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The distributed computing scenario is rapidly evolving for integrating self-
organizing and dynamic wireless networks. Unreliable failure detectors are
classical mechanisms which provide information about process failures and can
help systems to cope with the high dynamics of these networks. A number of
failure detection algorithms has been proposed so far. Nonetheless, most of them
assume a global knowledge about the membership as well as a fully communication
connectivity; additionally, they are time-based, requiring that eventually some
bound on the message transmission will permanently hold. These assumptions
are no longer appropriate to the new scenario. This paper presents a new failure
detector protocol which implements a new class of detectors, namely S, which
adapts the properties of the S class to a dynamic network with an unknown
membership. It has the interesting feature to be time-free, so that it does not
rely on timers to detect failures; moreover, it tolerates mobility of nodes and
message losses.
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INTRODUCTION

networks, such as WMNs (wireless mesh networks) [3],

The distributed computing scenario is rapidly evolv-
ing for integrating unstructured, self-organizing and
dynamic systems, like mobile wireless networks [1].
Nonetheless, the issue of designing reliable services
which can cope with the high dynamics of these sys-
tems is a challenge. Failure detector is a fundamen-
tal service, able to help in the development of fault-
tolerant distributed systems. Unreliable failure detec-
tors, namely FD, can informally be seen as a per pro-
cess oracle, which periodically provides a list of pro-
cesses suspected of having crashed [2]. In this paper,
we are interested in the class of eventually strong FDs,
denoted S. Those FDs can make an arbitrary num-
ber of mistakes; yet, there is a time after which some
correct process is never suspected (eventual weak ac-
curacy property). Moreover, eventually, every process
that crashes is permanently suspected by every correct
process (strong completeness property). S is the weak-
est class allowing to solve consensus in an asynchronous
system (with the additional assumption that a major-
ity of processes are correct). Consensus allows a set of
processes to agree upon a common value, among the
proposed ones, and it is in the heart of important mid-
dleware, e.g., group communication services, transac-
tions and replication servers.

This paper focuses on FDs for mobile and unknown

WSNs (wireless sensor networks) [4]. These kind of
networks share the following properties: (1) a node
does not necessarily know all the nodes of the network;
(2) message transmission delay between nodes is highly
unpredictable; (3) the network is not fully connected,
thus a message sent by a node might be routed
through a set of intermediate nodes until reaching its
destination; (4) a node can move around and thus
change of neighborhood.

The nature of wireless mobile networks creates
important challenges for the development of failure
detection protocols. The inherent dynamics of these
environments prevents processes from gathering a
global knowledge of the system’s properties. The
network topology is constantly changing and the best
that a process can have is a local perception of these
changes. Global assumptions, such as the knowledge
about the whole membership, the maximum number of
crashes, full connectivity or reliable communication, are
no more realistic.

A number of failure detection algorithms has been
proposed so far. Nonetheless, most of current imple-
mentations of FDs are based on an all-to-all communi-
cation approach where each process periodically sends
“I am alive” messages to all processes [5, 6, 7]. As
they usually consider a fully connected set of known
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nodes, these implementations are not appropriate for
dynamic environments. Furthermore, they are usually
time-based, assuming that eventually some bound of the
transmission will permanently hold. Such an assump-
tion is not suitable for dynamic environments where
communication delays between two nodes can vary due
to mobility of nodes. In [8], Mostefaoui et al. have pro-
posed an asynchronous implementation of FDs which is
denoted time-free. It is based on an exchange of mes-
sages which just uses the values of f (the maximum
number of faults in the system) and n (the total number
of nodes). However, their computation model consists
of a set of fully connected initially known nodes. Some
works [9, 10] focus on the heartbeat FD for sparsely
connected networks with unknown membership. The
heartbeat FD is a special class of FD which is time-free
and is able to implement quiescent reliable communi-
cation. But, instead of a list of suspects, it outputs
a vector of unbounded counters; if a process crashes,
its counter eventually stops increasing. It is worth re-
marking that none of these works tolerate mobility of
nodes. Few implementations of unreliable FDs focus on
wireless mobile networks [11, 12, 13]. The fundamental
difference between these works and ours is the fact that
all of them are time-based. The only exception is [14],
but it does not tolerate node mobility.

1.1. Contributions

This paper has two contributions: (i) the proposition
of a model and the definition of the {S™ class of FDs;
(i) a new time-free FD algorithm that implements the
class $SM under a wireless mobile network.

In order to implement unreliable FDs in an
asynchronous dynamic system of mobile nodes, some
assumptions about the underlying system should be
made. Due to arbitrary arrivals and departures, moves
and crashes, dynamic systems can be characterized
by the succession of unstable periods followed by
stable periods. During the unstable periods, certain
situations could block the computation. For example,
the rapid movement of nodes or, numerous joins or
leaves along the execution, may prevent any useful
computation. Thus, the system should present some
stability conditions that when satisfied for longtime
enough will be sufficient for the computation to
progress and terminate. In the classic model of
distributed computation, these stable conditions are
related mainly to synchrony requirements on process
speed and message delays [2]. For the protocol proposed
herein, since the computation model is based on a
message exchange pattern and additionally the system
composition is unknown, the stable conditions relate
to some properties that nodes should satisfy in the
network. For example, in order to be known in the
system, a mobile node should interact at least once
with some other node that never departs from the
system. Thus, the first contribution of this paper is

to propose a model and identify sufficient assumptions
able to implement the properties of a new class of
failure detectors suitable for mobile networks with
unknown membership. The class of eventually strong
FD with unknown membership (namely, $SM) adapts
the properties of the $:S class to a dynamic system with
an unknown membership.

The second contribution is the proposition of
a FD algorithm that implements SM. It is
suitable for wireless mobile networks and has the
following innovative features that provide scalability
and adaptability: (i) it is conceived for a network whose
membership is unknown and whose communication
graph is not complete; (ii) it tolerates node mobility,
beyond arbitrary joins and leaves; (iii) the failure
detection uses local information (for the membership
of the mneighborhood), instead of traditional global
information, such as n and f; (iv) the failure detection
is time-free, thus the satisfaction of the properties
of the FD does not rely on traditional synchrony
assumptions, but on a message exchange pattern
followed by the nodes; (v) the message exchange
pattern is based on local exchanged information among
neighbors and not on global exchanges among nodes
in the system. Initially, each node only knows itself.
Then, it periodically exchanges a QUERY-RESPONSE
pair of messages with its neighbors. Then, based
only on the reception of these messages and the
partial knowledge about the system membership (i.e.,
its neighborhood), a node is able to suspect other
processes or revoke a suspicion. This information about
suspicions and mistakes is piggybacked in QUERY and
RESPONSE messages and eventually propagated to the
whole network.

As far as we are aware of, this paper brings
the first time-free FD algorithm for networks with
unknown membership that tolerates mobility of nodes.
Correctness proofs are given that the algorithm can
implement FDs of class $S™ when some properties
are satisfied by the underlying system. We believe
that our FD of class {S™ may be successful adopted
to implement coordination protocols in a dynamic
set, such as the one proposed by Greve et al. [15],
who present a solution for the fault-tolerant consensus
in a network of unknown participants with minimal
synchrony assumptions.

A preliminary work with some of the contributions
of this paper appeared firstly in [16] as a brief
announcement. Afterwards, in [17], we have provided a
first version of the algorithm to implement <»S™, but
for a slightly different model. Then, in [18], a discussion
about an appropriate model to implement unreliable
failure detectors in dynamic systems is presented.

The rest of the paper is organized as follows. Section
2 defines the model and specifies the $SM FD class.
Section 3 identifies assumptions to implement those
FDs. Sections 4 and 5 present a time-free FD of
the {SM class and its correctness proofs respectively.
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Section 6 presents an experimental evaluation of the
proposed FD protocol. A thorough related work is
described in Section 7. Finally, Section 8 concludes the

paper.

2. MODEL FOR FAILURE DETECTION IN
DYNAMIC NETWORKS

We are particularly interested in systems deployed over
a wireless mobile network, such as WMNs, WSNs, and
MANETSs. The system is a collection of nodes which
communicate by sending and receiving messages via a
packet radio network.

There are no assumptions on the relative speed of
processes or on message transfer delays, thus the system
is asynchronous. To simplify the presentation, we take
the range 7T of the clock’s tick to be the set of natural
numbers. There is no global clock and processes do not
have access to 7T it is introduced for the convenience of
the presentation, to state properties and make proofs.

