q from the failure detector output;
• AddExternalSusp(q, idm, ps) (lines 37-41, A2): adds an
external suspicion from ps about process q and message
identified by idm. Also, if there are at least fi + 1 external
suspicions about q and message(idm), generates a corre-
sponding internal suspicion, if not already present.

A. Algorithm Description

Algorithms A1 and A2 implement a ♦SM (Byz,A)
FD. Every process pi executes three parallel tasks. The
variables, primitives, tasks, and procedures are described
below.

T1. Generating new SUSPICION messages (lines 5-14,
A1). When algorithm A requires the processes to exchange
a message m (line 6), every node pi waits until the
reception of m from at least αi neighbors, whose identifiers
are stored in rec fromi (lines 7-8). For the remaining
processes known by pi, it adds an internal omission failure
suspicion (lines 9-11). Then every message has its format
and certificates verified through ValidateReceived() (lines
12-14, 30-45, A1). Incorrect messages lead to security
failure suspicions (lines 34-35, A1) and update the detector
output; correct messages generate mistakes on possible
omission failure suspicions (lines 37-38, A1).

Algorithm 1 Byzantine Failure Detector (A1)
1: init:
2: outputi ← knowni ← ∅; extern suspi ← [][]
3: intern suspi ← mistakei ← []; byzantinei ← ∅
4:
5: Task T1: /* generating new suspicions */
6: when pi requires a message m from A do
7: wait until receive a m properly signed for the first time from

at least αi distinct processes
8: rec fromi ← {pj | pi received a message from pj at line

7}
9: for all pj ∈ (knowni \ rec fromi) do

10: AddInternalSusp(pj , m)
11: end for
12: for all mj received at line 7 from pj do
13: ValidateReceived(pj , mj)
14: end for
15:
16: Task T2: /* receiving SUSPICION or message from A coming

from slow process */
17: upon receipt of m properly signed from pj do
18: ValidateReceived(pj , m)
19:
20: Task T3: /* broadcasting suspicion state */
21: loop
22: broadcast 〈SUSPICION, byzantinei, mistakei,

intern suspi, extern suspi〉
23: end loop
24:
25: /* AUXILIARY PROCEDURES */
26: procedure AddInternalSusp(q, m):
27: intern suspi[q]← intern suspi[q] ∪ {m.id}
28: outputi ← outputi ∪ {q}
29:
30: procedure ValidateReceived(q, m):
31: if m was sent directly by q then
32: knowni ← knowni ∪ {q}
33: end if
34: if m is not properly formed then
35: AddByzantine(q, m)
36: else
37: if m.id ∈ intern suspi[q] or m was not sent directly by

q then
38: AddMistake(q, m)
39: end if
40: if m is from A and m is received for the first time then
41: broadcast m /* relaying m to the other processes*/
42: else
43: UpdateSuspicions(q, m)
44: end if
45: end if

T2. Receiving SUSPICION messages and A messages
from slow processes (lines 16-18, A1). When a message
m is received from a remote process pj , its format and
certificates are verified through ValidateReceived(). There
are two possibilities: (1) m is a message required by A
that is received lately by pi, probably after a suspicion
over pj has been generated in task T1. In this case, m is
treated similarly to task T1 (lines 30-38, A1). (2) m is a
SUSPICION message. In this case, the internal state of pi is
going to be updated (line 43, A1) as follows:

Algorithm 2 Byzantine Failure Detector (A2)
1: procedure AddByzantine(q, m):
2: outputi ← outputi ∪ {q};
3: byzantinei ← byzantinei ∪ {〈q,m〉}
4:
5: procedure AddMistake(q, m):
6: mistakei[q]← mistakei[q] ∪ {m}
7: extern suspi[q][m.id]← ∅
8: intern suspi[q]← intern suspi[q] \ {m.id}
9: if intern suspi[q] = ∅ and @〈q,−〉 ∈ byzantinei then

