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ABSTRACT
This work explores scheduling challenges in providing prob-
abilistic Byzantine fault tolerance in a hybrid cloud envi-
ronment, consisting of nodes with varying reliability levels,
compute power, and monetary cost. In this context, the
probabilistic Byzantine fault tolerance guarantee refers to
the confidence level that the result of a given computation
is correct despite potential Byzantine failures. We formally
define a family of such scheduling problems distinguished by
whether they insist on meeting a given latency limit and try-
ing to optimize the monetary budget or vice versa. For the
case where the latency bound is a restriction and the budget
should be optimized, we present several heuristic protocols
and compare between them using extensive simulations.

Keywords
Byzantine, scheduling, hybrid cloud environments

1. INTRODUCTION
High performance distributed computing (HPDC) is typ-

ically obtained by breaking large computational problems
offering trivial parallelism into multiple independent com-
pute tasks and scheduling each task to be executed in a
distributed environment. This enables solving heavy com-
putational tasks using commodity hardware and operating
systems.

With cloud technology, it is common to submit computa-
tions to virtual machines hosted in the cloud. The benefit of
clouds includes their increased dependability and availabil-
ity. However, cloud usage for heavy computations involves
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substantial financial costs.
This motivates exploring hybrid computing architectures

that combine desktop Grids with cloud hosted computing.
In such a system, a large fraction of the computation is
performed by donated machines, which significantly reduces
the cost to the owner of the computation. Yet, when donated
machines fail to ensure timely reliable completion, parts of
the computation can be transferred to the cloud where they
are ensured to obtain enough resources to complete.

Unfortunately, donated computers suffer from a non-negligible
probability that some of them will not always return correct
answers, i.e., act in a Byzantine manner. Such behavior
might result, e.g., from malice on behalf of the owner of the
machine, from intrusions to the machine, or from faults and
bugs in hardware and software.

On the other hand, cloud servers and their VMs are likely
to be more dependable than regular home machines. This is
because cloud providers have a monetary incentive to protect
their infrastructure from intrusions and to maintain their
hardware and operating systems up to date. However, these
cannot completely rule out intrusions and other forms of
Byzantine hardware.

Finally, with recent trusted computing hardware, cloud
providers can maintain a smaller set of fully trusted ma-
chines. Given the higher cost of trusted computing hard-
ware, it is sensible to assume that these nodes will be scarce
and their usage will be considerably more expensive than
using standard cloud nodes.

Our contributions. First, we define a probabilistic hybrid
computing model for HPDC composed of both home do-
nated machines and cloud nodes. In this model, each com-
putational task has a minimal required reliability level, a
latency bound, and a budget. Similarly, each node has a
known computing speed, monetary cost, and reliability rep-
utation. We distinguish between home donated nodes which
are very cheap, but are also not very reliable, standard cloud
nodes which are much more dependable and powerful, but
are more expensive, and cloud fully trusted nodes, which
are completely dependable, but much more costly than the
others and are slower than the standard cloud nodes.



Second, we define corresponding scheduling optimization
problems that need to ensure that computational tasks meet
their requirements. In all of them, the scheduler’s goal is to
find compute nodes that can return a reply whose correct-
ness is above a given reliability threshold. However, they
vary in the latency and budget guarantees they provide.
One set of problems ensure bounded latency and attempt
to minimize the required budget while the others ensure a
bounded budget and try to minimize the latency.

Third, we devise several heuristic protocols for these prob-
lems. For lack of space, this paper focuses on solving the
variant in which the latency bound must be observed while
trying to minimize the required budget.

Last, we evaluate the performance of our protocols by sim-
ulation. Results show that in all tested workloads, an adap-
tive protocol, which schedules tasks on different groups of
nodes, is efficient and successfully allocates all tasks within
the latency constraints.

The rest of this paper is organized as follows: We survey
related work in Section 2. Model assumptions are defined in
Section 3. The problem statements as variations of optimiza-
tion problems are presented in Section 4. Section 5 describes
our scheduling protocols for bounded latency. Section 6
presents performance evaluation results of these protocols
through extensive simulations. Finally, Section 7 concludes
the paper.

2. RELATED WORK
There is vast literature on Byzantine fault tolerance (BFT),

mainly w.r.t. consensus and state replication, e.g., [8,12,13,
15, 17] to name a few. In particular, multiple works have
studied the notion of probabilistic consensus, where either
safety is always ensured and termination becomes proba-
bilistic or vice versa, e.g., [5–7, 10, 16, 21, 24, 25, 30]. Such
level of BFT requires a minimum of 3f + 1 replicas, result-
ing in significant resource overheads, especially when f can
be larger than 1.

Reducing this inherent overhead has been explored in sev-
eral ways. One example is the introduction of wormholes
and other types of trusted hardware components [31]. An-
other idea is separating ordering from execution as proposed
in [32], such that the data itself is replicated only on 2f + 1
nodes. Yet, this requires a separate ordering service, often
implemented by traditional BFT protocols, so the savings
depends on data being much larger than control and meta-
data sizes.

Several works have explored how to harden high perfor-
mance distributed computing environments, such as [2, 3],
against Byzantine failures [1, 9, 11, 28, 29]. Our model dif-
fers from theirs in the following ways: At the node level, we
incorporate in our model the reliability level of each node,
the computational power of each node, and the monetary
cost of using each node. In particular, we assume a hy-
brid execution model composed of nodes from several lev-
els of reliability, compute power, and cost. Further, at the
computational task level, we combine a minimal reliability
level, latency constraints, and budget constraints. Hence,
the scheduling task in our work is much more involved.

