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Abstract

We propose a new composition approach to mutual exclusion algorithms for applications

spread over a grid which is composed of a federation of clusters. Taking into account the

heterogeneity of communication latency, our hierarchical architecture combines intra and inter

cluster algorithms. We focus on token-based algorithms and study different compositions of

algorithms. Performance evaluation tests have been conducted on a national grid testbed whose

results show that our approach is scalable and that the choice of the most suitable inter cluster

algorithm depends on the behavior of the application.
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1 Introduction

By gathering geographically distributed resources, a Grid offers a single large-scale environment

suitable for the execution of computational intensive applications. A Grid usually comprises of

a large number of nodes grouped into clusters. Nodes within a cluster are often linked by local

networks (LAN) while clusters are linked by a wide area network (WAN). Therefore, Grids present

a hierarchy of communication delays: the cost of sending a message between nodes of different

clusters is much higher than that of sending the same message between nodes within the same

cluster.

Distributed or parallel applications that run on top of a Grid usually require that their processes

get exclusive access to some shared resource (critical section). Thus, the performance of mutual

exclusion algorithms is critical to Grid applications and it is the focus of this paper. A mutual

exclusion algorithm ensures that exactly one process can execute the critical section at any given

time (safety property) and that all critical section (CS) requests will eventually be satisfied (liveness

property).

Mutual exclusion algorithms can be divided into two families: permission-based (e.g. Lamport

[7], Ricart-Agrawala [15], Maekawa [9]) and token-based (Suzuki-Kazami [17], Raymond [14], Naimi-

Tréhel [12], Martin [10]. The algorithms of the first family are based on the principle that a node

enters a critical section only after having received permission from all the other nodes (or a majority

of them [9]). In the second group of algorithms, a system-wide unique token is shared among all

nodes, and its possession gives a node the exclusive right to enter a critical section. Token-based

algorithms present different solutions for the transmission and control of critical section requests

from processes. Each solution is usually expressed by a logical topology that defines the paths

followed by critical request messages. For instance, Martin’s algorithm [10] considers that nodes

are organized in a logical ring and CS requests should be forwarded along this ring; Naimi-Tréhel’s

algorithm [12] maintains a dynamic logical tree for transmitting CS requests, such that the root

of the tree is always the last site that will get the token among the current requesting ones; in

Suzuki-Kazami’s algorithm [17], a process broadcasts its CS request to the others.

Token-based mutual exclusion algorithms present an average lower message traffic with regard

to the number of nodes when compared to permission-based ones. Thus, they are more suitable
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for controlling concurrent access to shared resources of Grids whose number of nodes is often very

large. However, existing token-based algorithms do not take into account the above-mentioned

hierarchy of communication latency. Therefore, we propose in this article a composition approach

which allows the combination of any two token-based mutual exclusion algorithms: one at intra-

cluster level and a second one at inter-cluster level. By using our composition mechanism several

algorithms can be easily “plugged in” on both levels thus providing an interesting framework for

comparing the performance of different combination of mutual exclusion algorithms. Furthermore,

our approach has confirmed that the good choice for an inter-cluster mutual exclusion algorithm

depends on the application behavior i.e., the frequency with which the application processes request

the shared resource.

The contribution of this paper is then twofold: a hierarchical mutual exclusion composition

approach which easily allows the combination of different inter-cluster and intra-cluster algorithms

and a detailed performance evaluation of two-level mutual exclusion algorithms which shows that

the behavior of parallel or distributed applications has an impact on the choice of inter-cluster

algorithms. The token-based algorithms that we have chosen for our performance tests are Martin’s,

Naimi-Trehel’s and Suzuki-Kazami’s since they present distinct solutions for managing processes

CS requests on top of different logical topologies.

The remainder of this paper is organized as follows. Section 2 presents the three above mentioned

token-based algorithms which are based on different logical topology. In section 3, we describe our

composition approach for mutual exclusion algorithms. Performance evaluation results combining

the three algorithms is presented in section 4. Some related work is given in section 5. The last

section concludes our work.