10: outputi ← outputi \ {q}
11: end if
12:
13: procedure UpdateSuspicions(q, m):
14: if m = 〈SUSPICION, byzantineq , mistakeq , intern suspq ,

extern suspq〉 then
15: for all px ∈ keys(extern suspq) do
16: for all idmx ∈ keys(extern suspq[px]) properly

signed | idmx /∈ ids(mistakei[px]) do
17: for all py ∈ extern suspq[px][idmx] do
18: AddExternalSusp(px, idmx, py)
19: end for
20: end for
21: end for
22: for all px ∈ keys(intern suspq) do
23: for all idmx ∈ intern suspq[px] properly signed |

idmx /∈ ids(mistakei[px]) do
24: AddExternalSusp(px, idmx, q)
25: end for
26: end for
27: for all px ∈ keys(mistakeq) do
28: for all mx ∈ mistakeq[px] properly signed do
29: ValidateReceived(px, mx)
30: end for
31: end for
32: for all 〈px,mx〉 ∈ byzantineq | mx is properly signed

do
33: ValidateReceived(px, mx)
34: end for
35: end if
36:
37: procedure AddExternalSusp(q, idm, ps):
38: extern suspi[q][idm]← extern suspi[q][idm] ∪ {ps}
39: if |extern suspi[q][idm]| ≥ fi + 1 then
40: AddInternalSusp(q, message(idm))
41: end if

Updating internal state (lines 13–35, A2). Upon the
receipt of a SUSPICION message from a neighbor q (line
14, A2), a process pi updates its internal state with new
information. Internal and external suspicions from q are
added to the external suspicion set of pi (lines 15-26, A2),
possibly generating new internal suspicions (lines 37-41,
A2). Note that a security failure suspicion will be raised
on q if the SUSPICION message m is malformed. Mistake
information and security failure proofs are treated similarly
to messages received directly from the sender through
ValidateReceived().

T3. Broadcasting suspicions and mistakes (lines 20-23,
A1). This task periodically sends SUSPICION messages to
pi’s neighbors carrying out its view on internal and external

suspicions, mistakes and security failure proofs. The neigh-
bors of pi will receive that message in task T2.

V. CORRECTNESS PROOF

To implement a failure detector of class ♦SM (Byz,A),
the algorithm in Section IV should satisfy the Byzantine
strong completeness and the eventual weak accuracy proper-
ties. In the following, a sketch of the proofs of the algorithm
is given.

A. Byzantine Strong Completeness

Lemma 1: If a process pi never send message m, then
a process pj ∈ KNOWN ∩ STABLE will never execute
AddMistake(pi,m).

Proof: Assume, by contradiction, that some stable
known process pj executes AddMistake(pi,m). Notice that
AddMistake() is only invoked into ValidateReceived() (line
38, A1). The procedure ValidateReceived() is for its turn
invoked in 3 cases: (1) on the reception of messages required
for A on task T1 (line 13, A1) and task T2 (line 18, A1); (2)
on the reception of SUSPICION messages on task T2 (line 18,
A1); (3) on the update of the internal state with information
from the neighbors (execution of UpdateSuspicions(), lines
29 and 33, A2). In all cases, the authentication of message
m is properly verified (lines 7 and 17, A1; lines 28 and 32,
A2). From this fact and since channels are authenticated,
a faulty process pf cannot send m in the place of pi. The
occurrence of case (2), specifically, could not lead to a call to
AddMistake(), since there is no suspicion related to messages
SUSPICION. Finally, we conclude that in all cases there is
a contradiction, since for m to be received, pi should had
sent it at some point in time. Thus, the lemma follows.

Lemma 2: Let pi be a process that fails by omission, pi ∈
KNOWN ∩ FAULTY.Then, eventually, every pj ∈ KNOWN ∩
STABLE will permanently include pi in outputj .

Proof: Let t be the time at which pi fails by omission,
faultyt(pi) is true. Let t0 < t be the time at which
knownt0(pi) is true. Let t0 ≤ s ≤ t be the time at which
process pi does not send the message m required byA. From
the Byzantine coverage Assumption 1, |Es

i | ≥ 2fi + 1.
CASE 1: pj ∈ Et

i . If this happens, from the execution of
lines 21-23, A1, then pj has received a message of type
SUSPICION from pi before time t. Thus, pi ∈ knownj ,
according to the execution of lines 17-18, 31-33, A1. When-
ever the execution of A requires m, pj will wait until
the reception of m from αj distinct processes (lines 6-
7, A1). This predicate will be satisfied at some point in
time, since at most fj process are faulty and |Ej | > 2fj
(Assumption 1). Since pi did not send m, pi will not
be included in rec fromj (line 8, A1). According to the
execution of lines 9-11 and 27-28, A1, m.id will be included
in intern suspj [pi] and pi will be included in outputj .
Since pi fails by omission, it will never send m afterwards.

