
A prioritized distributed mutual exclusion algorithm
balancing priority inversions and response time

Jonathan Lejeune, Luciana Arantes, Julien Sopena, and Pierre Sens

LIP6 - UPMC, CNRS and INRIA
4, place Jussieu

75252 Paris Cedex 05, France email: firstname.lastname@lip6.fr

Abstract—Distributed priority-based mutual exclusion algo-
rithms may present starvation for low priority requests if the
shared resource is continuously asked by high priority requests.
To address this problem, several existing algorithms dynamically
increment the priority of pending low-priority requests. The
drawback of this approach is that it may lead to a great number
of priority inversions, i.e., a pending request p is satisfied before
another one whose priority is higher than p’s. One solution to
reduce this number, as we have proposed in [7], is to both
postpone priority increments and prevent low priorities from
increasing too fast. However, in this case, the response time of low
priorities may considerably increase. Therefore, in this article,
we propose a new algorithm, denoted “Awareness", which aims
at reducing the maximum response time whereas the number
of priority violations remains low. To this end, a global view
of pending requests of the system is necessary. Performance
evaluation results confirm that our new algorithm provides a
good tradeoff between response time and number of priority
inversions.

I. INTRODUCTION

Processes in distributed and parallel applications require
an exclusive access to one or more shared resources. Mu-
tual exclusion is then one of the fundamental paradigms of
distributed systems. It ensures that at most one process can
access the shared resources at any time (safety property) and
that all requests are eventually satisfied (liveness property).
The critical section (CS) is the set of instructions of processes’
code that access a shared resource. We find several distributed
mutual exclusion algorithms in the literature (e.g. [6],[13],
[8], [15], [12], [11]). We distinguish two families among
these algorithms [16]: permission-based (e.g. Lamport [6],
Ricart-Agrawala [13], Maekawa [8]) and token-based (Suzuki-
Kazami [15], Raymond [12], Naimi-Tréhel [11]). In the first
family, a node only enters a critical section after having
received permission from all the other nodes (or a sub-set
of them [13], [8]). In the second one, a system-wide unique
token is shared among all nodes, and its possession gives the
exclusive right to execute a critical section.

Distributed mutual exclusion algorithms usually, satisfy CS
requests in First-Come-First-Served (FCFS) time-based event
order such as the logical time of the requests or the physical
time when the token holder receives a request. However this
strategy can not be suitable for all kind of applications such
as those which some tasks have priority over the others,

applications for real-time environments [2] [1], or applications
where priority is associated to a quality of service requirement
[14]. To overcome these constraints, some authors (e.g., [5],
[2], [9], [10], [1], [7]) have proposed some mutual exclusion
algorithms (usually a modified version of the above mentioned
ones) where every request is associated to a priority level. The
satisfaction of pending requests, whenever possible, respects
the priority order. However, priority order induces starvation
problems, i.e., a requesting process never gets access to the
CS, which then violates liveness property. In priority-based
mutual exclusion algorithm, starvation happens because higher
priority requests prevent forever lower priority ones to execute
the CS.

Hence, to address such a problem, Kanrar-Chaki [5] pro-
posed a token-based algorithm, based upon Raymond’s al-
gorithm [12], where low priorities of pending requests are
dynamically increased, eventually reaching the highest prior-
ity. The main advantage of this algorithm is that it avoids
starvation. On the other hand, its dynamic priority mechanism
can violate priority order of requests, leading to a great number
of priority inversions, i.e., a pending request with an original
low priority is satisfied before another one with a higher
priority than the former.

In [1], Chang proposed a dynamic priority mutual exclusion
algorithm, also based uped Raymond’s algorithm, by introduc-
ing an aging strategy where a process i increases the priority
of old pending requests by the number of CS executions that
take place after i granted the token for the last time. Such
a strategy reduces the gap in terms of average response-time
between priorities (contrarily to the Kanrar-Chaki algorithm),
but induces much greater number of priority inversions when
compared to this algorithm.

In order to improve the respect of priority order but still
ensuring the liveness property, we have proposed in [7] the
Level-Distance algorithm which extends Kanrar-Chaki algo-
rithm by introducing a mechanism that strongly reduces the
number of priority violations. Basically, our approach slows
down the upgrade of a priority request: for increasing from
p − 1 to p the priority of a local pending request, the
node that stores it should receive a number of requests with
priority higher than p − 1 which is equal to the value of an
exponential function that depends on p. When compared to
both Kanrar-Chaki and Chang algorithms, the Level-Distance

algorithm presents a smaller number of priority inversions and
no performance degradation in terms of number of messages.
However, we have observed that the maximum response time
of low priorities requests considerably increased. In other
words, by postponing the priority upgrade of requests, the
response time of low priority requests was degraded.

Aiming at proposing an algorithm that offers a good tradeoff
between number of priority inversions and maximum response
time, we present in the current article a new algorithm, denoted
Awareness, which is an extension of our previous Level-
Distance algorithm. We should point out that achieving both
goals are not trivial: on one hand, dynamic priority and,
therefore, probable priority inversions, is necessary to avoid
starvation; on the other hand, the reduction in the number
of priority inversions leads to higher response time for low
priority requests. For providing such a tradeoff, we argue that
every node needs to have a global view of the current number
of pending requests of the system. Such an information is then
applied by every node to postpone priority upgrades of pending
requests, contrarily to the above algorithms that increase
priority based on requests received by each node. Furthermore,
in the Awareness algorithm, the number of required global
requests to upgrade a priority is defined by a user function that
depends on the priority value itself. It is worth emphasizing
that a consequence of this global-view upgrade mechanism
is that old pending low priority requests are favored, and,
therefore, their response time is reduced without increasing the
number of priority inversions. Performance evaluation results
confirm that the Awareness algorithm provides the proposed
tradeoff.