Finite arrival model [19]. The network is a dynamic
system composed of infinitely many processes; but each
run consists of a finite set II of n nodes, namely, II =
{p1,...,pn}.- This model properly expresses dynamic
networks where nodes join and leave the system as
they wish. It is suitable for long-lived or unmanaged
applications, as for example, sensor networks deployed
to support crises management or help on dealing with
natural disasters.

The membership is unknown. Processes are not
aware about II or n, because, moreover, these values
can vary from run to run [19]. There is one process
per node; each process knows its own identity, but it
does not necessarily knows the identities of the others.
Nonetheless, they can make use of the broadcast facility
of the wireless medium to know one another. Thus, we
consider that a process knows a subset of II, composed
of nodes with whom it previously communicated. A
process may fail by crashing, i.e., by prematurely or by
deliberately halting (switched off); a crashed process
does not recover. When a process leaves the network it
can re-enter with a new identity, then it is considered
as a new process. Until it possible crashes, a process
behaves according to its specification. A process that
does follow its algorithm specification and never crashes
is said to be correct.

Communication graph is dynamic. Due to arbitrary
joins, leaves and failures, the network is represented by
a communication graph with a dynamic topology, thus
the relations between nodes take place over a time span
T C N. Following [20], we consider that the dynamics
of the system is represented by a time-varying graph,
namely TVG, G = (V,E, T,p,(,¢), where: (1) V =11
represents the set of nodes, (2) E C V xV represents the
set of logical links between nodes, (3) p: ExT — {0,1}
is an edge presence function, indicating whether a given
edge e € I is available at a given time ¢t € T, such that
ple,t) =1 iff e is present at ¢, otherwise p(e,t) =0, (4)

(: ExT — Nisa latency function, indicating the time
taken to cross a given edge e if starting at a given date
t; since the system is asynchronous, there is no bound
for this time, thus, we consider that { exists but cannot
be estimated, (5) ¥ : V x T — {0,1} is a node presence
function, indicating whether a given process p; € V is
up at a given time t € T, such that ¥ (p;,t) = 1 iff node
p; is up at t, otherwise ¢ (p,t) = 0.

Let R; be the wireless transmission range of p; in
the network, then all the nodes that are at distance
at most R; from p; in the network are considered 1-
hop neighbors, belonging to the same neighborhood.
We denote N} to be the set of 1-hop neighbors from
p; at time ¢ € 7. The neighborhood relationship
establishes the edge set, in such a way that p; € N}
iff (pi,pj) € Ef, such that p((pi,p;),t) = 1. The degree
of p; at time ¢ is defined to be Deg! = |E!|.

Given a TVG G, the graph G = (V,E) is called
the underlying graph of G. G should be considered
as a sort of footprint of G which flattens the time
dimension and indicates only the pair of nodes that
have relations at some time in 7. Formally, a sequence
of couples J = {(e1,t1), (ea,t2),..., (er,tx)}, such that
{e1,e2,...,ex} is a walk in G, is a journey in G if and
only if p(e;,t;) = 1and t;41 > t;+((e;,t;) for all i < k.
If a journey exists from p; to p;, we say that p; reaches
p; or more simply, p; ~+ p;.

Communication 1is fair-lossy. Local broadcast
between 1-hop neighbors is fair-lossy. This means
that messages may be lost, but, if p; broadcasts m
to processes in its neighborhood an infinite number of
times, then every p; permanently in the neighborhood
receives m from p; an infinite number of times, or p; is
faulty. That is, if p; starts to send m at time ¢ an infinite
number of times, then, if p((p;, p;),t") = 1,Vt' € (t, 00),
p; receives m an infinity number of times if p; is correct.
This condition is attained if the MAC layer of the
underlying wireless network provides a protocol that
reliably delivers broadcast data, even in presence of
unpredictable behaviors, such as fading, collisions, and
interference; solutions in this sense have been proposed
in [21, 22, 23].

Mobility model. Nodes in II may be mobile and
they can keep continuously mowving and pausing in the
system. When a node p,,, moves, its neighborhood may
change. We consider a passive mobility model, i.e., the
node that is moving does not know that it is moving.
Hence, the mobile node p,,, cannot notify its neighbors
about its moving. Then, for the viewpoint of a neighbor,
it is not possible to distinguish between a moving,
a leave or a crash of p,,. During the neighborhood
changing, p,, keeps its state, that is, the values of its
variables.

2.1. Stability and Connectivity Assumptions

One important aspect on the design of FDs for
dynamic networks concerns the time period and
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conditions in which processes are connected to the
system. During unstable periods, certain situations,
as for example, connections for very short periods
or numerous joins or leaves along the execution
(characterizing a churn) could block the application
and prevent any useful computation. Thus, to
implement any global computation, the system should
present some stability conditions that when satisfied
for long enough time will be sufficient to satisfy the
requirements of the application and terminate. In
order to implement FDs with an unknown membership,
processes should interact with some other process that
never departs from the system to be known. If
there is some process such that the rest of processes
have no knowledge whatsoever of its identity, there
is no algorithm that implements a FD with weak
completeness [24].  Completeness characterizes the
FD capability of suspecting every faulty process
permanently. In this sense, the characterization of
the actual membership of the system, that is, the
set of processes which might be considered for the
computation is of utmost importance.

We consider then that a process p; joins the network
at some point ¢ € T in time. Subsequently, p; must
somehow communicate with the others in order to be
known. In a wireless network, this can be done by
simply broadcasting its identity to the neighbors. Due
to this initial communication, every process p; is able
to gather an initial partial knowledge II; C II about
the system’s membership which increases over the time
along p;’s execution. Let IT;(¢) be the partial knowledge
of p; by time t. A process is known if, after have
joined the system, it has been identified by some stable
process. A stable process is thus a mobile process that,
after had entered the system for some point in time,
never departs (due to a crash or a leave); otherwise, it
is faulty. When p; leaves the network at time t' > ¢,
it can re-enter the system with a new identity, thus, it
is considered as a new process. Processes may join and
leave the system as they wish, but the number of re-
entries is bounded, due to the finite arrival assumption.

Let us thus define the status that a process may
exhibit along the system execution:

DEFINITION 2.1. Process Status. A process p; may
assume the following status in the system.

joint(p;) & 3t € T,Vs < t, ¥(p;,s) = 0AY(p;,t) =1

stablet(p;) & Jt € T,V > t, (pi,t') =1

faulty(p;) & Is,t € T,s < t, Y(pi,s) = LAV >
t,(pi,t') =0

known®(p;) < 3p;, 3t € T, stable' (p;) A p; € IL;(¢)

The failure pattern of the system, namely F'(t), is the
set of processes that have failed in the system by time
t. That is, F(t) = {p; : faulty'(p;)}. Similarly, S(t),
is the set of processes that are stable in the system by
time ¢. That is, S(t) = {p; : stable'(p;)}.

DEFINITION 2.2. Membership. The membership of

the system is the KNOWN set.
StabLe & User S(t)

Favrry € U, o F(1)

Known {p; : 3t € T,p; € STABLE U FAULTY A

known'(p;)}

Let Vks = KNOWNNSTABLE and Fxg C Vs X Vks.
The graph Gxs = (Vks,Fxs) C G is the graph
induced from the stable known nodes in II, defining the
TVG Gks = (Vks, Exs, T,p,%) € G.

We can identify classes of TVG based on the
temporal properties established by the entities. The
classes are important because they imply necessary
conditions and impossibility results for distributed
computations. Notably, Class 3 (Connectivity over
time) [20] is important for our study. It means that
the TVG is connected over time.

ASSUMPTION 1. Network connectivity over time. In
the system, represented by the TVG Ggg, 3t € T,Vt' >
t, ¥pi,pj € Vics,pi ~ p; (pi reaches p;). That is, after
t, there is a journey J, Vp;, p; € KNOWNNSTABLE. For
a communication purpose, we assume that each edge e;
of J remains available until a message is delivered, thus
p(ei,t) =1,Vt € [ti, t; + C(@i,ti)].

The connectivity Assumption 1 states that, in spite
of changes in the topology, from some point in time
t, the TVG Ggg is connected over time. This is
a common assumption, mandatory to ensure reliable
dissemination of messages to all stable processes in a
dynamic network [25, 20] and thus to ensure the global
properties of the failure detector [2, 24, 26, 27].