2 The chosen token-based algorithms

The three token-based algorithms that we have chosen are Martin’s, Naimi-Trehel’s, and Suzuki-

Kasami’s which respectively consider a ring, a tree, and a complete logical connection graph for

transmitting critical section requests. As they present distinct solutions for transmitting requests

and controlling the algorithm’s liveness, they present different message complexity with regard to

the number of nodes.
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The performance of a mutual exclusion algorithm is usually measured by the number of messages

exchanged per critical section and the delay for getting access to the shared resource i.e., the time

between the moment a node requests the CS and the moment it gets it. The latter, which we called

the obtaining time in this paper, comprises the delay for transmitting a token request Treq plus

the delay for granting the token Ttoken. However, if the time for waiting for the current pending

requests TpendCS is higher than Treq, the obtaining time is equal to TpendCS plus Tkoken.

The three algorithms have different advantages and drawbacks when compared to each other.

For instance, Suzuki-Kasami’s and Martin’s algorithms do not scale, while Naimi-Threhel’s does.

On the other hand, Martin’s solution is much more simple than the others. However, by diffusing

the request to all sites, Suzuki-Kasami’s is more resilient to failures than the other two and a request

takes just one message time.

2.1 Martin’s algorithm

Martin’s algorithm considers that nodes are organized in a logical ring. Requests for the token

move along one direction while the token on the opposite direction.

When node i, which does not hold the token, wants to enter the critical section it asks for the

token by sending a request message to its successor j in the ring. If j does not keeps the token it

forwards the request to its successor. The request will travel along the ring till it reaches the site k

which keeps the token. On receiving the request, if k is not in critical section itself, it forwards the

token to its predecessor. Each node between k and i will do the same. Therefore, the token will

eventually reach i, which can then enter the critical section. Notice that before the token reaches

i, nodes between i and k might have requested the token too. Thus, when k forwards the token

on behalf of i all pending requests of nodes between k and i will be satisfied when they receive the

token.

If the number of nodes between i and k is x, 0 ≤ x < N − 1, the total number of messages

exchanged per critical section invocation is 2 ∗ (x + 1): (x + 1) messages for the request + (x + 1)

messages for the token. In average, such a number is equal to 2 ∗ (N/2) = N messages.

Considering T as the average message delay, a request message delay Treq and the token granting

delay Ttoken are both equal to (x + 1) ∗ T (N ∗ T in the average case).
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Notice that for optimization reasons, upon receiving a request from its predecessor, a node that

is also requesting the token does not need to forward the request of the predecessor. It just keeps

the information that after satisfying its own request, it must send the token to its predecessor.

2.2 Naimi-Tréhel’s algorithm

Naimi-Tréhel’s algorithm establishes that nodes are organized in a logical tree and that a node

always sends a token request to its father on the tree. It thus keeps two data-structures:

• A logical dynamic tree structure such that the root of the tree is always the last node which

will get the token among the current requesting ones. Hence, requesting nodes form a logical

tree of probable token owners that point to the root. Initially, the root is the token holder,

elected among all nodes. We call this tree, the last tree, since each node keeps a local variable

called last that points to the last probable owner of the token.

• A distributed queue which keeps critical section (CS) requests that have not been satisfied

yet. We call this queue, the next queue, since each node i keeps a local variable called next

that points to the next node to whom the token will be granted after i leaves the critical

section.

When a node i wants to enter the critical section, it sends a request to its last. Node i then

sets its last variable to itself and waits for the token. Node i becomes the new root of the tree.

Receiving i’s token request message, node j can take one of the following actions: (1) j is not

the root of the tree. It forwards the request to its last; (2) j is the root of the tree. If j holds

the token but it is not in critical section, it directly sends the token back to i. On the other hand,

if j either holds the token but is in the critical section or is waiting itself for the token, j sets its

variable next to i. In both case, node j updates its last variable to i. Notice that the last tree is

modified dynamically; At the end of the critical section, j sends the token to its next.

Tree-based algorithms result in an average number of message per CS equal to O(log(N)) with

regard to the number of nodes. A request message delay Treq takes in average O(log(N)) ∗ T while

Ttoken takes T .
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2.3 Suzuki-Kasami’s algorithm

In the Suzuki-Kazami’s algorithm, when a node i, which does not hold the token, attempts to

enter the critical section, it diffuses a request message to the other N − 1 nodes. Such a message

contains the identifier i of the node and a sequence number x which indicates the xth critical section

invocation of i. As in the previous token-based algorithms, when node i receives the token, it enters

the critical section.

