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Abstract
This paper presents the performance evaluation of a

software fault manager for distributed applications.
Dubbed STAR, it uses the natural redundancy existing in
networks of workstations to offer a high level of fault
tolerance.  Fault management is transparent to the
supported parallel applications. STAR is application
independent, highly configurable and easily portable to
UNIX-like operating systems. The current implementation
is based on independent checkpointing and message
logging. Measurements show the efficiency and the limits
of this implementation.  The challenge is to show that a
software approach to fault tolerance can efficiently be
implemented in a standard networked environment.

1. Introduction

Few distributed computing environments offer fault
management using the natural redundancy of the
distributed system and requiring no specific hardware
support [1, 14, 17].  STAR was developed to add to the
filling of this gap and is built totally outside the operating
system.  It also answers to the challenge to show that
software fault tolerance can be efficiently implemented in
a standardized environment.

Checkpointing and rollback recovery are well-known
techniques to provide fault  tolerance in distributed
systems [11, 12, 13]. With coordinated checkpointing,
processes coordinate their checkpointing actions such that
the collection of checkpoints represents a consistent state
of the whole system [5].  When a failure occurs, the
system restarts from these checkpoints.  Looking at the
results of [2], [7], and [13], the main drawback of this
approach is that the messages used for synchronizing a
checkpoint are an important source of overhead.  In
independent checkpointing, each process independently
saves its state.  Because processes do not synchronize
themselves for checkpointing, this method generally

provides low run-time overhead. However, since the set
of checkpoints may not define a consistent global state,
the failure of one process may lead to the rollback of
other processes (well-known as the domino effect [5]).

In the STAR implementation, an independent
checkpointing mechanism is used to recover processes [4,
16, 21]. Our recovery protocols are based on message
logging [4, 8, 10, 19] to avoid the domino effect.   In the
general approach, processes log their received messages.
A process may recover by restarting from its last
checkpoint and then replaying from the log the sequence
of messages it originally received. We also present an
evaluation of  optimistic message logging  [1, 18, 20]
where received messages are buffered in volatile storage
and logged to stable storage asynchronously.  Unlike
pessimistic message logging, this approach allows a
process to continue execution before the message is
logged.

To improve the response time of fault-tolerant
applications, STAR includes several optimizations. First,
it implements non-blocking and incremental
checkpointing to perform an efficient backup of process
state.  Secondly, we developed an optimized stable
storage based on replicated file system. It appears from
other works and our experience, that these optimization
methods are very important [7]. These techniques lead to
a drastic reduction of the overhead for classical parallel
applications.

STAR was implemented on a set of Sparc stations
connected by Ethernet.  The results demonstrate that
independent checkpointing is an efficient approach for
providing fault tolerance for the chosen applications,
namely long-running ones with small message exchanges.
We show that a software based fault tolerant management
is an interesting alternative to specialized hardware or
kernel-integrated fault tolerance.  Results from [13,14] as



well as our own instrumentation of several parallel
applications corroborate this claim.

The remainder of this paper is organized as follows.
Section 2 presents the application, environment and
failure models.  Sections 3 and 4 describe the mechanism
of failure detection and the process recovery
strategy.   Our implementation of the stable storage is
presented in section 5.  Then, Section 6 gives the
performance of STAR in a real academic environment.
We conclude in Section 7.

2. Environment

STAR manages fault of processes already allocated by
an allocation manager. To provide a complete
management of parallel applications STAR was integrated
in the Gatos process allocation manager [9].  An
application is a dynamic set of communicating processes
which may use any resource of the network (mostly CPU
and files).  The only way to exchange information
between processes is through message passing.  A further
assumption is made that processes involved in the parallel
computation are deterministic.  The state of a process is
determined by its starting state and by the sequence of
messages it has received [5].  This assumption is met by
many applications, but excludes for example all programs
relying on the values of the local time.  To handle some
nondeterminism, we can extend the message logging
scheme by treating each nondetermisnistic function as a
message, logging it and replaying it during recovery [8].