A pull-based scheduler for hybrid distributed computing
infrastructure (Desktop, Grid, and Cloud nodes) that re-
lies on multi-criteria decision-making method for task as-
signment is presented in [23]. The multi-criteria method
computes for each task a set of criteria according to the
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Figure 1: Hybrid cloud architecture

characteristics of the node requesting a task. Among the
criteria, the authors propose the expected time and cost to
complete the task, as well as the the estimated error impact
of scheduling the task to the pulling node, taking into ac-
count both its reputation and the size of the task. Similarly
to us, their aim is to find an optimal scheduling strategy in a
hybrid environment that satisfies user constraints expressed
in terms of cost, price, and reliability. To this end, they
apply a filtering methodology denoted SOFT. Yet, contrar-
ily to our approach, their scheduler is pull-based where idle
nodes ask for task assignment, there is no Byzantine behav-
ior, and the scheduler does not apply a per group selection
approach as our adaptive protocol does in order to avoid
combinatory explosion.

Some hybrid Cloud platforms combine public and private
Clouds. Some works [19, 20] focus on resource provisioning
in the presence of failures. Private cloud nodes are usually
considered free for users but prone to failures whereas pub-
lic cloud nodes are trusted (failure-free) but users must pay
to use them. As in our approach, task scheduling decisions
depend on reliability requirements and cost constraints. For
instance, in [20], the authors consider that failures in pri-
vate cloud can be correlated in space and time. Hence, jobs
that request more than a number of VM threshold or last
more than a deadline threshold are redirected to public cloud
nodes.

3. SYSTEM AND THREAT MODELS
We consider a hybrid cloud architecture in which comput-

ing tasks continuously arrive and need to be scheduled on
a large pool of available compute nodes (physical or VMs),
similar to the one depicted in Figure 1. The compute nodes
include a combination of home donated desk-tops (a.k.a home
nodes) as well as cloud hosted VMs (a.k.a cloud nodes). The
cloud nodes are also divided into a plurality of standard cloud
nodes and a smaller set of fully trusted cloud nodes. The dif-
ference between these sets of nodes is relates to their com-
pute power, expected reliability, and availability.

That is, home nodes are expected to have relatively lower
compute power and high churn rate, meaning that their
availability and reliability are low. In particular, the proba-
bility of Byzantine behavior on their part is higher than all
other nodes. Usage of home nodes is assumed to be very
cheap, but not completely free of charge, as typically cloud
providers charge a small amount of money for I/O outside
the cloud.

Standard cloud nodes have relatively high compute power



p A compute node B(Γτ ) Budget of schedule Γτ
pi, pj Distinguishing between com-

pute nodes
∆τ A latency threshold for τ

q A probability Φτ A budget threshold for τ

qp Probability that p will re-
turn an incorrect answer

GT Group of fully trusted nodes

rp Reliability of p (1 − qp) GC Group of standard cluster
nodes

cp Compute speed of node p GH Group of home nodes

dp Cost of node p Gi A group of nodes of the same
type

τ A compute task σ A run

Tτ Normalized compute time
for τ

Lσ The latency of σ

ρτ A reliability threshold for τ Bσ The latency of σ

Γτ A schedule for τ Sσ Set of nodes producing
replies in σ

V (Γτ ) A reply values sequence for
Γτ

ti Time

L(Γτ ) Latency of schedule Γτ vi Reply value

Table 1: Main symbols used in this paper

and can be allocated on demand. They are much more reli-
able than home nodes, but they might still occasionally fail
including in a Byzantine manner. Utilizing standard cloud
nodes involves paying a small fee.

Finally, fully trusted cloud nodes have a very low prob-
ability of suffering a crash failure, and never suffer from
Byzantine failures. The number of fully trusted cloud nodes
is bounded and their usage cost is significantly higher than
using standard cloud nodes. The existence of such fully
trusted nodes is backed by recent advancements in trusted
cloud computing hardware [31], or alternatively can be re-
alized by clustering standard cloud nodes using BFT tech-
niques [8, 12,13].

Further, the scheduler, which accepts the computing tasks
and distributes them to various compute nodes, runs on a
fully trusted cloud node. That is, the scheduler is assumed
to be fault-tolerant, always available, and it always obeys
its prescribed protocol.

The communication in the system is performed by sending
and receiving messages over a communication network. The
network is assumed to be authenticated and reliable, with a
bounded communication latency. That is, a message is only
received if it was indeed sent by some node, and the receiver
always knows who the true sender of a message is.

As mentioned before, the home nodes and standard cloud
nodes may occasionally act in a Byzantine manner. That
is, while executing a compute task, each such node p may
return an incorrect answer (or not answer at all) with prob-
ability qp. We refer to the probability rp = 1 − qp that p
returns a correct answer as the reliability or reputation of
p. Notice that rp may change overtime. When the system
starts, for any home node pi and arbitrary standard cloud
node pj , rpi < rpj . Further, even when the reliability of
nodes changes over time, the above inequality would remain
true for the vast majority of home nodes and cloud nodes.
Obviously, for a fully trusted node p, rp is always 1.

Whenever a scheduler node receives a compute task, it
sends it either to a fully trusted cloud node or to multi-
ple compute nodes. In the former case, the scheduler knows
that it will get a correct answer. However, since fully trusted
nodes are scarce and expensive, the scheduler often prefers
the latter option. In these cases, when the replies arrive, the
scheduler compares them. If they all agree, then the sched-
uler knows that this is the correct answer with a certainty
that depends on the reputations of the chosen nodes. Oth-
erwise, if some replies do not return within the deadline, the
scheduler knows that these nodes are faulty and sends the

same compute task to additional nodes. Yet, if the replies
do not match, then the scheduler knows that at least some
of the nodes acted in a Byzantine manner and may send
the compute task to additional nodes until it has enough
probabilistic confidence in one of the replies.