The rest of the paper is organized as follows. Section II
discusses some existing priority-based mutual exclusion dis-
tributed algorithms and gives a description of some algorithm
with dynamic priorities. Section III presents some definitions
as well some assumptions about the considered system. The
Awareness algorithm is described in section IV. Performance
evaluation results are presented in Section V. Finally, Section
VI concludes the paper.

II. RELATED WORK

In this section we outline the main priority-based distributed
mutual exclusion algorithms. We classified them in two fami-
lies: static priorities and dynamic priorities. In the first family,
requests keep their original priority till entering in critical
section (CS): this mechanism induces a strict compliance with
priorities but violates the liveness property if higher priority
requests prevent forever lower priority ones to execute the
CS. In the second family, priorities are incremented each
time that a request of higher priority is issued in the system:
this mechanism keeps the liveness property but degrades the
priority order by generating priority inversions.

A. Static prioritiy Algorithms

Goscinksi algorithm [2] is based on the token-based
Suzuki-Kasami algorithm and has a complexity of O(N),
N being the number of nodes. Pending requests are stored

in a global queue and are piggybacked on token messages.
Starvation is possible since the algorithm can lose requests
while the token is in transition and thus is not held by any
node.

Mueller algorithm [9] is inspired in Naimi-Tréhel token-
passing algorithm which exploits a dynamic tree as a logical
structure for forwarding requests. Each node keeps a local
queue and records the time of requests locally. These queues
form a virtual global queue ordered by priority. The proposed
implementation is quite complex and the dynamic tree tends
to become a simple queue because, unlike the Naimi-Tréhel
algorithm, the root node is not the last requester but the token
holder. Therefore, in this case the algorithm presents a message
complexity of O(N2). In order to prevent priority inversion,
Mueller proposes in [10] a token-based prioritized mutual
exclusion algorithm which is enhanced with priority ceiling
protocol or priority inheritance protocol.

Housni-Tréhel algorithm [3] adopts a hierarchical ap-
proach where processes are grouped by priority. Each group
is represented by one router process. Within each group,
processes are organized in a static logical tree like Raymond’s
algorithm [12] and routers apply the Ricart-Agrawala algo-
rithm [13]. A process can only send requests with the same
priority (that of its group).

In [4], Johnson and Newman-Wolfe present three algo-
rithms for prioritized distributed mutual exclusion. Two of the
algorithms use a path compression technique for fast access
and low message overhead. Their third algorithm extends Ray-
mond’s algorithm. Similarly to the Kanrar-Chaki algorithm,
each node maintains a local priority queue of requests that it
has received. Only new requests with a higher priority than
the ones in the queue are forwarded to the father.

B. Dynamic priority Algorithms

Since all the algorithms described in this section are based
on the Raymond algorithm, we describe this latter first. We
then describe the Kanrar-Chaki algorithm [5], Chang algorithm
[1] and our Level-Distance algorithm published in [7].

Raymond’s algorithm [12] is a token-based mutex algo-
rithm where processes are organized in a static logical tree:
only the direction of links between two processes can change
during the algorithm’s execution. Nodes thus form a directed
path tree to the root. Excepting the root, every node has a
father node. The root process is the owner of the token and it
is the unique process which has the right to enter the critical
section. When a process needs the token, it sends a request
message to its father. This request will be forwarded till it
reaches the root or a node which also has a pending request.
Every process saves its own request and those received from
its children in a local FIFO queue. When the root node releases
the token, it sends the token message to the first process of
its own local queue and this node becomes its father. When a
process receives the token, it removes the first request from its
local queue. If the process’s own request is the first element
of its local queue, it executes the critical section otherwise it
forwards the token to the first element of its local queue, and

the latter becomes its father. Moreover, when a node sends a
token, if the local queue of the node is not empty, it sends
to its new father a request on behalf of the first request of its
queue.

Kanrar-Chaki [5] modify Raymond’s algorithm introduc-
ing a priority level for every process CS request. The greater
the level (an integer value), the higher the priority of the
request. Then, pending requests of a process’s local queue are
ordered by decreasing priority levels. Similarly to Raymond’s
algorithm, a process that wishes the token sends a request
message to its father. However, upon reception, the father
process includes the request in its local queue according to
the request priority level and only forwards it if the request
priority level is greater than the one of the first element of the
local queue or it the only one of the queue. In order to avoid
starvation, the priority level of pending requests of a process’s
local queue is increased: whenever a process receives a request
with priority p, every pending request of its local queue whose
priority level is smaller than p is increased by 1.