Thus, from Lemma 1 and lines 8-11, A2, m.id will never be
removed from intern suspj [pi] and from pi de outputj .

CASE 2: If pj 6∈ Et
i . Since the network has Byzantine

coverage (Assumption 1), then there is at least a journey
J , between pj and each stable known process pk ∈ Et

i

composed only by stable known processes. If there is
more than one journey, than take the one with minimum
distance. Let us prove, by induction on the length of J ,
that, eventually, pk is added to extern suspj [pi][m.id].
(1) If |J | = 1, then pj is a neighbor of pk. In this case,
at some point in time, pk send a SUSPICION message
M (line 22, A1) with the certified information that m.id
∈ intern suspk[pi]; since channels are fair-lossy, at some
point, pj receives M (line 17, A1). Since pk is stable
known, M is duly certified and formed; from Lemma 1,
m /∈ mistakej [pi]; Thus, from lines 18, 40 A1 and lines
22-26, A2, pk is added to extern suspj [pi][m.id] in line
38, A2 and the affirmation holds.
(2) If |J | > 1, we can assume by induction that the
affirmation is true for the journey P − pj between pk
and a stable known process pl, such that pl and pj are
neighbors. For induction hypothesis, eventually, pk is added
to extern suspl[pi][m.id] and, afterwards, pl sends a SUS-
PICION message M (line 22, A1) with this information
certified by pk. Since channels are fair-lossy, eventually pj
receives M (in line 17, A1). Since pl is stable known,
M is duly certified and formed; from Lemma 1, m /∈
mistakej [pi]; thus, from lines 18, 40, A1 and lines 15-21,
A2, pk is added to extern suspj [pi][m.id] in line 38, A2
and the affirmation holds.

From the above conditions, from |Et
i | ≥ 2fi + 1 and

knowing that there is at most fi faulty processes, it follows
that, at some point in time, pj executes line 40, A2 and,
from lines 27-28, A1, it adds m.id to intern suspj [pi] and
pi to outputj . Again, from Lemma 1, it follows that pi will
never be removed from outputj .

Lemma 3: Let pi be a process that fails by commission,
pi ∈ KNOWN ∩ FAULTY.Then, eventually, ∀pj ∈ KNOWN ∩
STABLE will permanently include pi in outputj .

Proof: Let t be the time at which pi fails by commis-
sion, faultyt(pi) is true, that is pi sends a message m not
in accordance with A. In this case, m is not well formed.
By communication assumption, mutant messages are not
possible; moreover, m is a certified message; otherwise,
an undiagnosable faulty had been produced. Let t0 < t
be the time at which knownt0(pi) is true; this means
that pk received a message m from pi and executed line
32, A1, pi ∈ knownk, pk ∈ KNOWN ∩ STABLE. Since
the network has Byzantine coverage (Assumption 1), then
there is a journey J between pk and each stable known
process pj ∈ KNOWN∩STABLE composed by stable known
processes. If there is more than one journey, than take the
one with minimum distance. Let us prove, by induction
on the length of J , that, eventually, pj adds 〈pi,m〉 to