Recent works about radio communication advocate a
“local” fault model, instead of a “global” fault model,
as a suitable strategy to deal with the dynamics and
unreliability of wireless channels in spite of failures [22,
28, 29, 23, 27]. They define bounds on the maximum
number of local failures in order to reliably delivery
data. Locality of failures can be interpreted as an
uniform distribution of failures across the network
and represents more accurately the reality of wireless
channels. Following these recent works, the local fault
model is the approach adopted in our work.

2.2. A Failure Detector of Class $SM

Unreliable failure detectors provide information about
the liveness of processes in the system [2]. Each process
has access to a local failure detector which outputs
a list of processes that it currently suspects of being
faulty. The failure detector is unreliable in the sense
that it may erroneously add to its list a process which is
actually correct. But if the detector later believes that
suspecting this process is a mistake, it then removes
the process from its list. Failure detectors are formally
characterized by two properties: (i) Completeness
characterizes its capability of suspecting every faulty



EVENTUALLY STRONG FAILURE DETECTOR WITH UNKNOWN MEMBERSHIP 5

process permanently; (ii) Accuracy characterizes its
capability of not suspecting correct processes. Our work
is focused on the class of Fventually Strong detectors,
also known as {S. Nonetheless, we adapt the properties
of this class in order to implement a FD in a dynamic
set. Then, we define the class of Fventually Strong
Failure Detectors with Unknown Membership, namely
OSM. This class keeps the same properties of .S,
except that they are now valid to known processes, that
are either stable or faulty.

DEeFINITION 2.3. Eventually Strong FD with
Unknown Membership ($S™M)

Let p;,p; be mobile nodes. Let susp; be the list of
processes that p; currently suspects of being faulty. The

OSM class contains all the failure detectors that satisfy:

Strong completeness def {3t e T, V&' > t, Vp; €

KNOWN N FAULTY = p; € suspj, Vp; € KNOWN N
STABLE};

Eventual weak accuracy = {BteT, V' >t Ip; €
KNOWN N STABLE = p; € susp;, Vp; € KNOWN N
STABLE}.

3. TOWARDS A TIME-FREE FAILURE DE-
TECTOR FOR THE $SM™ CLASS

None of the failure detector classes can be implemented
in a purely asynchronous system [2]. Indeed, while
completeness can be realized by using “I am alive”
messages and timeouts, accuracy cannot be safely
implemented for all system executions. Thus, some
additional assumptions on the underlying system should
be considered in order to implement them. With this
aim, two orthogonal approaches can be distinguished in
the literature: the time-based and the time-free failure
detection [30]. The time-based model is the traditional
approach and supposes that channels in the system are
eventually timely; this means that, for every execution,
there are bounds on process speeds and on message
transmission delays. However, these bounds are not
known and they hold only after some unknown time [2].

An alternative approach suggested by [8] and
developed so far by [14, 26] considers that the system
satisfies a message exchange pattern on the execution
of a query-based communication and is time-free. While
the time-based approach imposes a constraint on the
physical time (to satisfy message transfer delays),
the time-free approach imposes a constraint on the
logical time ( to satisfy a message delivery relative
order that assumes that some nodes — not previously
defined — have faster communications than the other
ones). These approaches are orthogonal and cannot be
compared, but, they can be combined at the link level
in order to implement hybrid protocols with combined
assumptions [30].

3.1. Stable Query-Response Communication
Mechanism

Our failure detector is time-free and based on a
local QUERY-RESPONSE communication mechanism [26]
adapted to a network with unknown membership.
At each query-response round, a node systematically
broadcasts a QUERY message to the nodes in its
neighborhood until it possibly crashes or leaves the
system. The time between two consecutive queries
is finite but arbitrary. Each couple of QUERY-
RESPONSE messages are uniquely identified in the
system. A process p; launches the primitive by
sending a QUERY(m) with a message m. When a
process p; delivers this query, it updates its local
state and systematically answers by sending back a
RESPONSE(m’) with a message m’ to p;. Then, when
p; has received at least «ay; responses from different
processes, the current QUERY-RESPONSE terminates.
Without loss of generality, the response for p; itself is
among the «; responses.

Formally, the QUERY-RESPONSE primitive has the
following properties:

(i) QR-Validity: If a QUERY(m) is delivered by process
pj, it has been sent by process p;;

(ii) QR-Uniformity: A QUERY(m) is delivered at most
once by a process;

(iii) QR-Termination: Let ¢t be the time at which a
process p; terminates to send a query. If faulty®(p;)
does not hold, then that query generates at least «;
RESPONSE(m’) messages from a subset of X; processes,

The QUERY—RESPONSE primitive has the following
interface:

(i) QR-QUERY(m): A QUERY is sent by a process p; to
all the processes in its neighborhood;

(i) QR-DELIVER(X;, M): The set M of RESPONSE
messages sent from processes in X; in response to a
QUERY is delivered to p;;

An implementation of a couple of QUERY-RESPONSE
communication over fair-lossy local channels can be
done by the repeated broadcast of the query by the
sender p; until it has received at least «; responses
from its neighbors. Since the communication pattern
followed by our FD is local, «; is defined locally as
a function of the expected number of stable known
neighbors with whom p; may communicate at the time
t in which the QUERY is issued.

THEOREM 3.1. To ensure liveness of the time-
free QUERY-RESPONSE communication mechanism, a
threshold «; on the number of stable nodes in the
neighborhood of p; must be established.

Proof. Let us assume that p; issues a QUERY-RESPONSE,
but it does not know «;. Assume that f; is
the maximum number of faulty processes in p;’s
neighborhood and that f; neighbors crash at time ¢
during the QUERY. Since the set of responses received
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by p; includes its own response, a; = |N}| — f; + 1.
According to the QUERY-RESPONSE primitive pattern,
p; waits for a number of r; > 0 responses. However, on
the occurrence of f; failures, only «; responses are sent
to p;. Thus, if ; > «;, p; will wait forever, violating
then the termination property. Therefore, p; must know
a; in order to define r; and progress. O

PROPERTY 1. Stable Termination Property
(SatP). Let p; be a node which issues a QUERY. Thus,
dp; € KNOWN N STABLE, p; # p;, which receives that
QUERY and issues a RESPONSE to p;.

For the failure detection problem, the stable termi-
nation is necessary for the reliable dissemination of the
information to the whole network and consequent satis-
faction of the accuracy and completeness properties. It
is a guarantee that information from/to p; is going to be
sent/received to/from at least a stable p; in its neigh-
borhood. Moreover, it ensures that the first QUERY is-
sued by p;, when it joins the network, will be delivered
by at least one stable process in such a way that p; may
take part to the membership of the system.

The local choice for «; changes from previous works
which consider a global value either proportional to the
total number of correct processes [8] or the total number
of stable processes [26] or the total number of faults [14]
in the system. Moreover, it follows recent works on
fault tolerant communication in radio networks which
propose a “local” fault model, instead of a “global”
fault model, as an adequate strategy to deal with the
dynamics and unreliability of wireless channels in spite
of failures [22].

THEOREM 3.2. To ensure SatP  property,
|NZt| > 2f;, Vp;, V.
Proof. a; = |N}| — fi + 1 which ensures the liveness

of query-response rounds. To ensure that at least one
stable known node p; (p; # p;) receives the QUERY and
sends a RESPONSE to p;, responses must be issued by
more than f; + 1 nodes. Therefore, a; > f; + 1 and,
consequently, |[Nf| > 2f;. O

3.2. Behavioral Property

Instead of synchrony assumptions, to ensure the
accuracy of the detection, the time-free model
establishes conditions on the logical time the messages
are delivered by processes. These are unified in the
stabilized responsiveness property, namely SRP. Thus,
SRP(p;) states that eventually, for any process pj,
which is in the neighborhood of a stable known node p;,
the set of responses received by p; to its QUERY always
includes a response from p;, that is, the response of p;
is always a winning response [30]. Moreover, as nodes
may move, the SRP(p;) also states that neighbors of
p; eventually stop moving outside p;’s neighborhood.