Similarly to the Kanrar-Chaki algorithm, Chang has mod-
ified Raymond’s algorithm in [1] aiming both at applying
dynamic priorities to requests and at reducing communication
traffic. For the priority, he added a mechanism denoted aging
strategy: if process p exits the CS or if it is a non requesting
node that holds the token and receives a request, p increases
the priority of every request in its local queue. Furthermore,
the token includes the current number of CS already achieved.
Upon reception of the token, p increases the priority of all its
old requests (i.e., those requests that were already pending
when p releases the token for the last time) by the number
of CS that were executed since the last time p had the token.
On one hand, such a priority approach reduces the gap in
terms of average response-time between priorities (contrarily
to the Kanrar-Chaki algorithm). On the other hand, it induces
a greater number of priority inversions when compared to the
Kanrar-Chaki algorithm; performance evaluation discussion of
both algorithms is presented in section V. To reduce commu-
nication overhead, Chang proposes the following mechanism.
Since a request always follows the token from an intermediate
node whose local queue contains more than one element,
Chang’s communication traffic optimization consists in piggy-
backing, whenever possible, a request on the token message.

Aiming at reducing the number of priority inversions, we
have proposed in [7], the Level-Distance algorithm which
is based on Kanrar-Chaki algorithm. To this end, we have
introduced a Level mechanism where, contrarily to Kanrar-
Chaki algorithm, a priority in a local queue is not incremented
at every insertion in the local queue of a request with a higher
priority but only after X request insertions (a threshold) with
such a priority. The value of the threshold depends on an
exponential level, i.e., to upgrade its priority to p, a request
of priority p − 1 must wait 2p+c insertions of requests with
higher priority. The constant c prevents that small priorities
increase too fast. To reduce the cost in messages, we used
the Chang’s communication traffic optimization regarding the
piggybacking of a request in the token message. In addition, in

order to improve the throughput of the algorithm, we proposed
the Distance mechanism that orders requests of same priority
based on their locality. We denote the request distance from
site R to site S the number of intermediate nodes between
R and S that the token must travel. Hence, if two pending
requests have the same highest priority, the token will be sent
to the one with the shortest request distance with respect to
the current token holder.

III. DEFINITIONS AND ASSUMPTIONS

We consider a distributed system consisting of a finite set of
nodes. There is one process per node. Hence, the words node,
process, and site are interchangeable. Nodes are assumed to
be connected by means of reliable and FIFO communication
links. Processes do not share memory and communicate by
sending and receiving messages. Sites and links are not prone
to failures. Nodes are organized in a static logical tree and
the root and only the direction of links between two neighbor
nodes can change.

Applications behave correctly: a process requests a CS by
calling the Request_CS procedure and releases it by calling
the Release_CS procedure. Furthermore, a process can not
request a new CS before its previous one has been satisfied.

A priority is associated to each request. Let P be the finite
ordered set of possible request priorities. Like in Kanrar-Chaki
algorithm, priority p is higher than priority p′, if p > p′.

A level function denoted F(p) is a function which defines
the increment policy, i.e., the number of necessary requests
of priority higher than p − 1 for upgrading pending requests
of p − 1 priority to p priority. This function is monotone,
increasing, and positive.

IV. THE AWARENESS PRIORITY-BASED MUTEX
ALGORITHM

In this section, we present our new algorithm, denoted
Awareness, which is an extension of the Level-Distance al-
gorithm (see section II) and whose aim is to provide a
good tradeoff between the number of priority inversions and
response time. The distance mechanism has not been changed
but the level mechanism has been replaced. In the previous
level mechanism, a node takes into account only the requests
received by itself while in our new proposal, a node considers
the total number of pending requests in the system to increase
the priority of the pending requests that it keeps in its own
local queue. Furthermore, the number of requests required to
upgrade a priority p− 1 depends on the function level F(p).

The algorithm uses the token to propagate the knowledge
about requests issued by all nodes of the system. In other
words, a vector of |P | entries (one entry per priority) is
piggybacked in the token. Each entry of this vector is even-
tually equal to the total number of issued requests of the
corresponding priority.

Figures 1 and 2 show the pseudo code of the Awareness
algorithm.

1 Local variables :
2 begin
3 in_CS : boolean;
4 father : Site or ∅;
5 last_token : Vector of |P | integers ;
6 pending : Vector of |P | integers ;
7 local_queue : list of <site,priority,level,distance> ;

8 Initialization
9 begin

10 in_CS ← false;
11 last_token[i] ← 0 ∀i ∈ [1, |P |];
12 pending[i] ← 0 ∀i ∈ [1, |P |];
13 local_queue ← ∅;
14 father ← according to the topology;
15 if self = 0 then
16 father ← ∅;

17 UpdateLocalQueue(V : Vector of |P | integers)
18 begin
19 for pi from 2 to |P | do
20 for n from 1 to V [pi] do
21 foreach req in local_queue do
22 if pi > req.priority or (pi = req.priority =

head(local_queue).priority) then
23 req.level ← req.level + 1;
24 if req.level = F(req.priority + 1) then
25 req.priority ← req.priority + 1;
26 req.level ← 0;

27 reorder (local_queue) ;

28 Request_CS(Priority p)
29 begin
30 if father 6= ∅ then
31 addqueue(< self, p, 0, 0 >,local_queue) ;
32 if < self, p, 0, 0 >=head(local_queue) then
33 Send Request(p,1) to father;
34 else
35 pending[p] ← pending[p] + 1;