Each node i keeps an array RNi of size N where it stores the largest token invocation (sequence

number) of each node of which it is aware. Whenever i receives a request from j, it updates RNi[j]

with the sequence number of the request.

The token message includes a queue Q of nodes whose requests are pending and an array LN

of size N which keeps the sequence number of the most recent satisfied request from each node.

When node i exits the critical section, it updates LNi[i] with its current RNi[i] in order to indicate

that its request has been satisfied. Then, it appends to Q all nodes not yet in Q for which it knows

that their requests have not been satisfied yet. If Q is not empty, the first node j is removed from

Q and the token is sent to j.

The algorithm requires N message exchanges for each mutual exclusion invocation. Both the

request message delay Treq and token granting delay Ttoken are equal to T .

3 Composition approach to mutual exclusion algorithms

Our approach consists in having a hierarchy of token-based mutual exclusion algorithms: a per

cluster mutual exclusion algorithm that controls critical section requests from processes within the

same cluster and a second algorithm that controls inter-cluster requests for the token. The former

is called the intra algorithm while the latter is called the inter algorithm. An intra algorithm of a

cluster runs independently from the other intra algorithms.

The application is composed of a set of processes which run on the nodes of the Grid. We

consider one process per node and we call it an application process. When an application process

wants to access the shared resource, it calls the function IntraCSRequest(). It then executes its

critical section. After executing it, the process calls the function IntraCSRelease() to release it.
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Both functions are provided by the intra token algorithm.

3.1 Composition algorithm

Within each cluster there is a special node, the coordinator. The inter algorithm runs on top

of the coordinators allowing them to request the right of accessing the shared resource on behalf

of application nodes of their respective cluster. Coordinators are in fact hybrid processes which

participate in both the inter algorithm with the other coordinators and the intra algorithm with

their cluster’s application processes. However, even if the intra algorithm sees a coordinator as an

application process, the coordinator does not take part in the application’s execution i.e, it never

requests access to the shared resource for itself.

The key feature of our approach is that the two hierarchical algorithms are clearly separated

since an application process gets access to the shared resource just by executing the intra algorithm

of its cluster. Another important advantage is that the chosen algorithms for both layers do not

need to be not modified. Hence, it is very simple to have different compositions of algorithms.

An intra algorithm controls an intra token while the inter algorithm controls an inter token.

Thus, there is one intra token per cluster but a single inter token of which only the coordinators are

aware. Holding the intra token is sufficient and necessary for an application process to enter the CS

since the local intra algorithm ensures that no other local application node of the cluster has the

intra token. On the other hand, considering the hierarchical composition of algorithms, our solution

must also guarantee that no other application process of the other clusters is also in critical section

when holding an intra token (per cluster safety property). In other words, the safety property of

the inter algorithm must ensure that at any time only one cluster has the right of allowing its

application processes to execute the CS. This property can be asserted by the possession of the

inter token by a coordinator.

Similarly to a classical mutual exclusion algorithm, the coordinator calls the InterCSRequest()

and the InterCSRelease() functions for respectively asking or releasing the inter token. However,

when a coordinator is in critical section, it means that application processes of its cluster have the

right of accessing the resource. The inter token is hold by the coordinator of this cluster which is

then considered to be in critical section by the other coordinators.
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The guiding principle of our approach is described in the pseudo code of figure 2. Initially,

every coordinator holds the intra token of its cluster. When an application process wants to enter

the critical section, it sends a request to its local intra algorithm by calling the IntraCSRequest()

function. The coordinator of the cluster, which is the current holder of the intra token, will also

receive such a request. However, before granting the intra token to the requesting application

process, the coordinator must first acquire the inter token by calling the InterCSRequest() function

(line 9) of the inter algorithm. Therefore, upon receiving the inter token, the coordinator gives the

intra token to the requesting application process by calling the IntraCSRelease() function (line 11).