Each compute task τ has a normalized compute time Tτ
and that each compute node p has a known computing speed
cp. So when there are no failures, a task τ that is scheduled
to be computed on a node p completes its execution on p
within time Tτ/cp. Further, each compute node p charges
dp units of money per second of computing (for home nodes
dp = 0). Hence, the cost of computing task τ on node p is
Tτ ·dp
cp

.

The number of nodes needed to execute each compute task
to obtain a trusted reply as well as the expected compute
time and cost are the main topic of this paper.

3.1 A Generic Model of Hybrid Computation
In the most generic case, compute nodes are divided into

multiple groups {Gi}, each characterized by an initial repu-
tation value Ri, its own scheme for managing the reputation
by the scheduler Fi, a range of compute power [Cmin

i , . . . , Cmax
i ],

and a range of costs [Dmin
i , . . . , Dmax

i ]. For each group Gi
and for each node p ∈ Gi, the initial reputation of p, rp = Ri.
The compute power cp ∈ [Cmin

i , . . . , Cmax
i ] and the comput-

ing cost dp ∈ [Dmin
i , . . . , Dmax

i ]. The reputation manage-
ment scheme Fi is a function that is invoked by the scheduler
each time a computation that p was involved in terminates
and sets a new value for rp based on its old value and all
returned results for the compute task.

In the case of home machines, standard cloud nodes, and
fully trusted cloud nodes, each of the above forms a group.
For the fully trusted nodes Ri = 1 and Fi(∗) = 1. Further,
Dmin
i > Dmax

k for any other k, i.e., they are the most ex-
pensive nodes. However, Cmax

i < Cmin
k when k is standard

cloud nodes, as trusted hardware is assumed to be slower
than commodity one.

At the other end, in the desktop group, Ri < Rk for any
other group k, i.e., these nodes are the least trusted. Also,
Dmin
i ≤ Dmax

i << Dk for any other k, i.e., using these nodes
is very cheap compared to the others.

Several works explored the reputation management schemes
(Fis) and its effectiveness, e.g., [4, 18, 26, 28]. For lack of
space, we defer exploring the impact of Fi to future work.
In particular, the simulations in Section 6 assume that each
node has a fixed reliability level.

4. PROBLEM STATEMENT
We present two variations of an optimization problem.

Specifically, the goal of the scheduler is to submit each task
to one or more compute nodes such that the reliability level
of the result is equal or greater to a given threshold ρ. In one
variant of the problem, each application, composed by a set
of tasks, gets a maximum budget allocation, and the sched-
uler needs to minimize the expected latency until obtaining
a correct answer. In the other variant, the application has
a maximal latency and the scheduler needs to minimize the
cost of the computation. Yet, in order to rigorously state
the problem definitions, we must first develop adequate ter-
minology. In the definitions below, for simplicity of presen-
tation, we ignore the transmission times of messages.

4.1 Framework and Terminology



4.1.1 Schedules
Given a compute task τ , a schedule Γτ is a sequence of

tuples {< ti, pi >} representing a time ti and a compute
node pi such that for each two tuples < ti, pi > and <
tj , pj > in Γτ , if pi 6= pj and < ti, pi > appears before
< tj , pj > in Γτ then ti ≤ tj . Intuitively, the schedule
indicates the starting time of the task on each compute node.

Since we assumed that each task τ has a normalized com-
pute time Tτ and each node p has a compute power cp, each
tuple in Γτ is implicitly associated with a time t′i = ti + Tτ

cp

such that if p is correct, the scheduler is guaranteed to ob-
tain a reply from p by t′i. In fact, if no reply is received by
t′i, then p is assumed to be faulty.

4.1.2 Reply Sequences
Suppose τ is sent to various compute nodes according to

Γτ . The replied values can be represented by a sequence
VΓτ of tuples < t′i, vi > where vi is the corresponding reply
value arriving at time t′i. If a reply does not arrive in time,
the matching vi is set to ⊥. In case pi is correct, vi is the
correct reply. A reply value sequence VΓτ is called complete
if for each tuple in Γτ there is a corresponding tuple in VΓτ

and is said to be partial if it is a prefix of a complete reply
sequence.

4.1.3 Runs
Next, we define a boolean stopping function ST (VΓτ ) =

[true, false]. Intuitively, this function enables the sched-
uler to stop the schedule prematurely, before contacting all
nodes indicated by the schedule, whenever the replies ob-
tained so far meet the condition indicated by the stopping
function. To that end, we define a stoppable schedule to be
the combination of a schedule and a corresponding stopping
function. Hereafter, we only deal with stoppable schedules.
Hence, whenever we write schedule, we in fact mean stop-
pable schedule.

A (partial) reply sequence VΓτ is called minimal if ST (VΓτ ) =
true and for each prefix V ′ of VΓτ , ST (V ′) = false. Each
combination of a schedule and a minimal reply sequence de-
fines a run σ.

4.1.4 Latencies and Budgets
Let < t1, ∗ > be the first tuple in a schedule of a run σ and

let < tk, ∗ > be the last tuple in the matching reply sequence
of σ. We define the latency of σ (denoted Lσ) to be tk − t1.
Similarly, we define the budget spent during σ (denoted Bσ)
as the total cost of all compute nodes whose replies appear
in the corresponding reply sequence VΓτ . That is, let Sσ be

this set of compute nodes. We then have Bσ =
∑
p∈Sσ

Tτdp
cp

.