36 Wait(in_CS = true) ;
37 else
38 pending[p] ← pending[p] + 1;
39 in_CS ← true;

40 /* CRITICAL SECTION */

41 Release_CS
42 begin
43 in_CS ← false;
44 UpdateLocalqueue(pending);
45 last_token ← last_token + pending ;
46 pending[i] ← 0 ∀i ∈ [1, |P |];
47 if local_queue 6= ∅ then
48 request next ← dequeue(local_queue);
49 request head ← head(local_queue);
50 Send Token(min (|P |,head.priority), head.distance + 1,

last_token) to next.site;
51 father ← next.site;

Figure 1. The awareness algorithm (initialization, update function, request and release handlers)

A. Local variables and messages

For each site Si, the algorithm defines the following local
variables:
• in_CS: true if Si is in the CS; false, otherwise;
• father: the identifier of Si’s neighbor on the path leading

to the process that holds the token (root);
• local_queue: local queue of pending requests received by
Si, sorted by decreasing order of priority, increasing order
of distance in case of equal priorities, and then FIFO or-
der in case of equal distances. Each entry of the queue has
the format < site, prioirity, level, distance > where
site=the neighbor of Si which issued or forwarded the
request; priority=the current priority of the request;
level=the current number of pending requests that has
already been counted up in order to increase req’s priority
to priority + 1 ; distance=the distance from the node
that issued the request and the current node (distance
mechanism).

• pending (vector of |P | integers): used to count up the
global number of pending requests known by Si since
the last time it either releases the CS or received the
token. pending[j] corresponds to the number of requests
with priority j that have not been taken into account yet
for incrementing priorities. A request is registered exactly
once in a pending vector of just one site.

• last_token (vector of |P | integers): stores the last vector
of requests kept by the token when Si received it.

A request and token messages respectively keep the follow-
ing information:
• request (< p, d >): p= the current priority of the request;

d=the distance from the node that issued the request and
the current node.

• token (< p, d, v >): p=the current priority of the request
which is piggybacked in the token message, if it is the
case; otherwise this field is equal to -1; d=the distance
value of the piggybacked request; v=the vector with the
number of global issued requests per priority.

The following functions handle the local_queue variable:
• addqueue (): includes a request (< s, p, l, d >) in the

local queue, according to the ordering policy described
above.

• reorder(local_queue): sorts the local queue, according to
the same ordering policy.

• dequeue(local_queue): considering that the local queue
is not empty, this function returns the first request of the
local queue and removes it.

• head(local_queue): returns the first request of the local
queue. The message is kept in the local queue. If the
latter is empty, each field (< s, p, l, d >) of the returned
element is equal to −1.

B. Description of the algorithm
When calling the Request_CS function (line 28), if Si does

not have the token, it includes the request into its local queue
(line 31). Furthermore, if the request is the head of the queue,
Si sends it to its father (line 33). On the other hand, if Si

does not forward the request (lines 35 and 38), it registers
the request by incrementing the entry corresponding to the
request’s priority of its pending vector. Having the token, Si

enters the CS.

52 On_receive request from Sj(Pj, Dj)
53 begin
54 if father = ∅ and in_CS = false then
55 last_token[Pj] ← last_token[Pj] + 1;
56 Send Token(∅,∅,last_token) to Sj ;
57 father ← Sj ;
58 else if Sj 6= father then
59 request before ← head(local_queue);
60 if ∃e ∈ local_queue such that e.site = Sj then
61 if e.priority ≤ Pj then
62 e.priority ← Pj ;
63 e.distance← Dj ;
64 reorder(local_queue) ;

65 else
66 addqueue(< Sj, Pj, 0, Dj >,local_queue) ;

67 request after ← head(local_queue);
68 if after 6= before then
69 Send Request(min (|P |,after.priority), after.distance + 1) to

father;
70 else
71 pending[Pj] ← pending[Pj] + 1;

72 else
73 pending[Pj] ← pending[Pj] + 1;

74 On_receive Token from Sj(Pj, Dj, Vtok)
75 begin
76 father ← ∅ ;
77 request next ← dequeue(local_queue);
78 V tok ← V tok + pending;
79 UpdateLocalqueue(V tok − last_token);
80 last_token ← V tok;
81 pending[i] ← 0 ∀i ∈ [1, |P |];
82 if Pj 6= −1 then
83 addqueue(< Sj, Pj, 0, Dj >,local_queue) ;

84 if next.site = self then
85 /* process can enter in CS */
86 in_CS ← true;
87 else
88 request head ← head(local_queue);
89 Send Token(min (|P |,head.priority), head.distance + 1,

last_token) to next.site;
90 father ← next.site;

Figure 2. The awareness algorithm(message handlers)

Node Si releases the CS by calling the function Release_CS
(line 41). The priority of the requests of Si’s queue is updated
upon calling the UpdateLocalQueue function (described in
the following). Then, Si updates the token vector by adding
the number of pending requests for each priority(line 45) and
resets the pending request vector (line 46). If the local queue
is not empty, Si sends the token to Sj , the node at the head of
its local queue (line 50), removing the corresponding request
from the queue (line 48). If Si’s local queue is not empty, it
also piggybacks in the token message the request of the head
of its local queue, but keeps the latter in its queue. It then
changes its father variable to Sj (line 51).