A coordinator which holds the inter token must also treat the inter token requests received from

the inter algorithm. However, it can only grant the inter token to another coordinator if it holds its

local intra token too. Having the latter ensures it that no application process within its cluster is

in the critical section. Thus, if the coordinator does not hold the intra token, it sends a request to

its intra algorithm asking for it by calling the IntraCSRequest() function (line 16). Upon obtaining

the intra token, the coordinator can give the inter token to the requesting coordinator by calling

the InterCSRelease() function (line 18).

NO REQ REQ

C.S.

(a) Classical mutex automata

IN

Inter :

NO REQ

Intra :

CS

OUT

Inter :

REQ

Intra :

CS

WAIT FOR IN

Inter :

CS

Intra :

NO REQ

IN

Inter :

CS

Intra :

REQ

WAIT FOR OUT

(b) Composition coordinator automata

Figure 1: Mutual exclusion automatas

3.2 Coordinator Automata

In a classical mutual exclusion algorithm, a process can be in one of the three following states :

requesting the critical section (REQ), not requesting it (NO REQ), or in the critical section(CS),
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as shown in figure 1.(a). If a process does not want to access the resource, its state is NO REQ.

The behavior of a coordinator process can be summarized by a state automata. However, a

coordinator process is in one of the above three states with regard to both algorithms. Therefore,

in the automata of figure 1.(b), Intra and Inter refer to the coordinator state related to the intra

algorithm and inter algorithm respectively. Furthermore, a coordinator has additional states with

respect to the global state of the composition, which can be one of the following: OUT , IN ,

WAIT FOR OUT , WAIT FOR IN .

Coordinator Algorithm ()1

IntraCSRequest()2

/* Hold Intra CS */3

while TRUE do4

if ¬ IntraPendingRequest then5

state ← OUT6

Wait for IntraPendingRequest7

state ← WAIT FOR IN8

InterCSRequest()9

/* Hold Inter CS */10

IntraCSRelease()11

if ¬ InterPendingRequest then12

state ← IN13

Wait for InterPendingRequest14

state ← WAIT FOR OUT15

IntraCSRequest()16

/* Hold Intra CS */17

InterCSRelease()18

Figure 2: Coordinator algorithm

If the coordinator is in the OUT state, no local application process of its cluster has requested

the CS. Thus, it holds the intra token (Intra = CS) and does not hold the inter token (Inter =

NO REQ).

When the coordinator is in the WAIT FOR IN state, it means that there are one or more

pending intra algorithm requests. It still holds the local intra token (Intra = CS) but is waiting

for the inter token (Inter = REQ).

In the IN state, the coordinator holds the inter token (Inter = CS) but has granted the intra

algorithm token (Intra = NO REQ) to one of the application process of its cluster.
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Finally, when the coordinator is in the WAIT FOR OUT state, it still holds the inter token

(Inter= CS) but it is requesting the intra token to the intra algorithm (Intra = REQ) in order to

be able to satisfy an inter algorithm pending request.

It is worth remarking that only one coordinator can be either in IN or in WAIT FOR OUT

state at any given time. All the other nodes are either in OUT or in WAIT FOR IN state.

4 Performance Results

Considering various application behaviors, this section presents some performance evaluation results

aimed at comparing the efficiency of several mutual exclusion algorithm compositions.

4.1 Environment and Parameters

The evaluation performance experiments were conducted on Grid5000, a French large-scale grid

experimental testbed1. Grid5000 comprises 17 clusters located in 9 different cities all over France.

Whichever the cluster, every node has a Bi-Opteron CPU and 2GB of RAM. Clusters are connected

by dedicated 10Gb/s bandwidth links.

Our experiments used 9 of the 17 clusters, each one with 20 nodes, located in a different city.

Figure 3 presents the average latency between the clusters.