4.2 Two Families of Problems
We define two families of dual optimizations problems. In

the first, latency must be kept below a given bound while
the budget should be minimized. In the second, the budget
must be kept below a given bound while latency should be
minimized.

4.2.1 Bounded Latency
Given a task τ , a latency threshold ∆τ and reliability

threshold ρτ for task τ , the scheduler’s goal is to find a
schedule Γτ minimizing the corresponding budget B(Γτ ) for
computing τ while obtaining an answer whose reliability is

above ρτ and the latency L(Γτ ) is at most ∆τ time (assum-
ing feasible).

4.2.2 Bounded Budget
Given a task τ , a budget threshold Φτ and reliability

threshold ρτ for task τ , the scheduler’s goal is to find a
schedule Γτ minimizing the corresponding latency L(Γτ ) for
computing τ while obtaining an answer whose reliability is
above ρτ and the budget B(Γτ ) is at most Φτ (assuming
feasible).

As mentioned before, due to lack of space, in this paper
we focus on solving the bounded latency problem.

5. GREEDY BOUNDED LATENCY
In this section, we present several variants of scheduling

protocols addressing the bounded latency problem. The first
set of protocols always attempt to find a schedule from the
same group of nodes (home, cloud, or trusted) in an iterative
manner. Conversely, the other protocol employs an adaptive
mechanism in which it considers all groups and chooses the
cheapest option that still ensures timely termination.

5.1 Single Group Protocols
We identify three protocols in the single group category,

nicknamed scrooge, moderate, and cautious. The only dif-
ference between these protocols is in the group of processes
from which each of these protocols looks for its candidate
nodes; scrooge only utilizes home nodes, moderate only ac-
cesses standard cloud nodes, while cautious only fully trusted
nodes.

In all three protocols, the scheduler invokes the following
iterative loop, as outlined in Algorithms 1, 2, 3, and 4: First,
it looks for the cheapest set of available nodes from the cor-
responding group (home, standard cloud, or trusted) such
that the probability that all of them are Byzantine is below
the required reliability threshold and the maximal latency of
any of them for the given compute task is below its latency
requirement. The task is then sent to all chosen nodes to be
computed and the scheduler waits until it receives either a
reply from all of them or a timeout equal to the longest ex-
pected latency has passed. If all replies have arrived and all
have the same value, then the scheduler returns this value.

Otherwise, suppose some value v has appeared in the max-
imal number of replies (breaking symmetry arbitrarily). The
scheduler looks for another set of processes such that if they
all return v, then the probability that v is the correct value is
above the required threshold. Here again, the cheapest pos-
sible set that meets the remaining latency deadline is chosen.
This process repeats until either the probability that some
returned value is correct meets the reliability threshold, or
it is not possible to find additional nodes that can compute
the task within the required deadline.

To understand the calculation for ExtraNeeded in Algo-
rithm 1, let’s denote ProbCorrectV by A, AllByzantine by
C, and the calculation

∏
pi∈S1

(1 − ri) by D. Obviously,

we can write A = (1 − D)C. Similarly, we can write q =
(1 − DX)C where X is the probability that all nodes in
the added set (that is required) are Byzantine. In other
words, 1 − DX is the probability that the combined set of
existing nodes that support v and all added nodes will in-
clude at least one correct node. Using simple algebra, we get
that X = C−q

C−A , or as written in Figure 1, ExtraNeeded =



Algorithm 1 Probabilistic Functions

1: // Returns true if the probability that all nodes in S are Byzan-
tine is ≤ q

2: function AllByz(S, q)
3: return

∏
pi∈S

(1− ri) ≤ q
4:
5: // Returns the probability that at least one of the nodes in values

whose value is v is correct and all nodes proposing other values
are Byzantine

6: // Also, return the needed probability from additional set of sup-
porters of v to ensure that v is correct if not already obtained

7: function ProbCorrectValue(v, values, q)
8: if v == ⊥ then
9: return (0,0)

10: S1 = {pi|(vi, pi) ∈ values
∧
vi == v}

11: AtLeastOneCorrect = 1−
∏
pi∈S1

(1− ri)
12: S2 = {pi|(vi, pi) ∈ values

∧
vi 6= v}

13: AllByzantine =
∏
pi∈S2

(1− ri)
14: ProbCorrectV = AtLeastOneCorrect · AllByzantine
15: if ProbCorrectV < q then

16: ExtraNeeded = AllByzantine−q
AllByzantine−ProbCorrectV . See explanation

in text
17: return (ProbCorrectV ,ExtraNeeded)
18: else
19: return (ProbCorrectV , 0)

AllByzantine−q
AllByzantine−ProbCorrectV

.

5.2 The Adaptive Protocol
As before, in the adaptive algorithm too we allow multiple

sequential invocations of the task until some returned value
obtains enough reliability to be considered the correct reply
value. However, here we allow to switch between the differ-
ent groups of nodes (home, cloud, trusted). That is, home
nodes are the cheapest, but may not be able to provide a
reliable answer within the deadline due to their low reliabil-
ity. Trusted nodes always return a correct answer, but are
expensive and scarce, and hence are likely to run out if we
insist on only using them. Cloud nodes are more reliable
than home nodes, but might still fail and are considerably
more expensive than the home nodes.