PROPERTY 2. Stabilized Responsiveness Prop-
erty (SRP). Let X! be the set of processes from

which p; has received responses to its QUERY sent at
t’. Process p; satisfies SRP at time ¢ if:
SRP(p;) & 3t € T, stable’(p;) A

Di € X;,,ij € N,;tl,Vt’ >tV faultyt'(pj) A
p; € Nf/ =p, € Nl-t”,ij,Vt” >tV faulty” (pj)

This property denotes the ability of a stable known
node p; to reply, among the first a; nodes, to a QUERY
sent by p; in its neighborhood. It should hold for one
stable known node p; in the system; thus preventing
p; to be permanently suspected. As a matter of
comparison, in the time-based model, this property
would approximate the following: there is a time ¢ after
which the output channels from a stable known node
p; to every other node p; that knows p; are eventually
timely.

A discussion about how the properties in this section
could be satisfied in practice is presented in Section 4.2
after the protocol’s explanation.

4. A FAILURE DETECTOR ALGORITHM
FOR THE $SM CLASS

4.1. Algorithm Description

Algorithm 1 describes our protocol for implementing
a FD of class $SM for a mobile network of unknown
membership that satisfies the model and assumptions
stated in Sections 2 and 3. An implementation of the
QUERY-RESPONSE primitive is given in Algorithm 2.
Notations. We use the following notations:

e knownTo;: denotes the partial knowledge of p;
about the system’s membership, i.e., it denotes the
current knowledge of p; about its neighborhood.

e susp;: denotes the current set of processes
suspected of being faulty by p;. Each element of
this set is a tuple of the form (id, ct), where id is
the identifier of the suspected node and ct is the
tag associated to this information.

e mist;: denotes the set of nodes which were
previously suspected of being faulty but such
suspicions are currently considered to be a mistake.
Similar to the susp; set, the mist; is composed of
tuples of the form (id, ct).

e X;: denotes the set of nodes from which p; has
received responses to its last QUERY message.

e susp_from;: a vector containing in index j the
susp; set sent from p; in response to the last QUERY
from p;.

e mist_from;: a vector containing in index j the
mist; set sent from p; in response to the last QUERY
from p;.

e Add(set, (id, ct)): is a function that includes (id, ct)
in set. If an (id,—) already exists in set, it is
replaced by (id, ct).

Description. Algorithm 1 is composed of two tasks,
T1 and T2, and the procedure Update_State(), called
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by these tasks in order to analyze the contents of a
receiving message (QUERY or RESPONSE). Note that
both messages contain information about suspected
nodes and mistakes kept by the sending node p;.

Task T1: Generating suspicions. This task is
made up of an infinite loop. At each round, a QR-
QUERY is invoked (line 8) and a QUERY(susp;, mist;)
message is sent to all nodes of p;’s neighborhood
(line 4, Alg. 2). On the invocation of QR-DELIVER
(line 9), p; waits for at least «; responses, which in-
cludes p;’s own response (lines 6-11, Alg. 2). For
each RESPONSE(susp;,mist;) received from p;, p;
stores p; in X;, susp; in susp_from;[j] and mist;
in mist_from;[j]. Then, based on the RESPONSE
messages sent by the processes that answered to its
query, p; updates its local information about suspicions
and mistakes by calling, for each of these messages
from pj, the procedure Update_State (line 11), whose
code is detailed below. Furthermore, considering its
current information about partial knowledge of the
system’s membership, p; also includes new suspicions
(lines 12-17): it starts suspecting each node p;, not
previously suspected (p; ¢ susp;), which it knows
(p; € knownTo;), but from which it does not receive
a RESPONSE to its last QUERY. If a previous mistake
information related to this new suspected node exists
in the mistake set mist;, it is removed from it (line 15)
and the suspicion information is then included in susp;
with a tag which is greater than the previous mistake
tag (line 14). If p; is not in the mist set (i.e., it is the
first time p; is suspected), p; suspected information is
tagged with 0 (line 17).

Task T2: Propagating suspicions and mistakes. This
task allows node p; to handle the reception of a QUERY
message. Similarly to a RESPONSE message, p; calls the
procedure Update_State in order to update its local
information about suspicions and mistakes with that
sent by the querying node p; (line 22). At the end
of the task (line 23), p; sends to p; a RESPONSE message.

Procedure Update_State. It is responsible for ana-
lyzing the information about suspicions and mistakes
sent by a process. However, based on the tag associ-
ated to each piece of information, the receiving node
only takes into account the ones that are more recent
than those it already knows or the ones that it does
not know at all. The two loops respectively handle
the information received about suspected nodes (lines
27-33) and about mistaken nodes (lines 34-39). Thus,
for each node p, included in the suspected (respec-
tively, mistake) set of the QUERY message, p; includes
the node p, in its susp; (respectively, mist;) set only
if the following condition is satisfied: p; received a
more recent information about p, status (failed or
mistaken) than the one it has in its susp; and mist;
sets. Furthermore, in the first loop, a new mistake

is detected if the receiving node p; is included in the
suspected set of the QUERY message (line 29) with
a greater tag. It is worth pointing out that proce-
dure Update_State is also responsible for updating p;’s
partial knowledge of the system’s membership (line 26).

Dealing with mobility and generating mistakes. When
a node p,, moves to another destination, the nodes of
its old destination will start suspecting it, since p,,
is in their known set and it cannot reply to QUERY
messages from the latter anymore. Hence, QUERY-
RESPONSE messages that include p,, as a suspected
node will be propagated to nodes of the network.
Eventually, when p,, reaches its new neighborhood, it
will receive such suspicion messages. Upon receiving
them, p,, will correct such a mistake by including itself
(pm) in the mistake set of its corresponding QUERY-
RESPONSE messages with a greater tag (lines 29-30).
Such information will be propagated over the network.
On the other hand, p,, will start suspecting the nodes
of its old neighborhood since they are in its known,,
set. It then will broadcast this suspected information
in its next QUERY-RESPONSE message. Eventually,
this information will be corrected by the nodes of its
old neighborhood, and the corresponding generated
mistakes will spread over the network, following the
same principle.

In order to avoid a “ping-pong” effect between
information about failure suspicions and corrections
(mistakes), lines 38-39 allow the updating of the known
sets of both the node p,,, and of those nodes that belong
to the original destination of p,,. Then, for each mistake
(pg, ctg) received from a node pj;, such that node p;
keeps an old information about p,, p; verifies whether
Pz is the sending node p; (line 38). If they are different,
pz should belong to a remote neighborhood, because
otherwise, p; would have received the mistake by p,
itself since only the process can generate a new mistake
about itself (line 29). Thus, p, is removed from the
local set knownTo; (line 39). Notice, however, that
this condition is not sufficient to detect the mobility,
because, p, can be a neighbor of p; and due to an
asynchronous race, the QUERY-RESPONSE sent by p,
with the mistake has not yet arrived at p;. In fact,
the propagated mistake sent by p; has arrived at p;
firstly. If that is the case, p, has been unduly removed
from knownTo;. Fortunately, since local broadcast is
fair-lossy, the QUERY-RESPONSE from p, is going to
eventually arrive at p;, if p; is stable, and, as soon as the
message arrives, p; will once again add p, to its know;
set (lines 20-26).

4.2. Practical Issues

The stable termination of the QUERY-RESPONSE
primitive may be satisfied if the time of pause, between
changes in direction and/or speed, is defined to be
greater than the time to transmit the QUERY and receive
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Algorithm 1 Time-Free Implementation of a {S* Failure Detector

1 init:

2

3 susp; < @;mist; < ; knownTo; < &

4

5

6 Task T1:

7 Repeat forever

8 QR-QUERY (susp;, mist;)

9 Upon QR-DELIVER(X;, susp_from;, mist_from;)
10 For all p; € X, do

1 | Call upon Update State (p;, susp_from;[j], mist_from;[j])
12 For all p; € knownTo; \ X; | (p;, —) & susp; do
13 If  (pj,ct) € mist;

14 Add(susp;, (p;,ct + 1))

15 ‘ mist; = mist; \ {(pj, —)}

16 Else

17 ‘ Add(susp;, (p;,0))

18| End repeat

20 Task T2:
21
23 send RESPONSE (susp;, mist;) to p;
24
25 | Procedure Update_State (p;, suspj, mist;):
26 | knownTo; < knownTo; U {p;}

27| For all (pg,cty) € susp; do

o8 | If (pg,—) & susp; Umist; or ({pg,ct) € susp; Umist; and ct < cty)

29 If po = pi

30 | Add(mist;, (p;, cts + 1))
31 Else

32 ‘ Add(susp;, (P, ctz))

33 | mist; = mist; \ {{ps, —)}

o)

34

or all (py,cty) € mist; do

35 I

36 Add(mist;, (pg, cty))

a7 susp; = susp; \ {(pz, —)}

38 If (py 7& pj)

39 | knownTo; + knownTo; \ {ps}

Upon reception of QUERY (suspj, mist;) from p;

22 Call upon Update_State (p;, susp;, mist;)

£ (py, —) & susp; Umist; or ((pg,ct) € susp; Umist; and ct < cty)

the RESPONSE messages. This condition is attained
when for example, the most widely used Random
Waypoint Mobility Model [31] is considered.