P
P

P
P

P
P

PP
from

to
orsay grenoble lyon rennes lille nancy toulouse sophia bordeaux

orsay 0.034 15.039 9.128 8.881 4.489 95.282 15.556 20.239 7.900
grenoble 14.976 0.066 3.293 15.269 12.954 13.246 10.582 9.904 16.288

lyon 9.136 3.309 0.026 12.672 10.377 10.634 7.956 7.289 10.078
rennes 8.913 15.258 12.617 0.059 11.269 11.654 19.911 19.224 8.114
lille 10.000 10.001 10.001 10.001 0.001 10.001 20.000 20.001 10.001

nancy 5.657 13.279 10.623 11.679 9.228 0.032 98.398 17.215 12.827
toulouse 15.547 10.586 7.934 19.888 19.102 17.886 0.043 14.540 3.131
sophia 20.332 9.889 7.254 19.215 16.811 17.238 14.529 0.051 10.629

bordeaux 7.925 16.338 10.043 8.129 10.845 12.795 3.150 10.640 0.045

Figure 3: Grid5000 RTT Latencies (average ms)

The mutual exclusion algorithms as well as the coordinator are written in C using UDP sockets.

Each application process that runs on a single node executes 100 critical sections. Each of them

1Grid’5000 is an initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA,
CNRS and RENATER and other contributing partners (see https:// www.grid5000.fr)
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lasts 10ms, which is the same order of magnitude as a data packet hop time between two clusters.

Every experiment was executed 10 times and the presented results represent the average value.

An application behavior is characterized by:

- α: time taken by a node to execute the critical section;

- β: mean time interval between the release of the CS by a process and its next request.

- ρ: the ratio β/α, which expresses the frequency with which the critical section is requested.

We have developed several applications having low, intermediate, and high levels of paral-

lelism.

Considering N as the total number of application processes (180 in our experiment), the three

levels of parallelism can be expressed respectively by :

- Low Parallelism: ρ ≤ N : An application where the majority of application processes

request the critical section. Thus, almost all coordinators wait for the inter token in the inter

algorithm. In other words, almost all clusters have one or more application processes in the

requesting state.

- Intermediate parallelism: N < ρ ≤ 3N : A parallel application where some sites compete

to get the CS. Only some coordinators are in the requesting state with respect to the inter

algorithm on the whole Grid i.e., just some clusters have one or more application processes

in requesting the token.

- High Parallelism: 3N ≤ ρ: A highly parallel application where concurrent requests to

the CS are rare. The whole number of requesting application processes is small and usually

distributed over the grid. Hence, only one or a few clusters have one or more application

processes in the requesting state regarding the inter algorithm.

In order to evaluate our compositional approach, three metrics have been considered: the

obtaining time i.e., the time between the moment a node requests the CS and the moment it gets

it, the number of sent messages, and the standard deviation of the obtaining time.

For the sake of simplicity, we call the Naimi-Tréhel and Suzuki-Kasami algorithms respec-

tively Naimi’s and Suszuki’s and for all figures of this section we have adopted the notation “Intra

algorithm-Inter Algorithm” to denote a two level algorithm composition. For instance, “Naimi-

Martin” denotes a composition where Naimi’s is used as the intra algorithm of every cluster and
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Martin’s as the inter algorithm. Furthermore, the abscissae of the curves always represent the

ρ parameter (degree of parallelism). Hence, when analyzing the curves the reader must keep in

mind that when ρ increases, the number of processes that concurrently request the critical section

decreases.

As we observed that the inter algorithm has a much stronger influence in the overall performance

than the intra algorithm, the experiments of sections 4.3 and 4.4 have been performed by fixing the

latter to Naimi’s algorithm. Therefore, the variation of application processes obtaining time and

number of inter-cluster sent messages is only due to the inter algorithm. The latter comprises the

number of messages for delivering inter token requests plus the number of messages for granting

the inter token.

The impact of the intra algorithm choice on the overall performance of our composition approach

as well as the advantages of choosing Naimi’s for the intra algorithm are explained in section 4.6.
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Figure 4: Composition evaluation

4.2 Performance evaluation without composition

In figure 4.(b), we can see that, independently of ρ, the original Naimi-Tréhel always presents the

same number of inter cluster sent messages (O(log(N))). This constant behavior can be explained

since the routing of both a CS request and a token granting message from a node does not depend

on its location. A message is arbitrarily routed through nodes which are within the same cluster

or belong to different clusters. On the other hand, when a compositional approach is used, inter

cluster messages are managed by coordinators which gather token request messages from application
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processes into just one inter token request. Hence, the number of inter cluster sent messages

decreases when compared to the original algorithm, as we can observe in the same figure for all

three algorithm compositions. Nevertheless, when applying our composition approach, the number

of inter cluster sent messages is not constant but increases with ρ. Such a behavior is explained in

section 4.4.