Upon reception of a request from Sj (Figure 2, line 52), if
Si keeps the token without using, i.e., it is the root node but it
is not in CS, Si updates the token by registering the request in
last_token. Then, it sends back the token (line 56) to Sj and
sets its father to Sj . On the other hand, if Si is not the root,
it adds the new request in its local queue (line 66) or updates
the corresponding request if Si has already received a request
from Sj (lines 60 – 69), reordering the queue, if necessary.
Then, Si forwards the request to its own father (line 74) if the
head of p’s local queue has changed; otherwise it registers the
request (line 71).

Similarly to the Release_CS function, whenever Si re-
ceives the token (line 74), it adds the pending vector to the
received token vector (line 78). It updates its local queue
by calling the function UpdateLocalQueue with the new
requests it received since the last time it obtained the token
which is the input parameter of the function (line 79). Then,
variable last_token is updated and pending is reset. If the
token piggybacks a request, Si includes the received request
in its local queue (line 83). If its own request is the head of
the queue (i.e., it has the highest priority), the node enters the
CS (line 86). Otherwise, the token is forwarded to the node at
the head of the local queue (line 89). The token message also

piggybacks the head request of Si’s local queue, if this one is
not empty. Finally, the father variable is updated (line 90).

Local queue updating (UpdateLocalQueue): As already
mentioned, a site updates the priorities of requests stored in its
local queue by calling the UpdateLocalQueue function (line
17) whenever either it receives the token or releases the CS.

For each priority pi of the vector V , the function increments
by one the level field of each request req of the local queue
whose priority is smaller than pi (line 22). Whenever the
level field of req is equal to the number of pending requests
necessary to increase by one the priority of req, the latter is
incremented and req’s level field is reset. Notice that the first
condition of the test of line 22 prevents the priority of req
to be greater than pi. The second condition of the test allows
to solve possible starvation problems induced by the distance
mechanism, which aims at reducing the number of messages
sent by the algorithm by taking into account request locality:
if two requests of a local queue have the same priority, the
token will be sent to the closest node in terms of number of
hops. However, it might happen that the token infinitely travels
over a portion of the tree where there are some nodes, which
continuously request the CS with the same priority. Such a
behavior can eventually lead to starvation problem whenever
a node, which issues requests with this same priority, is located
far from this portion of the tree. To overcome this problem, a
priority of a request can increase beyond the maximum priority
value and, therefore, eventually preempts those sites with the
same priority and a smaller distance value.

C. Discussion

The minimization of both the number of inversions and the
response time requests with low priority are two conflicting
objectives: on one hand, if there is no priority inversion, the
response time can be infinite, which is the case of static

priority algorithms; on the other hand, a low response time
for low priority requests implies a great number of inversions.
In fact, for a given value of load (i.e., number of pending
requests), the tradeoff between response time and number
of inversions depends on three factors, discussed bellow in
ascending dependency order:
(1) The global knowledge of pending requests: This knowl-

edge allows the nodes to learn about the total number of
pending requests of the system and their respective prior-
ity. Therefore, the greater the number of sites which are
aware of such an information, the higher their flexibility
to balance both objectives.

(2) Dynamic priority strategies. The level function defines
the increment policy for increasing priority p − 1 to p:
the higher the increasing behavior of the function, the
smaller the number of priority inversions but the faster
the maximum response time increases.

(3) Mapping of nodes over the logical tree. If we consider
that a process issues requests always with the same
priority, the position of the node in the tree has an impact:
whenever a great number of nodes in the low levels of the
tree issue high priority requests, the number of priority
inversions naturally decreases, because these requests are
favored by their position in the tree.

V. PERFORMANCE EVALUATION

In this section, we present some evaluation results compar-
ing Awareness with Kanrar-Chaki, Chang, and Level-Distance
algorithms.

A. Experimental testbed and configuration
The experiments were conducted on a 64-nodes cluster with

one process per node. There is no network contention since
there is one process per network card. Each node has two
2.5GHz Xeon processors and 16GB of RAM, running Linux
2.6. Nodes are linked by a 20 Gbit/s Ethernet switch. The
algorithms were implemented using C++ and OpenMPI. An
application is characterized by:
• N : number of processes (64 in our case).
• α: time to execute the critical section (CS). (equal to 2.5

ms)
• β: mean time interval between the release of the CS by

a node and its request by this same node.
• γ: network transmission delay between two neighbor

nodes. (equal to 2.5 ms)
• ρ: the ratio β/(α + γ), which expresses the frequency

with which the critical section is requested. The value
of this parameter is inversely proportional to load: a low
value implies a high request load and vice-versa. In our
experiment, we have considered:

– High load (ρ = 0, 1N): a scenario where the
majority of application processes request the critical
section;

– Intermediate load (ρ = 0, 5N): a scenario where
some sites compete to get the CS;

We start collecting data for evaluation only after a warm-up
phase of the experiment where the rate of requests is stationary.

All the algorithms are based on a static logical tree topology
and, therefore, nodes’ position has an impact in performance.
Consequently, we define a priority mapping policy for the
initial tree topology: the deeper the initial position of the
node in the tree, the lower its priority. Hence, nodes at tree
level 0 (initial root node) and 1 have the highest priorities.
The set of nodes in the same initial tree level have the same
priority. Therefore, a node has a strictly lower priority than
its initial father (except for nodes at tree level 1) but has a
strictly higher priority than its initial children (except for the
initial root node). This configuration is considered ideal since
it presents the following two advantages:
• the token will be more frequently in the lowest levels

of the tree where processes that issue requests with
the highest priorities are located. These processes will
therefore benefit from both the route of the token and the
fact that new requests are included in the token, reducing
the number of sent messages.