Notice that the FD algorithm does not demand f; to
be known, but «;, which is a threshold on the number
of stable nodes in the neighborhood of p;. But, how
to define o; ? Theoretically, a; = |[N}| — f; + 1 and
to ensure SatP (Theorem 3.2), a; > f; + 1. But, in
practice, o; may be defined to be the current number
of nodes in the neighborhood of p; at time ¢. Since
1-hop neighbors are easily established (through MAC-
level hello packets), a; may represent all current nodes
in the neighborhood of p;. It is worth remarking that

the value of a; relates not only with the application
density, but also with the type of network considered
(either WMN, WSN; etc.) and the current topology of
the network during execution. Thus, it can be defined
on the fly, based on the current behavior of the network.

Wireless Mesh Network (WMN), Wireless Sensor
Network (WSN), and infra-structured mobile net-
works [14, 32] are good examples of platforms which
would satisfy the assumptions of our model, specially

the SRP.

In a WMN, the nodes move around a fixed set
of nodes (the core of the network) and each mobile
node eventually connects to a fix node. A WSN
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Algorithm 2 QUERY-RESPONSE Implementation

1 Upon a call to QR-QUERY (susp;, mist;) do

3 X; « susp_from; < mist_from; < &
4 broadcast QUERY (susp;, mist;) Enddo

6 When receive RESPONSE(susp;, mist;) from p; do

8 X; = X; Up;

0 susp_from;[j] = susp,

10 mist_from;[j] = mist;

11 When (|X;| > ;) trigger QR-DELIVER(X;, susp-from;, mist_from;)

may be composed of stationary nodes and can be
organized in clusters, so that communication overhead
can be reduced; one node in each cluster is designated
the cluster head (CH) and the other nodes, cluster
members (CMs). Communication between clusters is
always routed through the respective CHs which act as
gateway nodes and are responsible for maintaining the
connectivity among neighboring CHs.

An infra-structured mobile network is composed of
mobile hosts (MH) and mobile support stations (MSS).
A MH is connected to a MSS if it is located in its
transmission range and two MHs can only communicate
through MSSs, but, due to mobility, an MH can leave
and enter the area covered by other MSSs. The system
is composed of N MSSs but infinitely many MHs.
However, in each run the protocol has only finitely many
MHs. There are some works that propose to implement
a leader oracle [14] or to solve consensus in this type of
network [32].

For all these platforms, special nodes (the fixed
node for WMN, CHs for WSN or MSSs for infra-
structured networks) eventually form a strongly
connected component of stable nodes over the time;
additionally, they can be regarded as fast, so that
they will always answer to a QUERY faster than the
other nodes, considered as slow nodes (mobile nodes
for WMN, CMs for WSN or MHs for infra-structured
networks). Thus, one of these fast nodes may satisfy
the SRP property. The SRP may seem strong, but
in practice it should just hold during the time the
application needs the strong completeness and eventual
weak accuracy properties of FDs of class {$SM, as for
instance, the time to execute a consensus algorithm.

In practice, the FD protocol is going to be used
by other protocols in the dynamic network on the fly.
That is, it will be queried during specific periods, the
time to help the overlying protocol (e.g., consensus) to
detect the failures and converge. Thus, in practice, the
membership that is considered is the one that could
satisfy the requirements (of the model suggested) during

that period. For each new execution of the overlying
protocol, the membership should change (to take into
account the system dynamics).

In consequence, in spite of the fact that the proposed
model does not authorize existing “unknown processes”
to be in the membership, it does allow the membership
to be updated according with the system dynamics
on each FD invocation. Evidently, to ensure the
global properties (strong completeness and eventual
weak accuracy), at some point in time, until the end of
the FD execution (the time for the overlying protocol
to converge), a set of stable processes should be formed.

5. CORRECTNESS PROOF

We present a proof that Algorithm 1 satisfies both
the strong completeness and eventual weak accuracy
properties, characterizing a $S™ FD. We consider a
mobile network of unknown membership that satisfies
the model, assumptions and properties stated in
Sections 2 and 3. Let us first make the following
remarks.

Observation 1. The last status about a process p,
concerning failures is represented by the tuple (p,, ct)
which has the greatest counter ct in the network at some
point ¢ in time. It is stored in a susp; or mist; set of
some process p;.

Observation 2. If process p; € susp; then p; & mist;
and similarly if p; € mist; then p; & susp;. This follows
directly by the fact that when p; adds p; to susp;, p; is
removed from mist; (lines 14-15 and 32-33) and vice-
versa (lines 36-37). The only exceptions occur in lines
17 and 30, but in both cases, due to predicates of lines
13 and 29, respectively, the observation is ensured.
Observation 3. Only p; can generate a new mistake
about itself (lines 29-30). Moreover, the counter
associated with the mistake is strictly increasing (this
comes from predicate of lines 28 and 30). Finally, p;
never removes its own mistake (p;, —) from mist; (lines
12, 15, 33) since by definition it always belongs to the
X; set.
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Observation 4. Process p; ¢ susp; is always true.
This follows from predicate of line 12, which is never
satisfied, and predicate of line 29, which is always
satisfied for (p;, —); thus p; is never included in susp;
in lines 14 and 32.

Observation 5. Algorithm 2 implements a QUERY—
RESPONSE primitive in conjunction with Task T2
of Algorithm 1. To implement QR-QUERY(), a
QUERY (susp;, mist;) is broadcast in line 4 - Alg. 2.
When a process receives the QUERY in line 20, it sends a
RESPONSE in line 23. When a RESPONSE(susp;, mist;)
is received from p; (line 6 - Alg. 2), then p; is
stored in the X; set, and the message parameters are
stored respectively in susp_from;[j] and mist_from;[j]
(lines 8-10 - Alg. 2). When |X;| > «;, the contents of all
response messages received are delivered to p; via these
3 sets (line 11 - Alg. 2), which thus implements QR-
DELIVER(). The QR-Termination can be achieved over
fair-lossy local channels by the repeated broadcast of
the query by the sender p; until it has received at least
«; responses from its neighbors. The other properties
QR-Validity and QR-Uniformity are easily satisfied.

As stated in the Model (Section 2), a mobile node
is either moving (to reach a neighborhood, possibly
different from its present one) or pausing (in this case,
its neighborhood does not change). For the sake of
comprehension, we first prove the FD properties hold
for a network composed only of pausing nodes (Theorem
5.1). Afterwards, we prove they hold for the generic
case (Theorem 5.2). Lemmata 5.3 and 5.4 are used to
prove Theorem 5.1 and Lemmata 5.7 and 5.8 are used
to prove Theorem 5.2.

Proof for the Specific Case of Pausing Nodes.

LEMMA 5.1. Let p;,p; € KNOWNNSTABLE. Consider
that, at time t, p; owns the last status (p.,ct) about
Pz € KNOWN in its susp; set (respectively, mist; set).
If no new information (py,ct’), ct’ > ct, is generated
after t, then eventually Vp; € KNOWN N STABLE will
include (pg,ct) in susp; (respectively, mist; ).

Proof. By Assumption 1, 3t > t, there is a journey
J : pi = po,p1,---,Pk—1,Pk = p; of stable known
nodes between p; and p;. Let us proof the claim
by induction on k. The basis, k& = 0, is true by
assumption. By the induction step, the claim is
valid for process pr_1. So, pr—1 includes (p.,ct) in
suspg—1 (respectively, misti_1). Let us show that
pr also includes (p,, ct) in suspy (respectively, misty).
Since pp—1 € KNOWN N STABLE, it will execute a
QUERY-RESPONSE (lines 8-9) in order to broadcast
to its neighbors, after time ¢, a message m which
contains (p,, ct) in the suspy_1 (respectively, misty_1)
set. From Observation 5 and SatP (Property 1), the
QUERY terminates and is received by at least pp €
KNOWNNSTABLE in the neighborhood of pi_; (line 20).
Thus, p will execute lines 27-33 (respectively, lines 34-
39). Since, by assumption, ct is the greatest counter

associated with p, in the network, pi executes line 32
(respectively, line 36) and adds (p., ct) to its own suspy
set (respectively, misty set). Thus, the claim is valid for
Vp; € KNOWN N STABLE and the lemma, follows. O

LEMMA 5.2. Infinitely often, Vp; € KNOWN, dp; €
KNOWN N STABLE, p; € knownTo;.