User applications rely on a fault-tolerant software
layer providing a reliable access to all external
components (processes and files).  This layer allows the
recovery of processes affected by a host failure in a
transparent way on any remaining valid and compatible
host. It provides a global naming space for processes and
files independent of the location.  The STAR
communication protocol relies on this global naming
space to find the location of the target process.  This
knowledge is updated after each process recovery.

STAR lies on top of a Unix operating system including
network facilities (SunOS). It works on a set of
workstations (hosts) connected by a local area network
(Ethernet).  We assume that the underlying transport layer
provides rel iable, sequenced point-to-point
communication.  The system is composed of fail-silent
processors where a failed node simply stops and all the
processes on the node die.

STAR consists of a set of servers and a client library.
There are three main servers: the recovery server in
charge of failure management, the file server
implementing the stable storage by means of replicated
files, and the communication server managing
interactions between application processes.

Each application program must be linked to the STAR
library which contains the following functions

• Checkpoint and restoration: the checkpoint
function is either periodically called or explicitly
indicated in the source code.  When a process is
restarted the restore function is automatically
called.

• File access functions: these functions provide a
Unix-like interface to the STAR file manager.

• Communication functions: these functions allow
reliable message exchanges implementing message
logging strategies.

3. Failure Detection

The software approach to detect a host crash is often
realized by using the normal communication traffic.  This
method has no overhead, in terms of number of messages,
but the failure processing can only occur when one needs
to use the faulty host.  Thus, the recovery time in case of
failure can be very high.  Such a method only based on
normal communication traffic is not appropriate for a
fault manager.

Another solution consists in periodically checking the
hosts states [4].  The recovery is invoked as soon as a host
does not respond to the checker.  This technique allows a
fast recovery, but introduces an overhead in the network
traffic.  This overhead is proportional to the checking
rate.

STAR uses a combination of the two methods.  The
normal traffic is used as in the first method, but in
addition, when there is no traffic during a given time
slice, a specific detection message is generated.  A naive
implementation of this detection would be for each host
to check all other active ones.  This solution is not
suitable for complex systems with many hosts, since the
network would become rapidly overcrowded by detection
messages.  In order to get an efficient detection message
traffic, we organize all the hosts in a logical ring.
Periodically, each host only checks its immediate
successor on the ring.  The checking process is
straightforward and the cost in messages is very low.
However, to insure the coherence of the ring, a two-phase



reconfiguration protocol is executed when adding or
removing a host.  The cost of the reconfiguration protocol
is not significant since host crashes are uncommon
events.

On each host, the recovery server maintains a global
view of the ring. In case of failure, the predecessor of the
faulty host can locally determine its new successor.  Host
insertion in the ring is done in three steps: broadcast of an
insertion message, update of the global knowledge, and
transmission of the knowledge to the new host.  The new
host takes place in the ring according to its own host
identification.  This method supports an arbitrary number
of simultaneous failures

The implementation of the logical ring is as follows.
Each recovery server is linked to its predecessor and
successor using the TCP communication protocol.
Periodically, the server checks if a normal message has
been received from its successor.  If no message has been
received,  it sends a detection message to its successor.  If
this sending fails, the successor is considered faulty and
the server initiates the recovery step.  At present, we
make no attempt to detect individual process failures on a
node.  Future versions of the STAR software will handle
also finer-grained failures.

4. Process Recovery

The recovery step is invoked as soon as a failure is
detected. Processes affected by the failure are
immediately restarted on a valid host unlike some other
fault managers where processes can only be restarted after
the faulty host is rebooted (as in DAWGS [6] or Arjuna
[17]).  The process recovery in STAR is done by (1)
checkpointing process on a stable storage, (2) restarting
the process on a hardware compatible valid host, and (3)
redirecting communications to the new process location.

4.1. Checkpointing a single process

The checkpoint of a single process is a snapshot of the
process address space at a given time.  Each checkpoint is
saved on a stable storage capable of surviving to a given
number of host failures. To reduce the cost of
checkpointing, STAR's checkpoint mechanism uses both
incremental and non-blocking checkpointing.