Hence, we start with the cheapest set among all groups
that is likely to produce a correct result. But, this time,
we reserve enough latency so that in the worst case, we can
resort to a trusted node, or to at least a collection of cloud
nodes, in order to ensure reliable termination.

Obviously, trying all possible combinations of nodes to
determine the optimal one is too expensive. Hence, in each
iterative step we always select sets of nodes from the same
Gi group. Moreover, we identify a few subsets in each group
and try combinations of these subsets such that the total
latency is below the threshold while the ensured reliability
is above the threshold. We then choose the set whose cost
is minimal among them.

Specifically, in each iteration we first identify the cheap-
est and fastest available trusted nodes that can compute Tτ
within the remaining deadline ∆′. Obviously, in the first it-
eration, the above is done w.r.t. the entire deadline, i.e.,
∆′ = ∆. Denote the faster of these nodes pFT and the
cheaper pET (so F stands for fast and E for economic and
T for trusted). Similarly, denote the latency and budget
that would be spent when executing on pFT by LFT and BFT
respectively. In symmetry, denote the latency and budget
that would be spent when executing on pET by LET and BET
respectively.

Considering these two latencies, we now identify sets of

Algorithm 2 Helper Functions

1: // Add the corresponding budget and latency to a schedule
2: function FleshOut(S, T )

3: budget =
∑
pi∈S

Tdi
ci

4: latency = maxpi∈S
T
ci

5: return (S, budget, latency)

6:
7: // Find a set that can compute T fast enough whose members

satisfy the required reliability
8: function FindSet(G, T,∆, q)
9: cands = {pi ∈ G|T/ci ≤ ∆} . find all nodes that are fast

enough
10: if cands == ∅ then
11: raise no_schedule_found
12: else
13: sets = {Si ⊆ cands| AllByz(Si, q)} . All possible sets

14: finalists = {Si ∈ sets|
∑
pi∈Si

Tτdi
ci

is minimal in sets}
. Filter for the cheapest

15: if finalists == ∅ then
16: raise no_schedule_found
17: else
18: return FleshOut(first(finalists, T )) . Return one of

the cheapest

19:
20: // Send T to all members of set and wait for replies
21: function ScheduleStep(set, T, latency)
22: foreach pi ∈ set send(pi, T )
23: wait for replies from each pi ∈ set or timeout after latency

time
24: replies = set of tuples (vi, pi) of replied values and corre-

sponding nodes who returned these values
25: for nodes pi that failed to return any value by the latency

timeout, the value is vi = ⊥
26: return replies

standard Cloud nodes that can potentially compute Tτ with
the required reliability (if all return the same value) within
∆′F = ∆′−LFT and ∆′E = ∆′−LET , respectively. For each of
these corrected latency bounds, we search for the cheapest
and fastest sets of cloud nodes. Denote these sets of cloud
nodes SFFC , SFEC , SEFC , and SEEC . Similarly, we denote the
corresponding latency and budget to be spent by each of
these sets by LFFC , BFFC , LFEC , BFEC , LEFC , BEFC , LEEC and
BEEC .

Finally, for each of the above latencies, we identify sets
of home nodes that can potentially compute Tτ with the
required reliability level (if all return the same value) within
∆′FF = ∆′F − LFFC , ∆′FE = ∆′F − LFEC , ∆′EF = ∆′E − LEFC ,
and ∆′EE = ∆′E − LEEC , respectively. Here, it is enough
to identify the cheapest such sets of home nodes, denoted
SFFH , SFEH , SEFH , and SEEH . Their corresponding latency
and budget are denoted LFFH , BFFH , LFEH , BFEH , LEFH , BEFH ,
LEEH and BEEH .

Considering pFT = SFT and pET = SET , once we have all the
10 sets, the scheduler picks the one whose budget is small-
est, sends the computation to that set and waits either for all
replies or a timeout.The scheduler then checks if some value
has enough support to be deemed correct with the required
reliability threshold. If yes, then this value is returned. Oth-
erwise, the scheduler continues to the next iteration. The
pseudo-code for this protocol appears in Algorithms 5 and 6.

6. EVALUATION
We evaluate our algorithms and show the advantage of the

adaptive approach. Our experiments consist of simulating
the various protocols described in Section 5 along the met-
rics defined in Section 6.1 below. The parameters for the



Algorithm 3 Parameterized Single Group

1: // Schedule T whose deadline is ∆ on nodes from G with relia-
bility ≥ ρ

2: function Schedule(G, T,∆, ρ)
3: values = ∅
4: reqrel = 1− ρ
5: loop
6: try (set, budget, latency) = FindSet(G, T,∆, reqrel)
7: catch no_schedule_found raise no_schedule_found
8: values = values

⋃
ScheduleStep(set, T, latency)

9: if |values| == 1
∧

this value 6= ⊥ then
10: . If all nodes replied the same value, return it
11: return first(first(values))
12: else
13: . If the

probability that the majority value v is correct is high enough,
return it. Otherwise, try collecting additional answers from the
cheapest set of additional nodes from G such that they can return
the reply in the remaining time before the deadline and if they
all return v as well, it will be certain that v is correct

14: v = the most frequent value in values
15: ∆ = ∆− latency
16: (rel, reqrel) = ProbCorrectValue(v, values, ρ)
17: if rel ≥ ρ then
18: return v

Algorithm 4 The Specific Single Group Instances

1: function Scrooge(Tτ ,∆τ , ρ)
2: return Schedule(GH, Tτ ,∆τ , ρ)

3:
4: function Moderate(Tτ ,∆τ , ρ)
5: return Schedule(GC, Tτ ,∆τ , ρ)

6:
7: function Cautious(Tτ ,∆τ , ρ)
8: return Schedule(GT , Tτ ,∆τ , ρ)

simulations are detailed in Section 6.2.