• the number of priority inversions can be intrinsically
reduced: when the token moves away from the lowest
levels of the tree in order to satisfy low priority requests,
it is likely to satisfy, during its travel, intermediate priority
requests in descending order. It will thus respect the order
of priorities.

Based on such a mapping policy, the number of priorities is
equal to the total height of the tree. Since in the experiments,
we have considered 64 nodes organized in a binary tree, the
number of priorities is equals to 6 (Log2(64)). Thereafter, we
denote priorities 0 and 1 “low priorities”, priorities 2 and 3
“intermediate priorities” and finally priorities 4 and 5 “high
priorities”.

The Figures that follow show evaluation results comparing
our new algorithm Awareness with Level-Distance, Kanrar-
Chaki, and Chang algorithms (see Section II). Kanrar-Chaki
and Chang algorithms are denoted no-level algorithms while
the Level-Distance and the Awareness algorithms are denoted
level algorithms.

B. Experiments with a given level function

For the current experiments, we have considered the same
level function used in [7] which was F(p) = 2p+c with c = 6.

We are going to evaluate the following metrics:
• Response time: the delay between the moment a node

requests the CS and the moment it gets access to it.
• Number of messages per request: for a given type of

message, it is the ratio between the total number of
messages of this type and the total number of requests.

• Average percentage of priority inversions: At each CS
access, the percentage of pending requests that were
penalized (i.e., they have higher priority than the one that
obtained the CS) is measured. This metric expresses than
the average of such percentages.

• CS execution rate: ratio of the sum of all requested critical
section execution durations over the time of the experi-
ment. It expresses the percentage of time corresponding
to critical section executions.

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768

>= 65536

Kanrar_Chaki

Chang
LevelDistance

Awareness

Av
era

ge
 w

ait
ing

 tim
e (

in
ms

)

rho = 0,1N

prio0
prio1
prio2
prio3
prio4
prio5

(a) Average response time by priority ρ = 0.1N

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768

>= 65536

Kanrar_Chaki

Chang
LevelDistance

Awareness

Av
era

ge
 w

ait
ing

 tim
e (

in
ms

)

rho = 0,5N

prio0
prio1
prio2
prio3
prio4
prio5

(b) Average response time by priority ρ = 0.5N

 0

 1

 2

 3

 4

 5

 6

 7

Kanrar_Chaki

Chang
LevelDistance

Awareness

nu
mb

er
of

 m
es

sa
ge

s p
er

req
ue

st

rho = 0,1N

REQUEST
TOKEN

(c) Average number of messages per request ρ = 0.1N

 0

 1

 2

 3

 4

 5

 6

 7

Kanrar_Chaki

Chang
LevelDistance

Awareness

nu
mb

er
of

 m
es

sa
ge

s p
er

req
ue

st

rho = 0,5N

REQUEST
TOKEN

(d) Average number of messages per request ρ = 0.5N

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Kanrar_Chaki

Chang
LevelDistance

Awareness

Av
era

ge
 nu

mb
er

of
vio

lat
ion

s p
er

CS
 (%

 of
 pe

nd
ing

 re
qu

est
s)

rho = 0,1N

(e) Average percentage of inversions per CS access ρ = 0.1N

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Kanrar_Chaki

Chang
LevelDistance

Awareness

Av
era

ge
 nu

mb
er

of
vio

lat
ion

s p
er

CS
 (%

 of
 pe

nd
ing

 re
qu

est
s)

rho = 0,5N

(f) Average percentage of inversions per CS access ρ = 0.5N

 0

 5

 10

 15

 20

 25

 30

 35

 40

Kanrar_Chaki

Chang
LevelDistance

Awareness

res
ou

rce
 us

e r
ate

 (p
erc

en
t)

rho = 0,1N

(g) Resource use rate ρ = 0.1N

 0

 5

 10

 15

 20

 25

 30

 35

 40

Kanrar_Chaki

Chang
LevelDistance

Awareness

res
ou

rce
 us

e r
ate

 (p
erc

en
t)

rho = 0,5N

(h) Resource use rate ρ = 0.5N

Figure 3. Study of metrics with two different loads

In figure 3, we show for the two considered values of load,
results concerning the above metrics.

Response time: In Figures 3(a) and 3(b), we observe that
no-level algorithms have a regular behavior (shape of stairs),
i.e., the higher the priority, the lower the average response
time, except for Kanrar-Chaki algorithm where we can observe
that high priorities have the same average response time. On
the other hand, in level algorithms, response time differences
between priorities are not so regular: response time of priority
0 of Awareness algorithm is higher when compared to no-level
algorithms (a “best-effort” approach), while high priorities
have presented a strong improvement related to CS access
time. Generally, we observe that the average response time of

level algorithms respect priority levels. This is all the more
confirmed by the fact standard deviations do not overlap.

However, in the Level-Distance algorithm, some low priority
levels have no response time (priorities 0, 1, and 2 for
0.1N and priority 0 for 0.5N). Such results correspond to
a huge response time for these priority levels since no request
has been satisfied during the experiment. The Level-Distance
algorithm penalizes too much low priorities. We denote such a
delay a “pseudo-starvation” since the starvation cannot occur
in theory but low priority requests are satisfied within a too
long interval.