The Unix fork() primitive provides exactly the
mechanism needed to implement non-blocking
checkpointing. When checkpointing, the STAR library
forks a child process which performs its context backup

while the parent process returns to executing the
application. The fork system call creates a new process
with the same address space as the caller. Many
implementations of fork use a copy-on-write mechanism
to optimize the copying of the parent's address space.

To perform incremental checkpointing, the new child
process compares through a pipe its address space with
the space of the child process created at the previous
checkpoint then it saves only data that have been
modified.  We show in Section 5 that these two
techniques considerably reduce the cost of checkpointing.
However, they require a larger amount of memory and
result in increased multiprogramming.

4.2. Recovery schemes for communicating
processes

When processes exchange messages, the simple
approach to recovery for independent processes is no
longer adequate.  In particular, attempts by individual
cooperating processes to achieve backward error recovery
can result in the well-known domino effect [15].

The current implementation of STAR is based on
independent checkpointing with message logging.  This
technique is tailored to applications consisting of
processes exchanging small streams of data.  This method
totally suppresses the domino-effect and consequently
only one checkpoint is needed for each process. We have
implemented pessimistic and optimistic message logging
to allow application designers to choose the logging
algorithm according to their application requirements.

These benefits are obtained at the expense of the space
and time required for logging messages.  The space
overhead is reasonable given the current large disk
capacities.  Furthermore, at each new checkpoint all
messages are deleted from the associated backup (a log is
completely deleted after each checkpoint).  The main
drawback is the Input/Output overhead (i.e., the latency
accessing the stable storage, see Section 6).

4.3 Communication management

The STAR communication protocol relies on the
confining principle: “a recovered process has no
interaction with the others until it reaches the last state
before the failure” and consequently avoids the domino
effect.  All communications done between the checkpoint
and the fault point are locally simulated.  Thus, any



process may be independently rolled back.  To comply
with this principle, we use the following techniques:

• Each process saves all input messages (message
logging, see Section 4.3).  A recovered process
refers to this backup to access old messages. Thus,
old valid senders are not concerned by the recovery
of a process.  All requests to receive messages are
transparently transmitted to the local fault-tolerance
layer.  This layer directly accesses the backup or
waits for messages according to the process state
(recovered or not).  At the process level there is no
difference between receiving a message from the
network or from the backup.

• Because processes are deterministic, a recovered
process sends again all messages since its last
checkpoint.  A timestamp on each message allows to
detect these retransmissions.  Each message has a
unique timestamp and is retransmitted with the same
timestamp in case of failure.  The fault-tolerant layer
detects the retransmission by comparing the
timestamp of a message with the stamp of the last
transmitted message to discard already received
messages.

In the optimistic scheme, messages are not directly
saved on the stable storage but are kept on the main
memory of the sending host. Periodically (when
MaxTransit messages have been sent), the sending
host asynchronously saves all messages on the stable
storage.  In case of failure, messages addressed to faulty
processes are found either on the stable storage or on the
main memory of the sending hosts.  STAR also provides a
sender-based algorithm where all messages are kept in the
sending queue and are never saved on stable storage.

5. Stable Storage

Stable storage is a key feature in a fault manager.  In
STAR, a reliable file manager implements stable storage.
It is used for file accesses, message backups and
checkpoint storage.

In STAR, each file is replicated on separate disks on
different hosts.  The number of replicated copies is
maintained in case of failure (obviously, only if the
number of remaining disks is sufficient).  Because
failures are uncommon events, only a small number of
copies is usually necessary (usually 2 for a network of 20
involved workstations).  This number is set by the

network administrator or by the application designer
according to the fault tolerance and performance
requirements.  To ensure consistency of all copies, the file
manager performs a reliable broadcast protocol [3].  A
file update is reliably broadcast to all managers having a
copy.  A read operation is locally done whenever
possible.

A reliable file is composed of a set of standard UNIX
files replicated on a set of disks. On each host where
copies are present, a file server manages accesses to
copies.  When a file server host fails, the files are copied
from a valid host to a new file server thus maintaining the
initial replication degree.