6.1 Metrics
We define the following metrics for comparing the perfor-

mance of the various protocols: (i) Budget (financial cost):
the total budget actually spent by the protocol; (ii) Com-
pletion time (response time): The overall completion time
of the application; (iii) Computation time: The difference
between the time a task is submitted and the time it re-
sponds (both the average and the distribution); (iv) Task
deadlines satisfaction (fail ratio): Percentage of task dead-
lines that were satisfied w.r.t. latency (deadline) and relia-
bility constraints. A failure of a task is due either to wrong
answers from Byzantine nodes which delay the response time
or an overload of compute nodes; (v) Distribution of sched-
uled nodes: The total number of home, standard cloud, and
fully trusted nodes used by each of the protocols; (vi) Sched-
uler compute time: The amount of CPU time used by the
protocol to schedule all the tasks. This metric indicates the
computational complexity of the protocol, which is impor-
tant for scalability.

6.2 Simulation setup
Our simulations are conducted with Matlab1. Since the

proposed algorithms need to compute all subsets of nodes
that satisfy a criteria of cost and/or time which may lead to
a combinatory explosion, an exhaustive search of all subsets
is too costly. For instance, assigning 1,000 tasks with nor-
malized duration of 180 seconds to 300 nodes by the Moder-
ate algorithm takes 2887 seconds on a 2 cores Intel core I7 at

1http://mathworks.com/

Algorithm 5 Helper Function for Adaptive Algorithm

1: // Returns the fastest and cheapest sets of nodes from group G
than can compute T with reliability ≥ ρ and latency ≤ ∆

2: function Find2Sets(G, T,∆, ρ)
3: cands = {pi ∈ G|T/ci ≤ ∆} . Find qualifying nodes in G
4: if cands == ∅ then
5: return {(∅, 0, 0), (∅, 0, 0)}
6: else
7: . Identify the cheapest set, break ties arbitrarily
8: sets = {Si ⊆ cands| All-

Byz(Si, ρ)}
∧
Siis minimal such set}

9: cheapests = {Si ∈ sets|
∑
pi∈Si

Tdi
ci

is minimal in sets}
10: if |cheapests| > 1 then
11: cheapest = Si|minpi∈Si ci is maximal in cheapests .

break symmetry arbitrarily
12: else
13: cheapest = first(cheapests)

14: . Identify the fastest set, break ties arbitrarily
15: fastests = {Si ∈ sets|minpi∈Si ci is maximal in sets}
16: if |fastests| > 1 then

17: fastest = Si|
∑
pi∈Si

Tdi
ci

is minimal in fastests .

break symmetry arbitrarily
18: else
19: fastest = first(fastests)

20: . Return found sets with their budget and latency
21: if cheapest == fastest then
22: return {FleshOut(cheapest, T ),(∅, 0, 0)}
23: else
24: return {FleshOut(cheapest, T ),FleshOut(fastest, T )}

1.8GHz. Inspired by the power of two random choices [22],
we circumvent this combinatorial explosion by random sam-
pling of subsets and then choosing among them the one that
satisfies the criteria. For instance, the 10 sampling version
of the Moderate algorithm generates results which are 93%
close to the original algorithm’s in less than 0.5 second. Con-
sequently, the performance results shown here correspond to
the modified versions of our algorithms that use a 10 random
sampling.

Nodes setting. We consider 3 sets of nodes (Trusted, Cloud,
and Home). Each of them is associated to some computing
power and financial cost per hour.

Trusted nodes. These secure cloud nodes do not need
replicated execution. Alas, they are more expensive and
slower than Cloud nodes. Each Trusted node has the pro-
cessing power of a medium Home node with 8 ECUs (EC2
Computing Units). One ECU provides equivalent CPU ca-
pacity of 1.0-1.2 GHz 2007 Opteron. A Trusted node cost
corresponds to a high power node in Amazon (c4.8xlarge),
which is 1.763 dollars per hour according to EC2 pricing
(https://aws.amazon.com/ec2/).

Cloud nodes. These cloud nodes are less secure but more
powerful than Trusted nodes. In our simulations, Cloud
nodes consist of three types of EC2 Amazon nodes from
medium to high computing performance (c4.large, c4.xlarge,
and c4.2xlarge instances) corresponding to Intel Xeon E5-
2666v3 with 8, 16, and 31 ECUs respectively. The EC2
computing cost per hour for these node types is 0.11, 0.22,
and 0.441 dollars respectively.

Home nodes. These home nodes are cheaper and less
trusted than the other two kinds of nodes. Their compute
power varies from 2 to 16 equivalent ECUs (2, 4, 8, and 16).
To estimate their cost, we consider their electric consump-
tion. We assume that each node consumes 100 Watt per
hour and that the cost of energy is between 10 and 40 cents
per KW/h (the average cost of energy in north America and



Algorithm 6 Adaptive Algorithm

1: Main code:
2: values = ∅
3: reqrel = 1− ρ
4: loop
5: (SET , B

E
T , L

E
T , S

F
T , B

F
T , L

F
T ) = Find2Sets(GT , Tτ ,∆, reqrel)

6: (SEEC , BEEC , LEEC , SFEC , BFEC , LFEC ) = Find2Sets(GC, Tτ ,∆−
LET , reqrel)