For all algorithms, we note that the response time of low
and intermediate priorities is overall higher in high load than

in intermediate load. In fact, in intermediate load, low and
intermediate priorities have a better chance to be satisfied
faster since the frequency of high priority requests is lower
than in high load.

Comparing the Level-Distance with the Awareness algo-
rithms, we observe that high priorities (4 and 5) present almost
the same response time in both algorithms. On the other
hand, intermediate priorities (2 and 3) are more penalized in
the Awareness algorithm than in the Level-Distance algorithm
while low priorities (0 and 1) are much less penalized.

Number of messages per request: Figures 3(c) and 3(d)
show that the number of messages (request messages and token
messages) per request is greater in intermediate load than in
the high load for all algorithms. Let’s firstly analyze requests
messages. In our priority mapping policy described above, a
request message reception on site S concerns a request which
probably has a lower priority than S’s priority (message from
S′’s child). Consequently, in case of high load, requests are
less likely to be forwarded to the upper area of the tree since
the algorithms only forward a request that is in the head of the
queue, i.e., the one with the highest priority. Thus, the number
of request messages is reduced in high load. Let’s now analyse
token messages. The transfer of the token from a given area A
of the tree to an area of lower priority is due to two conditions:
(1) there is no more pending request in area A;
(2) it exists at least one lower priority request which has been

incremented and thus equals to the priority of area A.
In case of high load, the token has less chance to leave

a high priority area moving to an area of lower priority due
to the second condition. The token travels mainly in the low
levels of the tree and leaves this area only in case of a priority
increment. In case of intermediate load, the first condition
happens more frequently which implies that the token can
leave the low levels area and go away from it more easily.
Such a behavior of the token induces more token messages in
the system.

Hence, if we consider both kinds of messages, in case
of high load, level algorithms present a smaller number of
messages than no-level algorithms. Compared to the Kanrar-
Chaki algorithm, level algorithms reduce the number of request
messages thanks to the piggybacking mechanism (see Section
II-B). On the other hand, level algorithms present a small
number of messages when compared to Chang algorithm
because of:
• exploitation of request locality with the distance mecha-

nism (see section II-B);
• a great respect of priorities. For instance, in Chang

algorithm, sites get the maximum priority fast which
induces more token transfers.

Comparing both Figures, in case of intermediate load, level
algorithms present a message increase of around 50% while
no-level algorithms have a message increase of around only
5%. We have previously pointed out that a decrease in load
induces an increase of the number of messages. We can then
emphasize that this decrease has a higher impact in level
algorithms than in no-level ones.

Percentage of priority inversions: Figures 3(e) and 3(f)
show that for any load value, there is a great difference be-
tween level and no-level algorithms in regard to the number of
priority inversions due to the increasing priority mechanisms
of the former (around 25 % for the no-level algorithms against
less than 5% for the level algorithms). We also observe that the
Awareness algorithm presents a smaller percentage of priority
inversions when compared to Level-Distance which confirms
that upgrading priority based in a global knowledge of issued
requests is more effective than just in a local view of pending
requests.

When the load decreases, we observe that Chang algorithm
does not change its behavior whereas in Kanrar-Chaki algo-
rithm the percentage of priority inversions decreases. Such a
reduction can be explained because the overall number of
requests decreases as well. Concerning the Level-Distance
algorithm, the average percentage of inversion does not change
excepting the standard deviation which is greater for high load.
Finally, the percentage increases for the Awareness algorithm
when the load decreases since sites receive less information
about the system pending requests due to both the smaller
number of messages that travel in the system and the non
negligible network latency when compared to the critical
section duration.

Resource use rate: Since network latency equals to the
CS execution duration (α = γ) in the experiments, the
threshold of the resource use rate is 50 %. Thus, whatever
the algorithm, in the best case, (the granting of the token
necessarily implies that the receiver will enter in CS), it spends
the same amount of time in communication as in critical
section.

In general, no-level algorithms are less effective in obtaining
the CS in high load, particularly Chang’s algorithm. Such a
behavior is a direct consequence of its high number of inver-
sions: whenever processes reach fast the maximum priority,
the token is more likely to travel longer distance between two
critical sections, which degrades the resource use rate when
the network latency is not negligible comparing to the CS
execution time.

In conclusion, the level and awareness mechanisms are
essential for reducing the number of priority inversions. These
mechanisms do not induce message overhead compared to
Chang. Moreover, the latter is less effective in terms of
resource use rate. We can also state that the Awareness
algorithm significantly reduces the response time of lower
priorities while keeping a low number of inversions. Moreover,
it presents no performance degradation in terms of number of
messages nor resource use rate when compared to the Level-
Distance algorithm.

C. Impact of the level function on priority violations and
maximum response time

In this section we evaluate the impact of the level functions
on the performance of the level algorithms (Level-Distance
and Awareness). To this end, we have defined five function
families:
• constant: Fc(p) = c

• linear: Fc(p) = p ∗ c
• polynomial: Fc(p) = pc

• exponential: Fc(p) = cp

• power of two: Fc(p) = 2p+c (previous experiments)
For a given load and constant c, we have measured the

number of priority inversions and maximum response time.
By varying the constant c, we can study the behavior of the
level algorithms for different functions. Figure 4 summarizes
such a study for high and intermediate load scenarios. Each
sub-figure shows the impact of a level function for a given load
on the algorithms. A coordinate of a point corresponds to the
two following metrics: x-axis is the ratio of priority inversions
which is equal to the total number of inversions divided by
total number of requests and the y-axis is the maximum
response time. Thus, for a given ratio of priority inversions,
we can compare the maximum response time between the
different algorithms. Since the minimization of x and y values
is conflicting, the objective of the function is to find a point
that is the closest to point 0.