byzantinej and pi to outputj .
(1) If |J | = 0, then pj ∈ Et

i . Since channels are fair-lossy
and m is certified, pj receives m at some moment in lines 7
or 17, A1. In both cases, ValidateReceived() (lines 13 and 18,
A1) is invoked. This procedure will attest the non-validity
of m at line 34, A1. For its turn, AddByzantine() (lines 1-3,
A2) adds pi to outputj and 〈pi,m〉 to byzantinej , and the
affirmation holds.
(2) If |J | > 0, by induction, the affirmation is true for the
journey J \ {pj} between pk and a stable known process
pl, such that pl and pj are neighbors. In this case, 〈pi,m〉
is in byzantinel and, at some point in time, pl sends a
SUSPICION message M with this information (line 22, A1);
since channels are fair-lossy, eventually, pj receives M at
line 17, A1. Since pl is stable known, M is duly certified
and formed; thus, as m is certified from lines 18, 40 A1 and
lines 32-34, A2, pj invokes ValidateReceived() and attest the
non-validity of m; thus, pi is added to outputj and 〈pi,m〉
to byzantinej and the affirmation holds. From the above
conditions and since pj only removes pi from outputj if
there is no pair 〈pi,−〉 in byzantinej (lines 9-11, A2), pi
is definitely added to outputj and the lemma follows.

B. Eventual Weak Accuracy

Lemma 4: Let pi, pj ∈ KNOWN∩STABLE, then pj never
invokes AddByzantine(pi,−)

Proof: The only invocation of AddByzantine() is in line
35, A1 into ValidateReceived(). From line 34, A1, knowing
that pj is stable known, this calling only occurs if pi has
sent a message which was not in good format; but this is
impossible, since pi is stable known as well. If a faulty
process sends such a message in the place of pi, then
process pj will discard it. This happens because channels
are authenticated and pj validates the authentication of every
message it receives (lines 7 and 17, A1 and lines 28 and 32,
A2), and the lemma follows.

Lemma 5: Let pi ∈ KNOWN ∩ STABLE and let m be a
message required by A. Assume that the property ByzRP
t(pi) holds for pi at time t. Eventually, no process pj ∈
KNOWN ∩ STABLE will invoke AddInternalSusp (pi,m).

Proof: The procedure AddInternalSusp() is called in
2 cases: CASE (1): in the task T1, during the reception of
messages from A (line 10, A1); CASE (2): in the procedure
AddExternalSusp() (line 40, A2), when the process receives
more than fi external suspicions regarding pi.

CASE 1: Since ByzRP t(pi) holds at time t, pj ∈ Et′

i

receives m from pi, ∀t′ ≥ t, if pj ∈ KNOWN ∩ STABLE.
Then, pj adds pi to its rec fromj set in line 8, A1. Thus,
pj does not invoke AddInternalSusp(pi,m) in line 10, A1. A
process pk 6∈ Et′

i , ∀t′ ≥ t (out of pi’s neighborhood) cannot
receive messages directly from pi, thus, pk will never add
pi to knownj (lines 31-33, A1); hence, it will never invoke
AddInternalSusp (pi,m) in line 10, A1 from t′ ≥ t. Both
situations confirm Case 1.

CASE 2: Notice that AddExternalSusp() is only invoked
in lines 18 and 24, A2 of UpdateSuspicions(). Moreover,
extern suspj is only updated by pj ∈ KNOWN ∩ STABLE
on the execution of AddExternalSusp() (line 37,A2). This
means that every external suspicion regarding a stable known
process was firstly generated as an internal suspicion (lines
39 and 40, A2). From the same argument of CASE 1, the sta-
ble known process pj never adds m.id to intern suspj [pi]
from t′ ≥ t on the execution of task T1 (line 27, A1).
If a Byzantine process pf ∈ KNOWN ∩ FAULTY adds pj
to extern suspf [pi][m.id], then a stable known process pk
will not adopt this suspicion since the message will not pass
the authentication test realized in line 16, A2. The Byzantine
process pf can, otherwise, add m.id to intern suspf [pi]
and certify this information. Nonetheless, there are at most
fi faulty processes in the system and the predicate in line
39, A2 is never satisfied. Thus, the stable known process pj
will not invoke AddInternalSusp (pi,m) in line 40, A2, and
the lemma follows.

Lemma 6: Let pi, pj ∈ KNOWN ∩ STABLE. If there is
a message m, such that m.id ∈ intern suspj [pi], then,
eventually, pj will invoke AddMistake (pi,m).

Proof: Two cases are possible.
CASE 1: Process pj ∈ Et

i . Since pi is stable known
and channels are fair-lossy and authenticated, eventually pj
receives m from pi (duly certified and formed) (line 17, A1).
From the hypothesis of lemma, m.id ∈ intern suspj [pi],
thus, from lines 18, 34, 37 A1, since pi is stable known, pj
will call AddMistake (pi,m) in line 38, A1.