7: (SEFC , BEFC , LEFC , SFFC , BFFC , LFFC ) = Find2Sets(GC, Tτ ,∆−
LFT , reqrel)

8: (SEEH , BEEH , LEEH ,−,−,−) = Find2Sets(GH, Tτ ,∆ −
LEEC , reqrel)

9: (SEFH , BEFH , LEFH ,−,−,−) = Find2Sets(GH, Tτ ,∆ −
LEFC , reqrel)

10: (SFEH , BFEH , LFEH ,−,−,−) = Find2Sets(GH, Tτ ,∆ −
LFEC , reqrel)

11: (SFFH , BFFH , LFFH ,−,−,−) = Find2Sets(GH, Tτ ,∆ −
LFFC , reqrel)

12: set = S ∈ {SET , S
F
T , S

EE
C , SFEC , SEFC , SFFC , SEEH , SEFH , SFEH , SFFH }|

S 6= ∅
∧

the corresponding budget is minimal
13: . LS denotes the latency of S
14: if set == ∅ then
15: raise no_schedule_found

16: values = values
⋃

ScheduleStep(set, Tτ ,LS )
17: if |values| == 1

∧
this value 6= ⊥ then

18: . If all nodes replied the same value, return it
19: return first(first(values))
20: else
21: . If the

probability that the majority value v is correct is high enough,
return it. Otherwise, try collecting additional answers from the
cheapest set of additional nodes from G such that they can return
the reply in the remaining time before the deadline and if they
all return v as well, it will be certain that v is correct

22: v = the most frequent value in values
23: ∆ = ∆− LS

24: (rel, reqrel) = ProbCorrectValue(v, values, ρ)
25: if rel ≥ ρ then
26: return v

Europe). Their resulting costs are 0.01, 0.015, 0.02, and 0.04
dollar per hour.

For our simulation experiments, we consider an environ-
ment with 5,000 Home nodes, 500 Cloud nodes, and 50
Trusted nodes. In particular, there are 10 times more Home
nodes than Cloud nodes and 10 times more Cloud nodes
than Trusted nodes. Further, the percentage of Byzantine
nodes in the Home nodes group is higher than in the Cloud
nodes group while correct nodes in the latter have higher
reputation than in the former. Table 2 summarizes our
nodes setting for the three groups of nodes. In the table,
the reputation value of correct is denoted r and Byzantine
nodes rb, while the percentage of Byzantine nodes is denoted
b.

Trusted nodes Cloud nodes Home nodes

Number 50 500 5000

ECU 8 8/16/31 2/4/8/16

Cost ($/h) 1.763 0.11/0.22/0.441 0.01/0.015/0.02/0.04

b 0 5% 15%

r N/A 0.99 0.95

rb N/A 0.2 0.1

Table 2: Hybrid cloud configuration

Application setting. We consider a bag of tasks (BoT) ap-
plication representative of private Home Grid deployments [14].
The reliability threshold is ρτ = 0.999.

We generated two scenarios with different loads with re-

Workload # tasks mean stddev min max

low 5,000 179.9923 4.1528 162.307 194.5323
high 20,000 180.0023 4.1274 162.307 196.209

Table 3: Workload configurations

Algorithm Time (sec) Cost ($) Sched. time (sec.) fail ratio

Cautious 476.98 11.588 0.041 79 %

Moderate 477.32 11.979 0.555 0.38 %

Scrooge 454.79 3.189 2.153 0 %

Adaptive 443.77 2.884 5.683 0%

Table 4: Time and cost for protocols with low load

gard to the number of concurrently submitted tasks: low
load (5,000 tasks) and high load (20,000 taks), as summa-
rized in Table 3. The duration of tasks follow a normal
distribution with a mean duration around 180 seconds on
one ECU. Both the mean duration of tasks and the stan-
dard deviation are set to be the same as the ones of BoT
application deployed on the Home Grid of the University of
Notre Dame [27]. The deadline of every task is 2.5 times the
completion time on one ECU.

6.3 Low workload evaluation
Table 4 summarizes the cost, completion time, fail ratio,

and the time spent by the scheduler for the four algorithms.
We observe that Scrooge has the lowest cost among the sin-
gle group algorithms. Scrooge is competitive since its nodes
are cheap and abundant so they can easily handle the load
within the deadline constraints. Moderate and Scrooge allo-
cate additional nodes when wrong responses are received: on
average, a task is replicated 4.225 times in the case of Home
nodes and 2.227 times in the case of Cloud nodes. On the
other hand, even if Trusted nodes are never replicated, they
cannot ensure the execution deadline of most of the tasks.
The adaptive protocol also succeeds to execute all the tasks
within their deadline. Compared to the cheapest single pro-
tocol, i.e., Scrooge, the response time for the application is
2.48% lower. However, even if the cost of the adaptive pro-
tocol is 10.58% smaller than Scrooge, we cannot conclude
that the adaptive protocol is always the cheapest since the
difference of costs is due to the heterogeneity of nodes and
the load distribution.

Table 5 shows the distributions of load in terms of the
number of tasks executed by nodes of different groups. A
Trusted node executes 21 tasks and then fails to satisfy dead-
lines. The load is unbalanced in both Cloud and Home nodes
since the power of nodes is highly heterogeneous. Powerful
nodes execute a large number of tasks. In both Scrooge
and Adaptive, Home nodes are not used since the number
of tasks is relatively low.