Proof. From Observation 5 and SatP (Property 1),
there is at least one p; € KNOWN N STABLE in the
neighborhood of p; which receives the last QUERY-
RESPONSE message sent from p;; thus, p; € knownTo;
(lines 20 and 26). However, p; can be removed
from knownTo; in line 39 during the treatment of a
last mistake raised by p;. From Observation 3, only
p; can generate a mistake about itself. Moreover,
line 39 is the only point in which p; can be removed
from knownTo;. Thus, regarding this removal, two
situations are possible:

Situation (1). Assume the last mistake raised by p;
arrives firstly at p; in a QUERY (line 20) (or RESPONSE
(line 9)) sent by p;, that is (p;,ct) € mist;, ct is the
greatest counter associated to p;. In this case, on the
execution of Update_State(), the predicate of line 35 is
satisfied, and lines 36-37 are executed, but not lines 38—
39. Afterwards, if a QUERY (or RESPONSE) from a
process pj, arrives at p; containing the same mistake
over p;, and such that py # p;, then, since this mistake
has already been taken into account and its counter
is not greater than the existing one, the predicate of
line 35 will no more be satisfied and lines 38-39 are
not executed. Thus p; will not remove p; from the
knownTo; set, p; € knownTo;.

Situation (2). Assume that, due to an asynchronism,
the last mistake raised by p; arrives firstly at p; in a
QUERY (line 20) (or RESPONSE (line 10)) sent by pr # p;,
that is (p;,ct) € mistg, ct is the greatest counter
associated to p;. Since this QUERY (or RESPONSE) from
pi; arrives at p; before the own message from p;, on the
execution of Update_State(), the predicate of line 35 is
satisfied and lines 38-39 are executed. Thus p; removes
p; from knownTo;. Nonetheless, later on, the original
QUERY message sent by p; in which p; € mist; arrives to
p; at line 20. This holds because, by assumption, p; €
KNOWNNSTABLE is the neighbor which receives the last
QUERY message from p;. In this case, process p; will
execute line 26 including p; in knownTo;. Moreover,
since this mistake has already been taken into account
and its counter is not greater than the existing one,
the predicate of line 35 will no more be satisfied and
lines 38-39 are no more executed. Thus, p; will keep p;
in its knownTo; set, p; € knownTo;. This concludes
the proof. O

LEMMA 5.3. Let py € KNOWNNFAULTY. Eventually,
D¢ € susp;, Vp; € KNOWN N STABLE.

Proof. Let us consider that faulty'(py) holds.
Remark 1. Since py € KNOWN, p; has sent at least
one QUERY message before it crashed at ¢t and there is
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at least a process p; € KNOWN N STABLE which has
received this last QUERY (lines 20-26). Additionally,
from Lemma 5.2, py € knownTo;. After the crash of
py at t, p; will never receive a RESPONSE message from
py in line 9, thus py € X; and py € knownTo;. In
this case, in the next QUERY-RESPONSE round, if py
was not already suspected by p; (line 12), it will add
(py,ct’) to its susp; set. From Observation 3, no new
information regarding a mistake over py is generated
after ¢; moreover, since p; receives the last QUERY from
D¢, it gathers the last mistake over py with the greatest
counter, if it exists. Thus, if (pys, ct) € mist;, p; executes
lines 13-15 and adds (py,ct + 1) in susp;. Otherwise,
p; executes line 17 and adds (py,0) in susp;. Finally,
a process p; in py’s neighborhood can generate a new
suspicion over py but only when py & susp; (line 12).

Remark 2. Thus, in the network, after ¢, the last
status about py will eventually be a suspicion. In
this case, following Lemma 5.1 and Observation 2, all
stable known processes will eventually include p; in
their respective suspected sets. Thus, py € susp; is
always true Vp;, € KNOWN N STABLE. O

LEMMA 5.4. Let p; € KNOWNNSTABLE. If SRP"(p;)
holds for p; at time t, then eventually p; ¢ suspj,
Vp; € KNOWN N STABLE.

Proof. Remark 1. A new suspicion over process p; is only
raised if its RESPONSE is not received by some process
pr in its neighborhood in response to a QUERY, that
is, if p; € knownToy and p; ¢ X (line 12). Notice
that p; € knownToy if py has received a QUERY (or
RESPONSE) from p; in the past (lines 20, 10), that is

x € N#, for some time s < t. According to SRP"(p;),
after ¢, (i) p; € Xy, is always true, Vpy, € Nf/, t' >t and,
(ii) Vpi, pr € N = pp € N ¢ > t'. Thus, after
t, Vpr € Nf/,Vt’ > t never adds p; in suspy raising a
new suspicion. From Observation 4, p; € susp;. From
Observation 3, a mistake regarding p; is only generated
by p; itself whether it is in a suspected set.

Remark 2. Thus, in the network, after ¢, the last
status about p;, represented by (p;,ct), can be (1) an
old suspicion ((p;,ct) € susp;), generated before ¢; (2)
a mistake ({p;, ct) € mist;) or (3) none of the previous
cases (if p; has never been suspected). In Case (1),
following the propagation Lemma 5.1, p; will eventually
receive a QUERY or a RESPONSE message from p; €
KNOWNNSTABLE with (p;, ct) € susp; (lines 9, 20) and
call upon Update_State(), what will cause p; to generate
a new mistake with a greater tag ((p;,ct + 1) € mist;)
(line 30). The last status about p; is now a mistake and
we fall in Case (2). In Case (2), following Lemma 5.1
and Observation 2, the mistake will be propagated to
Vp; € KNOWN N STABLE. Then, eventually, lines 36-37
are executed by p; and p; € susp;. From Remark 1, no
new information about p; is generated and p; ¢ susp;
is always true. Case (3) follows directly from Remark 1
and the lemma follows. O

THEOREM 5.1. Algorithm 1 implements $SM failure
detector, assuming a network of KNOWN pausing
nodes.

Proof. The strong completeness follows directly from
Lemma 5.3. The eventual weak accuracy follows directly
from Lemma 5.4 and the theorem follows. O

Proof for the Generic Case of Mobile Nodes.

Now, let us extend our proof to the generic case of
a network composed of mobile nodes, knowing that a
mobile node is either moving or pausing.

LEMMA 5.5. Lemma 5.1 holds Vp; € KNOWN mobile
nodes.

Proof. The lemma follows directly from Lemma 5.1 for
all pausing nodes. To take into account moving nodes,
we should consider two cases.

Case (1): Assume that p,, € KNOWN N STABLE
is a moving node which has not yet the last status
(ps, ct) about process p,. Let us assume that, due
to Lemma 5.1, every pausing node p; € KNOWN N
STABLE has added the last status (p,,ct) in its susp;
(respectively, mist;) set before or at time t”. As
soon as p,, reaches the new neighborhood at t"”/ >
t”, it will execute task T1 (to implement a QUERY-
RESPONSE). From Observation 5 and SatP (Property
1), the QUERY terminates and p,, receives a RESPONSE
message from a pausing node p;, carrying out (p.,ct),
the last status about p, (line 9). On the execution of
Update_State() (line 11), since, by assumption, ct is the
greatest counter associated with p,, p, executes line
32 (respectively, line 36) and adds (p,,ct) to its own
suspy, set (respectively, mist,, set).

Case (2): Assume that p,, € KNOWN N STABLE
is a moving node which has the last status (p.,ct)
about process p,. As soon as p,, reaches the new
neighborhood at time t', it will execute task T1 (to
implement a QUERY-RESPONSE). From Observation 5
and SatP (Property 1), the QUERY terminates and
there will be at least one node p; € KNOWNNSTABLE in
the neighborhood of p,,,, which receives the QUERY with
the last status about p,. Thus, by executing task T2,
p; calls upon Update_State() (line 22) and adds (py, ct)
in its susp; (line 32) (respectively, mist; set, line 36).
Following the propagation Lemma 5.1 and knowing that
Case (1) holds, eventually every p; € KNOWNNSTABLE
will include (p;, ct) in its susp; set (respectively, mist;
set) and the lemma follows. O

LEMMA 5.6. Lemma 5.2 holds Vp; € KNOWN mobile
nodes.