We observe for both level algorithms different global in-
version ratios. However, for a given value of constant c, the
range of points for both curves are not the same, which entails
some comparison difficulty. We have also included in the sub-
figures the no-level algorithms, Kanrar-Chaki and Chang, for
comparison sake. Both are represented by one point since they
do not use level functions. Consequently, these points are the
same for every sub-figure of a given load.

Overall, we can observe that for any load and any level
function, the Awareness algorithm has a shorter maximum
response time than the Level-Distance algorithm (at least 2
times shorter). Interestingly that for a given load, all curves in
the sub-figures of the Awareness algorithm are quite similar,
regardless of the level function. In fact, its knowledge mech-
anism reduces the impact of the choice of the level function
family.

Finally, for a given level function, the gradient is sloping in
case of intermediate load. We can thus point out the impact of
the load on the level function: the higher the load, the greater
the number of high priority requests and, thus, the faster the
level increment of request. Consequently, there is a reduction
in the maximum response time.

VI. CONCLUSION

We have presented in this paper a new distributed priority-
based mutual exclusion algorithm which considerably reduces
the maximum waiting time of low priority requests without
increasing the number of priority inversions. Such a behavior is
due to the "awareness" approach of the algorithm which gives
more flexibility for priority increments. Furthermore, level
functions allow to better configure the threshold between the
maximum waiting time and the number of priority inversions.
We have also observed that, thanks to the distance mechanism,
the algorithm message complexity does not degrade.

VII. ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under

the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] Y.-I. Chang. Design of mutual exclusion algorithms for real-time
distributed systems. J. Inf. Sci. Eng., 11(4):527–548, 1994.

[2] A. M. Goscinski. Two algorithms for mutual exclusion in real-time
distributed computer systems. J. Parallel Distrib. Comput., 9(1):77–82,
1990.

[3] A. Housni and M. Trehel. Distributed mutual exclusion token-permission
based by prioritized groups. In AICCSA, pages 253–259, 2001.

[4] T. Johnson and R. E. Newman-Wolfe. A comparison of fast and
low overhead distributed priority locks. J. Parallel Distrib. Comput.,
32(1):74–89, 1996.

[5] S. Kanrar and N. Chaki. Fapp: A new fairness algorithm for priority
process mutual exclusion in distributed systems. JNW, 5(1):11–18, 2010.

[6] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21:558–565, July 1978.

[7] J. Lejeune, L. Arantes, J. Sopena, and P. Sens. Service level agreement
for distributed mutual exclusion in cloud computing. In 12th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CC-
GRID’12). IEEE Computer Society Press, May 2012.

[8] M. Maekawa. A
√
N algorithm for mutual exclusion in decentralized

systems. ACM Trans. Comput. Syst., 3:145–159, May 1985.
[9] F. Mueller. Prioritized token-based mutual exclusion for distributed

systems. In IPPS/SPDP, pages 791–795, 1998.
[10] F. Mueller. Priority inheritance and ceilings for distributed mutual

exclusion. Real-Time Systems Symposium, IEEE International, 0:340,
1999.

[11] M. Naimi and M. Trehel. An improvement of the log(n) distributed
algorithm for mutual exclusion. In ICDCS, pages 371–377, 1987.

[12] K. Raymond. A tree-based algorithm for distributed mutual exclusion.
ACM Trans. Comput. Syst., 7(1):61–77, 1989.

[13] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual
exclusion in computer networks. Commun. ACM, 24:9–17, January
1981.

[14] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena,
L. Arantes, and P. Sens. Towards QoS-Oriented SLA Guarantees for
Online Cloud Services. In 13th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGRID’13). IEEE Computer
Society Press, May 2013.

[15] I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm.
ACM Trans. Comput. Syst., 3(4):344–349, 1985.

[16] M. G. Velazquez. A survey of distributed mutual exclusion algorithms.
Technical report, Colorado state university, 1993.

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18
m

ax
im

um
 la

te
nc

y
(s

)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(a) Fc(p) = c and ρ = 0.1N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(b) Fc(p) = c and ρ = 0.5N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(c) Fc(p) = p ∗ c and ρ = 0.1N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(d) Fc(p) = p ∗ c and ρ = 0.5N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(e) Fc(p) = pc and ρ = 0.1N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(f) Fc(p) = pc and ρ = 0.5N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(g) Fc(p) = cp and ρ = 0.1N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(h) Fc(p) = cp and ρ = 0.5N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(i) Fc(p) = 2p+c and ρ = 0.1N

0.25
0.50

1
2
4
8

16
32
64

128
 >= 240

 0 2 4 6 8 10 12 14 16 18

m
ax

im
um

 la
te

nc
y

(s
)

total number of violations / total number of issued requests

Awareness
Chang

Kanrar_Chaki
LevelDistance

(j) Fc(p) = 2p+c and ρ = 0.5N

Figure 4. Study of five level fonctions with two different loads