Figure 2 gives the computation time of each task. We
observe that only 1,050 tasks are completed before their

Algorithm # nodes mean stddev min max

Cautious 50 21 0 21 21
Moderate 500 22.186 11.8977 1 41
Scrooge 4408 4.225 3.5449 0 24

Adaptive 3375 4.232 4.3195 0 31

Table 5: Distribution of tasks on nodes with low load



Algorithm Time (sec) Cost ($) Sched. time (sec.) fail ratio

Cautious 476.98 11.588 0.115 94.75 %

Moderate 485.35 16.594 1.476 66.23 %

Scrooge 492.94 11.064 3.770 14.04 %

Adaptive 471.52 17.816 13.391 0 %

Table 6: Time and cost with high load

Algorithm # nodes mean stddev min max

Cautious 50 21 0 21 21
Moderate 500 30.358 11.997 10 65
Scrooge 4999 14.413 8.4422 0 39

Adaptive
Trust set 45 2.32 1.53 0 7
Cloud set 377 12.38 8.17 0 31
Home set 4949 14.56 10.29 0 40

Table 7: Distribution of tasks on nodes with high load

deadline in the Cautious algorithm, the Moderate algorithm
fails to complete 19 tasks, and only Scrooge and Adaptive
succeed in completing all tasks. In the adaptive approach,
we observe that Trusted and Home nodes execute all the
tasks, i.e., no task is assigned to nodes of the Cloud group.
Interestingly, even in the relatively low load configuration,
the application benefits from the adaptive algorithm since it
distributes the load among the cheapest nodes but assigns a
task to a Trusted node whenever the execution of this task
cannot be performed on the Home group.

6.4 High workload evaluation
Table 6 summarizes the results with heavy load. Since

there is no sharing of tasks between the three groups for the
single group approach, the three algorithms fail to complete
the deadline for a large number of tasks. Having a higher
number of nodes (20,000), Scrooge is clearly the most effi-
cient with regard to fail deadline ratio. However, costs are
not representative since the algorithms do not succeed in ex-
ecuting all the tasks. The average costs in dollars per sched-
uled tasks are 0.011, 0.0025, 0.00064 in Cautious, Moderate,
and Scrooge respectively. The adaptive algorithm succeeds
in executing all the tasks within their deadline. Compared
to the single group algorithms, the response time for the ap-
plication is lower than Scrooge and the global cost is higher
since all tasks are scheduled. The average cost per task is
0.00089 dollars. The cost per task is 38,4% higher than with
Scrooge since the adaptive scheduler needs to use expensive
Trusted nodes in this scenario.

Table 7 provides the tasks distribution per node for each
group. The load distributions are similar to the low load sce-
nario. The algorithms favor choosing powerful nodes; even if
the latter are more costly, they succeed more often to com-
plete tasks within the deadline. Thus, their short response
time reduces costs. Notice that the adaptive algorithm uses
all three sets of nodes.

Figure 3 shows the computation time of each task. In the
single group approach, a large number of tasks cannot meet
their deadline and are, thus, not scheduled. As shown in Fig-
ure 3(a), after 1,000 tasks, no other task is scheduled by the
Cautious protocol. The gaps without load after the number
of scheduled tasks reaches 5,500 in Figure 3(b) indicate that
many tasks could not be scheduled in the Moderate protocol.
Some tasks, denoted “faulty tasks”, are scheduled on Cloud
and Home nodes but fail to meet their deadline because
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of the high number of additional nodes needed to obtain
enough correct answers. Among the 6, 753 tasks it schedules,
Moderate generates 173 faulty tasks (2.56%) while Scrooge
generates 332 faulty tasks among its 17, 253 scheduled tasks
(1.92%). Figure 3(d) gives the computation time of each
task with Adaptive. We observe that Trust nodes start par-
ticipating in the computation after 8,000 scheduled tasks.
After 15, 000 tasks, Trust and Home nodes become over-
loaded and then tasks are mainly scheduled on the nodes of
the Cloud group. Ultimately, 17, 308 tasks are scheduled on
Home nodes, 2, 692 on Cloud nodes, 116 on Trusted nodes.
Among these tasks, 109 are “hybrid”, i.e., replicated both
on Home and Trusted nodes. Figure 4 gives the cumulative
number of replicas associated to each set.

7. CONCLUSION
We have explored a hybrid computing model composed of

groups of home, standard cloud, and trusted cloud nodes,
where each node has a given computing speed, monetary
cost, and reliability reputation. We presented four protocols
(Scrooge, Moderate, Cautions, and Adaptive) for scheduling
tasks in such environments aiming at ensuring BoT applica-
tions’ requirements in terms of bounded latency and reliabil-
ity, while minimizing their spent budget. All protocols were
evaluated by simulation under both low and high workloads.

Performance results show that in both workloads, Scrooge
(resp., Cautious) is the cheapest (most expensive) and has
the smallest (resp., the highest) task deadline fail ratio. Yet,
it takes more (resp., less) time to schedule tasks since, due to
the low (resp., high) reputation of the home (resp., trusted)
nodes, a single task must be submitted to more (resp., just
one) nodes. In contrast, in high workload, these metrics in-
crease, and Scrooge can no longer ensure all tasks’ deadlines.

In both workloads, all tasks are successfully scheduled by
Adaptive and meet their deadline since Adaptive distributes
the load among the cheapest nodes, but assigns tasks to
more reliable nodes whenever this task cannot be executed
in Home nodes. Further, its response time is slightly faster
than with Scrooge. Such good results confirm the advantage
of the adaptive protocol.

As future work, we intend to propose and evaluate proto-
cols for the Bounded Budget scheduling optimizing problem,
described in section 4.2. We also plan to investigate the im-
pact of different reputation management strategies on the
protocols’ performance.
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