It is worth noting that if we consider the path of a token request in terms of clusters only, the

original algorithm can present cycles while our approach does not, which also explains the reduced

number of inter cluster sent messages.

In terms of obtaining time, a first remark is that for all curves the obtaining latency decreases

with the decreasing of concurency, i.e. the reduction of the waiting queue size. The clustering of

intra token requests has also an advantageous impact on the obtaining time when compared to the

original algorithm, as we can observe in figure 4.(a). Such a benefit depends on ρ and it is analyzed

in the next section.

4.3 Composition approach: obtaining time of application processes

We consider the following notation:

- T : average message delay for transmitting a message between two coordinators;

- Treq : average message delay for transmitting an inter token request message from a coordi-

nator to the coordinator that will grant it the token.

- Ttoken : average message delay for granting the token between the current coordinator token

holder and the requesting coordinator;

- TpendCS : average delay for satisfying all the current pending inter token requests before

satisfying the studied inter token request.

In highly parallel applications where there is almost no concurrency among accesses to the

shared resource (ρ ≥ 3N), the obtaining time of a coordinator comprises the request message

delay Treq plus the token message delay Ttoken. However, in applications with high concurrency

for accessing a shared resource, as in low parallel applications (ρ ≤ N), a coordinator must wait

for all the other pending CS requests to be satisfied before getting the token. This delay, which

we called TpendCS , is usually higher than that for sending the request Treq and completely overlaps
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Treq. Therefore, the obtaining time of a coordinator consists of TpendCS plus the token message

delay Ttoken. This explains why the obtaining time tends to be higher when ρ ≤ N , since in this

case there are always many application processes in the requesting state, and quite short when

ρ ≥ 3N , since the number of waiting coordinators for the token is small. Such a behavior can be

observed in figure 4.(a).

Low parallel application : We did not observe any significant difference with respect to the

average obtaining time of all three algorithms of figure 4.(a) for ρ ≤ N . As explained above, in

this case, the obtaining time of a coordinator is equal to TpendCS plus Ttoken. TpendCS is the same

for all three inter algorithms while Ttoken is reduced to T in the case of Naimi’s (a send to the

next node) and Suzuki’s (a send to the first node of Q) algorithms. In Martin’s algorithm, the

current token holder grants the token to its predecessor in the ring. However, as this node has a

very high probability of having requested the token too, the token granting delay also takes one

message (Ttoken = T ), as in the other two algorithms.

As concurrency among accesses to the shared resource is quite high in low level parallel appli-

cations, the obtaining time does not vary much. Such a behavior will be explained in section 4.5,

where the standard deviation of the obtaining time is discussed.

Intermediate parallel application : A first remark is that Naimi-Naimi’s obtaining time is

comparable to Naimi-Suzuki’s (cf. figure 4.(a) for N < ρ ≤ 3N) whereas Naimi-Martin’s is slightly

higher. This is explained by the fact that when using Martin’s as the inter algorithm, there are

some coordinators waiting for the inter token which implies that their Treq can still be covered

up by their TpendCS . Thus, similarly to low level parallel applications, the main factor for the

obtaining time is Ttoken. Suzuki’s and Naimi’s inter algorithm invariably need only one message,

whose delay is T while Martin’s needs more than one message in average. For Martin’s, the smaller

is the number of pending requests, the lower is the probability that a second coordinator has also

requested the token and the higher is the probability that Ttoken increases. Therefore, Martin’s

algorithm is not suitable as the inter algorithm for this type of application.

Highly parallel application : In the case of applications with high degree of parallelism, CS

requests from application processes are quite sparse. As explained above, in such applications, the

13



obtaining time of a coordinator comprises the requesting message delay Treq plus the inter token

message delay Ttoken. As the application does not present much concurrency, Ttoken is equal to T

to both Naimi’s and Suzuki’s algorithms while for Martin’s it is equal to N/2 ∗ T .