Proof. From Observation 5 and SatP (Property 1),
for every QUERY-RESPONSE, issued by p; at task T1,
there will be at least one p; € KNOWN N STABLE in
the neighborhood of p; which receives its last QUERY,
no matter if p; or p; are pausing or moving. Then,
following the same arguments of Lemma 5.2, p; €
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knownTo; and the lemma holds. O

LEMMA 5.7. Let py € KNOWNNFAULTY. Eventually,
pf € susp;, Vp; € KNOWN N STABLE mobile nodes.

Proof. Let us consider that faulty'(ps). The lemma
follows directly from Lemma 5.3 for all pausing nodes.
To take into account moving nodes, two cases are
possible. Let us first observe that, from Lemma 5.6 and
knowing that the last QUERY-RESPONSE issued by py
(either moving or pausing) before t has been received,
there is p; € KNOWN N STABLE (either moving or
pausing), such that py € knownTo;.

Case (1): Assume that p,, € KNOWN N STABLE is a
moving node which has not yet the last status about
process py after ¢; and, assume that by Lemma 5.3,
every pausing node p; € KNOWN N STABLE has added
Dy in its susp; set after t. In this case, due to Lemma 5.5
(Case 1), pp, will add py in its suspy,.

Case (2): Assume that p,, € KNOWN N STABLE is a
moving node which has the last status about process py.
Possibly, p,, = p;. We should consider the following two
situations. Situation (1): Assume that the last status
is a mistake, (py,ct) € mist,,. When p,, reaches its
new neighborhood after t, from the same arguments
of Lemma 5.3 (Remark 1), p; will add (py,ct + 1) in
suspy, (i.e., susp;) and remove py from mist,, (ie.,
mast;). Then, we fall in Situation (2). Situation (2):
Assume that the last status is a suspicion, (ps,—) €
suspm. This follows from Lemma 5.3 (Remark 1).
When p,,, reaches its new neighborhood after ¢, due to
the propagation Lemma 5.5 (Case 2), this information
about the suspicion of p; will be propagated to every
p; € KNOWN N STABLE.

Finally, for every Case, from the same arguments
of Lemma 5.3 (Remark 2) and considering Lemma 5.5,
pf € susp; is always true ¥p; € KNOWN N STABLE. [

LEMMA 5.8. Let p; € KNOWNNSTABLE. If SRP'(p;)
holds for p; at time t, then eventually p; € susp;,
Vp; € KNOWN N STABLE mobile nodes.

Proof. The lemma follows directly from Lemma 5.4
for all pausing nodes. Due to same arguments of
Lemma 5.4 (Remark 1), after t, Vp, € Nf/,Vt' > t never
adds p; in suspy, raising a new suspicion. Assume that
Pm € KNOWN N STABLE is a moving node. Let us
consider that p,, reaches its new neighborhood at time
' > t. By hypothesis, if p; € Nt then p; € NL' p; €
Xf,/;,t” > t' is always true, thus p,, never adds p; in
suspy,. If p; & Nf,;, two cases are possible:

Case (1): pp has the last status (p;,ct) about
pi. The following situations are possible. Situation
(1): pm suspects p; ((pi,ct) € suspy,). This can be
an old suspicion, generated before ¢ or a mew one,
generated after ¢ due to p,,’s move. In this last case,
pi € knownTo,, and p; ¢ X,,, because p,, will no
longer receive RESPONSE messages from p;, since p,,
moves. Thus, p,, will suspect p; (executing lines 12—
17). According to Lemma 5.4 (Remark 2, Case 1), this

suspicion is going to be revoked by p;, by the generation
of a mistake message with a greatest counter ((p;, ct +
1) € mist;) that, due to Lemma 5.5, is propagated
along the network. Finally, (p;,ct + 1) € mist,, and
(piy—) & suspn,. Now, the last status about p; is not
a suspicion and we fall in Situation (2). Situation (2):
Pm does not suspect p;. Following Lemma 5.4 (Remark 2,
Cases 2 and 3) and Lemma 5.5, Vp; € KNOWNNSTABLE
(including p,,) will permanently remove p; from its
respective susp; set.

Case (2): pm, has not yet the last status about p;.
Due to Lemma 5.5, after time ¢/, p,, succeed to update
its state with the last information about p;. Following
Lemma 5.4 and 5.5, eventually p; € susp,, is always
true. Thus, the lemma follows for Vp; € KNOWN N
STABLE. O

THEOREM 5.2. Algorithm 1 implements {S™M failure
detector, assuming a network of KNOWN mobile nodes.

Proof. The strong completeness property follows directly
from Lemma 5.7. The eventual weak accuracy property
follows directly from Lemma 5.8 and the theorem
follows. O

6. PERFORMANCE EVALUATION

In this section we study and evaluate the behavior of
our asynchronous failure detector. The performance
experiments were conducted on top of the OMNeT++
discrete event simulator [33]. We assume 2 two-
dimensional regions: the first one is a square of
600mx600m and the second one is a rectangle of
200mx1800m. They thus have both the same surface,
number of nodes but not the same network diameter.
Such a difference aims at studying the propagation of
failure suspicions and mistakes over the network.

We consider that every p; has at least 5 neighbors
(IN;| > 5) and that at most 2 neighbors may crash
(fi = 2). Therefore, «; is the same for all p;. The
total number of nodes N is fixed to 100 and it is
uniformly distributed over the region. Each simulation
lasts 30 minutes. In the square configuration the
minimum number of neighbors |V;| is equal to 7, the
maximum is 16 and the average is 10. For the rectangle
configuration, the minimum, maximum, and average
number of neighbors are 9, 6, and 16 respectively.

We have considered that 10% of the nodes can fail,
i.e., 10 faults have been uniformly injected at every
70s starting at 10s (10s, 80s, 150s, etc.). The one-
hop network delay § is computed using the bandwidth
(2Mb/s) and size of messages since the delay of
propagation within a range is negligible. Then ¢ is less
than 1ms?*. In our experiments, we assume that MAC
layer provide a local reliable broadcast.

Concerning the implementation of our FD, it is not
feasible that a node continuously broadcasts a QUERY

4This value is negligible in comparison to delay between two
queries.



EVENTUALLY STRONG FAILURE DETECTOR WITH UNKNOWN MEMBERSHIP 13

message since the network would be overloaded with
messages. 1o overcome this problem, we have included
a delay of A = 1s between lines 8 and 9 of the Algorithm
1. However, by adding this waiting period, process p;
may receive more than «; replies. Therefore, the extra
replies will also be included in the X; set of this process
(line 10), reducing then the number of false suspicions.
It is worth remarking that this improvement does not
change the protocol correctness.

6.1. Failure Detection

In order to evaluate the completeness property of our
FD, we have measured the impact of the number of
neighbors on the failure detection time. To this end, the
transmission range r varied from 100m to 380m which
results in the variation of the number of neighbors.
For each number of neighbors, we have measured the
average, maximum, and minimum failure detection time
considering the 90 correct nodes, as shown in Figure 1.
The maximum failure detection time characterizes, for
each of the different number of neighbors, the time for
all nodes to detect a failure (strong completeness).
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FIGURE 1. Failure detection time vs. number of

neighbors

We observe that there is no false suspicion. The
failure detection time decreases with the number of

neighbors.  This happens because failure detection
information is included in QUERY messages which
spreads faster over the network when the density
increases.

6.2. Impact of mobility

We have evaluated the accuracy property when both
one and ten nodes located at one boundary of the
network move at a speed of 2m/s.  The range
transmission r is set to 100m for all p;. When just one
node moves, it starts moving at time 20s while when 10
nodes move, the first one starts moving at 100s and at
every Hs a new one starts moving. A moving node stops
when it arrives at the opposite border of the region. We
consider that while moving, a moving node p,, continues
to interact with the other nodes and that at least o;
nodes will reply to the query of p; after p,, moves.
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FIGURE 2. Total number of false suspicions when one
node moves

For each experiment, the total number of false
suspicions has been measured. Figure 2 (respectively,
3) shows the number of false suspicions between the
moment that just one node (respectively, 10 nodes)
stars moving at 20s (respectively, 100s and every 5s)
for both the square and rectangle region configurations.