Performance of STAR directly depends on the stable
storage management.  To provide an efficient replicated
file access, we take advantage of the pseudo-parallelism
offered by the underlying system.  Any access to a remote
file server is achieved by a specific process located in the
client host: the file server proxy.  One proxy is associated
with each remote server.  Local clients and proxies
exchange information through a local shared segment of
memory.  When a client wants to send a request to N
servers, it puts the request arguments in the local memory
and wakes up the proxies corresponding to the remote
servers.  Then, proxies read and transmit the request in a
pseudo-parallel way.

6. Performance Evaluation of STAR

Fig. 1 shows the performance of the STAR file system
(SFS) according to different replication degrees for
writing and reading a file of 1 Megabyte.  These measures
were done on a set of Sun 5 and 10 workstations with 32
Mb of memory.  A replication degree of 4 means that the
file is saved on 4 disks on 4 hosts.  We also illustrate the
performance of NFS when data are in cache or not.
Naturally, NFS measurements do not depend of the
replication degree. SFS read has not been optimized since
it is only used when recovering.  On the other hand, SFS
write is especially stressed since it is used during normal
running for checkpointing and message logging.  We see
that in every case SFS writing is very efficient compared
to NFS.  These good performances are essentially due to
the parallelization of servers accesses.
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Fig. 1: Performance of the Star File System

Fig. 2 illustrates the cost of the optimistic message
logging according to the size of the queue on the sending
host. 0 means that messages are directly saved on stable
storage before delivery.  500 means that messages are
queued at the sending host and are asynchronously saved
when the queue contains 500 messages. 0 queue size is
equivalent to the pessimistic strategy.  We also indicate
the time to send messages with the sender-based
algorithm where all messages are kept in the queue and
are never saved on stable storage.  These measures were
done for 1024 messages of one kilobyte transmitted
between two users processes. Messages are saved on two
different hosts.  The sender-based protocol seems more
efficient but in fact it uses too much memory to be
applicable in real applications.
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Fig. 2: Optimistic message logging cost

Additional experiments were run with STAR ported to
a Sun IPC network with an approximate computing power
of 12 VAX MIPS and 24 Mb of memory.  Figures 3 and 4
present the running times for two independent

checkpointing implementations: full checkpointing where
all data are written in stable storage and the process is
blocked until the checkpoint is over and incremental non-
blocking checkpointing where application continues
while the checkpoint is written on stable storage and the
amount of data to be written is reduced.  The cost of
checkpointing was measured with different replication
degrees (from 1 to 4) and with different process sizes
(from 100 to 1150 kilo-bytes).  Programs run with a 20
seconds checkpointing interval, a rather short interval.  In
practice, longer intervals should be used.  In that sense,
we overestimate the cost of checkpointing and we stress
the checkpoint mechanism.
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Fig. 3: Full checkpoint cost

Fig. 3 shows the cost of full checkpointing, where data
and stack segments are entirely copied on stable storage.
The process memory usage (i.e., process locality) is not
taken into account.  The cost linearly depends on the
process context size.  The time to save 1150 kilo-bytes on
four replicated files takes 10.3 seconds. This is about
three times slower than to write the same amount of data
on a single file (3.4 seconds).  The measured time can
appear high compared to the performance of the STAR
file server presented above.  This is mainly due to the
difference of machines in term of processing power.
Moreover, the short checkpoint period overloads the file
servers.
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Fig. 4: Incremental checkpoint cost

Fig. 4 presents the cost obtained with non-blocking
and incremental checkpointing. In the previous
checkpointing methods, the amount of data written on
stable storage was important whereas a small part of the
data changes between two checkpoints.  We observe a
sizeable reduction of the checkpoint overhead. An
incremental checkpoint is about three times faster than a
full one.  For the smallest program the checkpoint cost is
below 1 second for all the replication degrees.  Note that
the curves are not linear because the time to take a
checkpoint depends on the process memory usage.

The performance figures shown above are quiet good
compared to that of other software fault managers. For a
2.6 megabytes program (a matrix multiplication) the
mean time to perform a checkpoint is in STAR 4 times
faster than libckpt [14]. This difference is mainly due
to the use of the inefficient mprotect system call to
implement incremental checkpointing. The system
DAWGS [6] does checkpointing with only replication of
degree one.  In a network of 10 workstations with an
approximate computing power of 3 VAX MIPS, the
checkpoint time is about 1.84 seconds for 25 Kbytes.