CASE 2: Process pj 6∈ Et
i . By a similar argument used

in Lemma 5, pi /∈ knownj . Thus, some other stable known
process pk ∈ KNOWN ∩ STABLE has raised the suspicion
over pi regarding the reception of m.id; that is, there is
a pk ∈ Et

i such that m.id ∈ intern suspk[pi]. Since
the network has Byzantine coverage (Assumption 1), then
there is a journey J : p0 = pk, p1, . . . , pl, pj between
pk and pj composed by stable known nodes. If there is
more than one journey, than take the one with minimum
distance. Let us prove, by induction on the length of J ,
that, eventually, each pl ∈ J invokes AddMistake (pi,m),
and thus m.id ∈ mistakel[pi].
(1) If |J | = 0, J has only pk = pj . For the same argument
of Case (1), the affirmation holds.
(2) If |J | > 0, by induction hypothesis, the affirmation
is true for the journey J \ {pj} between pk and pl, such
that, eventually, m ∈ mistakel[pi]. When this happens, pl
broadcast a SUSPICION message M with m duly certified
in mistakel[pi]. Since channels are fair-lossy, at some point
in the future, pj receives M in line 17, A1. Since pl is
stable known, M is duly certified and formed. Thus, for
the execution of line 18, A1 and lines 14 and 27-31, A2,
pj calls ValidateReceived(pi,m). Since pi is stable known,
m is duly certified and formed. Since m was passed by pl
(m was not sent directly by pi), predicate of line 37,A1 is

satisfied and pj calls AddMistake (pi,m.id) in line 38, A1
and the affirmation holds. The lemma thus follows.

Lemma 7: Let pi ∈ KNOWN ∩ STABLE. Assume that
ByzRP t(pi) holds for pi at time t. Eventually, ∀pj ∈
KNOWN ∩ STABLE is such that pi 6∈ outputj .

Proof: From Lemma 4, from some t′ ≥ t, eventually
pi 6∈ outputj . From Lemma 5, pj does not add pi to
outputj in a call to AddInternalSusp (pi,m). For every
message m′ required by A before t, it is possible that
m′ ∈ intern suspj [pi]. But, from Lemma 6, at some point
in the future, pj calls AddMistake (pi,m

′); thus, for line
8, A2, eventually intern suspj [pi] = ∅. From Lemma 4,
there is no pair 〈pi,−〉 in byzantinej ; thus, pi is removed
from outputj in line 10, A2 and the lemma holds.

Theorem 1: Algorithms 1 and 2 implement a Byzantine
FD of class ♦SM (Byz,A), assuming a network of KNOWN
nodes that satisfies Assumptions of Sections II and III .

Proof: The theorem follows from Lemmata 2, 3 and 7.

VI. CONCLUSION

This paper presented a Byzantine failure detector of class
♦SM (Byz,A) with two innovative features that favor the
scalability and adaptability: (i) it is suitable for dynamic
distributed systems in which the membership is unknown
and (ii) it does not rely on timers to detect omission failures.
As a future work, we plan to (i) extend the protocol to
tolerate node mobility and (ii) implement the protocol for
performance evaluation.

ACKNOWLEDGMENT

Fabı́ola Greve would like to thank CAPES/Brasil and
FAPESB/Bahia/Brasil for the financial support of her re-
search.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Trans. Program. Lang. Syst., vol. 4,
no. 3, pp. 382–401, 1982.

[2] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” J. ACM, vol. 43, no. 2, pp.
225–267, 1996.

[3] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[4] D. Malkhi and M. Reiter, “Unreliable intrusion detection in
distributed computations,” in Proc. 10th Computer Security
Foundations Workshop. Rockport, MA: IEEE Computer
Society Press, Los Alamitos, CA, 1997, pp. 116–124.

[5] A. Doudou and A. Schiper, “Muteness detectors for consensus
with byzantine processes,” in PODC ’98: Proceedings of
the seventeenth annual ACM symposium on Principles of
distributed computing. New York, NY, USA: ACM, 1998,
p. 315.