We observe in both Figures that false suspicions
are rather punctual: the number of false suspicions
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increases very fast but decreases very fast too. This
behavior can be explained because false suspicions are
generated around the moving node when it changes of
neighborhood. These suspicions are quickly corrected
by the moving node itself as soon as it receives the query
from its old neighbors which usually remain close to it
(in most cases they are at one hop).
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FIGURE 3. Total number of false suspicions when ten
nodes move

Figures 4.(a) and 4.(b) respectively show the
distribution of mistake duration, i.e., how long in
average a node is erroneously suspected, and the
number of false suspicions for all the 100 nodes in the
rectangle configuration when 10 nodes move. We can
observe that the duration of mistakes is quite small and
stable for all of them. The average mistake duration
is smaller than 1s. However, the number of false
suspicions presents a more significant variation. In fact,
for a given node, this number depends on its position in
the region. On the other hand, the greater the number
of mobile nodes that a node meets, the greater the
number of false suspicions that it generates. Thus, we
observe that the 10 moving nodes have a number of
suspicions 15% higher than the other nodes. In any
case, the mistake is always corrected very fast: in less
than 0.01s when the suspected node is close to the node
that generates the suspicion and in 4s at maximum,
otherwise.

5 4f

[0

o

- 35+

Qo

T 30— - L

3

o 25t

5

s 2r

Q

2 15¢

8 1t

©

w
05
0k

0 10 20 30 40 50 60 70 80 90 100
Hosts

(a) Distribution of false suspicions durations in
200x1800 region

1750

1700 |

1650

1600

1550

1500

# of false suspicions

1450

1400

1350

1300 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100

Hosts

(b) Distribution of false suspicions in 200x1800 region

FIGURE 4. Distribution of mistakes when ten nodes move

Synthesis. From the results of the above
experiments, we can outline two key properties of our
failure detector:

e the average failure detection time is short thanks
to the local query-response approach: as soon as a
node fails, its neighbors start to suspect it in the
next round. Then, in networks with high density
and short diameter, the detection time converges
to the inter-query delay.

e our failure detector is highly reactive in correcting
false suspicions when node moves: mobility implies
a relatively high number of false suspicions around
the moving nodes, but the latter detect them very
fast. Then, these nodes immediately generate
mistake messages which limit the propagation of
wrong suspected information.

7. RELATED WORK

Scalable Approaches. As in the approach followed
in our work, some scalable FD implementations do
not require a fully connected network. Larrea et al.
proposed in [5] an implementation of an unreliable
failure detector based on a logical ring configuration
of processes. Thus, the number of messages is linear,
but the time for propagating failure information is
quite high. Some works base the detection on the
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use of an adaptive heartbeat or follow the gossiping
style communication, choosing only a few members
or mneighbors to disseminate information [34, 35].
Practically, the randomization makes the definition of
timeout values difficult. In [36], a scalable hierarchical
failure adapted for Grid configurations is proposed.
However, the global configuration of the network is
initially known by all nodes. Whereas in [37], authors
identify important problems on the design of scalable
failure detectors for Grid architectures.

The Heartbeat Approach. Aguilera et al. [9]
propose the heartbeat FD which does not assume a
network of fully connectivity and tolerates message
losses. Tucci et al. [10] implement a heartbeat FD
for the infinite arrival model and show how to use
it to implement a FD of the € class. The Q class
ensures that eventually each correct process is going
to trust the same correct process, considered as the
leader. The solution assumes fair-lossy channels, but
for a synchronous environment. Hutle [38] proposes
a P FD with strong completeness (eventually, every
node failure will be reported to every correct node) and
eventual strong accuracy (after some point in time no
correct node will be suspected by another correct node)
properties. The solution considers sparsely connected
unknown networks, subject to partitions; nonetheless,
it assumes some knowledge about the neighborhood,
which has a bounded number of processes, and
about the jitter of the communication between direct
neighbors. It is worth remarking that none of these
previous works tolerate mobility of nodes.

Few implementations of unreliable FD found in the
literature focus on wireless mobile networks [11, 12, 13].
The fundamental difference between these works and
ours is the fact that all of them are time-based. As far
as we are aware of, the only work to follow a time-free
detection strategy has been proposed by [14] in order
to implement a leader failure detector of the Q class.
Nonetheless, it does not tolerate node mobility.

Probabilistic Approach for wireless ad-hoc
networks. Friedman and Tcharny [11] propose a
simple gossiping protocol which exploits the natural
broadcast range of wireless networks to delimit the local
membership of a node in a mobile network. A node
periodically sends heartbeat messages to its neighbors.
Upon receiving a vector, a node updates its vector to
the maximum of its local vector and the former. Thus,
if a node does not receive a new heartbeat information
about a node after a certain time, it considers that
the latter has failed. Contrarily to our approach, this
work assumes a known number of nodes and provides
probabilistic guarantees for the FD properties.

Tai et al. [12] exploit a cluster-based communication
architecture to propose a hierarchical gossiping FD
protocol for a network of non-mobile nodes. The
FD is implemented both via intra-cluster heartbeat
diffusion and failure report diffusion across clusters,
i.e., if a failure is detected in a local cluster, it will

be further forwarded across the clusters. Contrarily
to our approach, this work considers a cluster-based
communication architecture and implements a FD of
the class ¢ P which provides probabilistic guarantees for
the accuracy and completeness properties; moreover, it
does not consider mobility.

Local Failure Detection Approach. Sridhar [13]
adopts a hierarchical design to propose a deterministic
local FD. He introduces the notion of local failure
detection and restraints the scope of detection to
the neighborhood of a node and not to the whole
system. The FD is composed of two independent layers:
a local one that builds a suspected list of crashed
neighbors and a second one that detects mobility of
nodes across network and able to correct possible
mistakes. He advocates the use of this local detection
as an appropriate abstraction to deal with mobility
and resources lack in wireless sensor networks. Unlike
our solution that allows the implementation of a {»S™
FD, this work implements an eventually perfect local
failure detector of the class $P, i.e., it provides strong
completeness and eventual strong accuracy but with
regard to a node’s neighborhood.

Time-Free Approach for Omega. Cao et al. [14]
propose a time-free query-based implementation of a
deterministic leader failure detector. It considers an
infra-structured mobile network composed of mobile
hosts (MH) and mobile support stations (MSS) (see
Section 4.2). An MH is considered stable if, once
it entered the system, it does not crash or gets
disconnected. Both MSSs and MHs can crash and the
maximum number of MSSs that can crash (f) is known
a priori. Contrarily to our approach, this work considers
a hybrid network of mobile and static nodes; moreover,
it implements an Q FD. It provides an eventual accuracy
property, which ensures that eventually at least one
stable MH is continuously trusted by the MSSs. The
completeness property ensures that an MH that crashes
or permanently leaves the system is eventually no longer
trusted by an MSS. We consider that this protocol
is not very well adapted to ad-hoc networks, since
it makes strong assumptions on the connectivity and
global knowledge of MSSs. It considers that all MSSs
form a complete graph and moreover that the maximum
number of failures is known.

FD Application. We believe that our $S™ FD will
be of great interest to implement consensus algorithms,
such as the one proposed by Greve et al. [15], who
present a solution for the fault-tolerant consensus in a
dynamic system of unknown participants, with mini-
mal synchrony assumptions (i.e., a FD of the class $.5).

Synthesis. Table 1 shows a panorama of the FDs for
mobile and wireless networks presented in this section
considering a number of criteria: (1) type of nodes in
the network, (2) knowledge about the number of nodes,
(3) number of failures considered, (4) the connectivity
of the communication network, (5) considered failure



16 F. GREVE, P. SENS, L. ARANTES, V. SIMON

model, (6) strategy followed to detect failures, (7) the
use of timers to detect failures, (8) the satisfaction of
the membership property by the network, (9) the use
of local communication for detection, (10) the provided
FD class. The work presented herein exhibits the most
generic features. It implements a time-free query-based
deterministic FD suitable for any dynamic wireless
network topology.

8. CONCLUSION

This paper has suggested a model able to implement
unreliable failure detectors in mobile wireless networks,
such as WMNs or WSNs and provides the specification
of a new class of failure detectors for this context:
the $SM class (eventually strong FD with unknown
membership). It presents an algorithm able to
implement a time-free $S™ FD which is proved to
be correct when the underlying network satisfies some
assumptions regarding stability, connectivity, and the
pattern of messages exchanged by the nodes.
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