Fig. 5 presents the recovery time of a process after a
failure. This time includes the time to relaunch a process
and to recover its state from its last checkpoint.  This time
is close to linear with the process size. For a 100 Kbytes
process, it is 2.5 seconds, and for a 1150 Kbytes process,
it is 6.8 seconds.

The restoration time can appear important compared to
the checkpoint cost.  In fact, the restoration step is much
more complex. It must identify the process, reconfigurate

the ring, create a new process, restore its context and
finally update the global knowledge.

Time (seconds)

Process size (Kbytes)
1100900700500300100100

0

1

2

3

4

5

6

7

Fig. 5 : Restore context cost

To tally the performance of STAR under a working
load we chose three long-running, compute-intensive
applications representing different memory usage and
communications patterns:

• The gauss application performs gaussian elimination
with partial pivoting on a 1024 x 1024 matrix. The
matrix is distributed among several processes. At
each iteration of the reduction, the process which
holds the pivot sends the pivot column to all other
processes.

• The multiplication application, called matmul,
multiplies two square matrixes of size 1024 x 1024.
The computation is distributed among several
processes.  No communication is required other than
reporting the final solution.

• The fft application computes the Fast Fourier
Transform of 32768 data points.  The problem is
distributed by assigning each process an equal range
of data points.  Like the previous application, no
communication is required other than reporting the
final solution.

Table 1 presents running time, communication, and
memory requirements for the three applications when run
without fault-tolerant management (without
checkpointing and message logging).  Gauss and matmul
require a sizeable amount of data stressing the checkpoint
mechanism.  Moreover, the gauss application exhibits a
large amount of communications especially stressing the
message logging.  The fft application is long-running and
requires a medium amount of data.



Application Running Time
(seconds)

Per Process Memory
(Kbytes)

Per Process communication
(Kbytes)

gauss 344 1704 2700
matmul 723 2688 0.06

fft 1177 1200 0.06
Table 1: Application requirements

Full checkpoint Non-blocking checkpoint Incremental checkpoint

Running
Time (sec.)

Percentage of
overhead

Running
Time (sec.)

Percentage of
overhead

Running
Time (sec.)

Percentage of
overhead

gauss 567 64.92 505 46.80 457 32.85

matmul 844 16.79 768 6.34 748 3.57

fft 1244 5.75 1228 4.36 1194 1.50

Table 2: Parallel Applications Evaluation

Table 2 presents the running times of the applications
programs when run with independent checkpointing and
message logging. Applications run with a 2-minutes
checkpointing interval.  Checkpoints and logs are
duplicated.  For the three applications, incremental
checkpointing provides a sizeable reduction of the
overhead.  Comparing to the non-blocking checkpointing,
we obtain a reduction of the overhead from 42% to 190%.
Applications can be divided into two categories:
applications with an address space that is modified with
high locality (matrix multiplication and fft applications)
and applications with an address space that is modified
almost entirely between any two checkpoints (gauss
application).  For the applications in the first category,
incremental checkpointing is very successful (more than
77 % of reduction for matrix multiplication and 190 % of
reduction for fft).  For the applications in the last
category, incremental checkpointing is less effective
(about 42 % of reduction for the gauss application).
Furthermore,   the cost of message logging for the gauss
application represents a half of the global overhead.

7. Conclusions

This paper has presented an evaluation of the STAR
fault manager for distributed applications in a standard
workstation environment. The current implementation is
based on independent checkpointing, and avoids the
domino effect by using message logging.  From the basic
components, other fault-tolerant techniques can be
implemented according to the needs of the supported
parallel applications.

We reported performance measurements of the basic

software components.  The results demonstrate that
independent checkpointing is an efficient approach for
providing fault tolerance for the specific studied
applications, i.e., long-running ones with small message
exchanges.  We have also shown that a software based
fault tolerant management is an interesting alternative to
specialized hardware or kernel-integrated fault tolerance.
Results from [13] as well as own instrumentation of
distributed applications corroborate this claim.
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