[6] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith,
“Byzantine Fault Detectors for Solving Consensus,” The
Computer Journal, vol. 46, no. 1, pp. 16–35, 2003.

[7] R. Baldoni, J.-M. Hèlary, M. Raynal, and L. Tangui, “Consen-
sus in byzantine asynchronous systems,” Journal of Discrete
Algorithms, vol. 1, no. 2, pp. 185 – 210, 2003.

[8] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“An on-demand secure routing protocol resilient to byzantine
failures,” in 1st ACM Work. on Wireless Security. New York,
NY, USA: ACM, 2002, pp. 21–30.

[9] A. Haeberlen, P. Kuznetsov, and P. Druschel, “PeerReview:
Practical accountability for distributed systems,” in Proceed-
ings of the 21st ACM Symposium on Operating Systems
Principles (SOSP’07), Oct 2007.

[10] A. Haeberlen and P. Kuznetsov, “The Fault Detection Prob-
lem,” in Proceedings of the 13th International Conference on
Principles of Distributed Systems (OPODIS’09), Dec. 2009.

[11] A. Mostefaoui, E. Mourgaya, and M. Raynal, “Asynchronous
Implementation of Failure Detectors,” in Int. Conf. on De-
pendable Systems and Networks. Los Alamitos, CA, USA:
IEEE Computer Society, 2003, p. 351.

[12] F. Greve, P. Sens, L. Arantes, and V.Simon, “A failure detector
for wireless networks with unknown membership,” in Euro-
Par Conference, LNCS 6853, 2011, pp. 27–38.

[13] A. Mostefaoui, M. Raynal, C. Travers, S. Patterson,
D. Agrawal, and A. El Abbadi, “From Static Distributed
Systems to Dynamic Systems,” in 24th Symp. on Reliable
Distributed Systems, 2005, pp. 109–118.

[14] M. Lima, F. Greve, L. Arantes, and P. Sens, “The time-free
approach to byzantine failure detection in dynamic networks,”
in WRAITS - 5th Workshop on Recent Advances in Intrusion-
Tolerant Systems, with DSN - Int. Conf. on Dependable
Systems and Networks, 2011.

[15] M. K. Aguilera, “A Pleasant Stroll through the Land of
Infinitely Many Creatures,” ACM SIGACT News, vol. 35,
no. 2, pp. 36–59, June 2004.

[16] J. R. Douceur, “The sybil attack,” in Revised Papers from the
First Int. Workshop on Peer-to-Peer Systems. London, UK:
Springer-Verlag, 2002, pp. 251–260.

[17] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro,
“Time-varying graphs and dynamic networks,” University of
Ottawa, Tech. Rep., 2011.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, pp. 120–126, 1978.

[19] C.-Y. Koo, “Broadcast in radio networks tolerating byzantine
adversarial behavior,” in 23rd ACM Symp. on Principles of
distributed computing. New York, NY, USA: ACM, 2004,
pp. 275–282.

[20] V. Bhandari and N. H. Vaidya, “Reliable local broadcast in
a wireless network prone to byzantine failures,” in DIALM-
POMC, 2007.

[21] B. Schneier, Applied Cryptography (2nd ed.). New York,
NY, USA: John Wiley & Sons, Inc., 1996.

[22] E. Jiménez, S. Arévalo, and A. Fernández, “Implementing
unreliable failure detectors with unknown membership,” Inf.
Process. Lett., vol. 100, no. 2, pp. 60–63, 2006.

[23] A. Casteigts, S. Chaumette, and A. Ferreira, “Characterizing
topological assumptions of distributed algorithms in dynamic
networks,” Structural Information and Communication Com-
plexity, pp. 126–140, 2010.

[24] V. Bhandari and N. H. Vaidya, “On reliable broadcast in a
radio network,” in 24th Symp. on Principles of distributed
computing. ACM, 2005, pp. 138–147.

[25] ——, “Reliable broadcast in radio networks with locally
bounded failures,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 21, pp. 801–811, 2010.

[26] A. Pelc and D. Peleg, “Broadcasting with locally bounded
byzantine faults,” Inf. Process. Lett., vol. 93, no. 3, pp. 109–
115, 2005.