In terms of Treq, the most effective inter algorithm is Suzuki’s, since a CS requesting is performed

by a single message sent in parallel to each coordinator, taking just T . As Naimi’s uses a tree to

route requests, the average delay for a request travel is log(N) ∗T between coordinator nodes. The

less suitable algorithm is Martin’s. Since the number of requesting coordinator tends to zero, a

CS request tends to travel along the ring an average of N/2 successive hops, which implies a Treq

of N/2 ∗ T . Hence, the impact of Treq in the obtaining time of the three algorithms explains why

Suzuki’s presents the lowest obtaining time and Martin’s the highest one as observed in figure 4.(a)

for ρ ≥ 3N ,

4.4 Composition approach : number of inter-cluster sent messages

As said in section 4.2, our composition approach in general reduces the number of inter cluster sent

messages when compared to the original algorithm. When ρ is small, there is a lot of concurrent

CS requests from application processes of the same cluster which will result in a single inter token

request by the coordinator of the cluster in question. In this particular case, we should emphasize

the advantage of using the Naimi-Naimi’s algorithm composition compared to the original one. On

the other hand, when concurrency for the CS decreases, the gathering of intra CS requests by a

coordinator decreases as well which implies in more inter cluster requests.

In the case of Suzuki’s and Naimi’s inter algorithms, the number of sent messages per inter token

request of a coordinator consists of one message for the grant of the inter token and respectively

N messages and O(log(N)) messages for inter token request. Hence, in terms of number of inter

cluster sent messages, Naimi’s is more efficient than Suzuki’s, which can be observed in the curves

Naimi-Naimi and Naimi-Suzuki of figure 4.(b). However, in the case of Martin’s algorithm, that

number depends on ρ. For low level parallel applications (ρ ≤ N), the probability of having all

coordinators requesting the inter token at a given time is high. Therefore, the grant of the inter

token takes just one message as well as a coordinator request since a second coordinator which is

in a requesting state does not forward a request, as explained in 2.1. When the parallelism of the
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application increases, the number of inter-cluster sent messages per inter token request increases as

well. This growth can be explained since the probability that some coordinator requests the inter

token decreases. Thus, the number of hops of a request message increases proportionally, which

generates more messages. In a highly parallel application, a token request in Martin’s generates

N/2 messages and the grant of the token generates N/2 messages. By comparing Naimi-Martin and

Naimi-Naimi curves of figure 4.(b), we can observe that for highly parallel applications (ρ ≥ 3N),

the number of inter cluster messages sent by Martin’s is slightly higher than Naimi’s.

4.5 Standard deviation
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Figure 5: Obtaining time standard deviation

In order to analyse more precisely the variation of the obtaining time, its standard deviation

σ has been measured, as shown in figure 5.(a). A first remark when observing this figure is that

σ is in fact quite significant for all ρ values compared to the average CS time. This is due to the

communication heterogeneity of the Grid platform: inter cluster latencies are much higher than

intra cluster ones and the former are not uniform with regard to two different clusters, as described

in figure 3.

To measure the importance of σ and to void the side effects of the average obtaining time

variations, we choose to study the relative deviation time σr = (σ/x̄), which is the ratio of the

standard deviation σ to the obtaining time average x̄ - see figure 5.(b).

A first note is that the original Naimi’s algorithm relative deviation σr is always smaller than

that of any composition of algorithms. This happens because in the case of Naimi’s, the path
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covered by the token is independant of the actual token position, as explained in the section 4.2.

However, in our approach, a request can have one of the following two delays: a very short one

when then token is already in the cluster of the requesting node, and a long one when the token is

not in the same cluster.

All curves of the figure 5.(b) have the same form : a significant increase for the lower values of ρ

and then a stability phase. This growth of σr can be explained by two phenomena : the overlapping

of the requesting trip time (Treq) by the process time of the requesting queue and the sequential

ordering due to the extreme number of requests (for ρ = N/2).

With respect to the difference between the compositions curves, we can note that they are

equivalent for lower values of ρ. For the intermediate parallel level (N < ρ ≤ 3N), Naimi-Martin’s

has the worst absolute standard deviation due to its logical ring structure. While, Naimi-Suzuki’s

and Naimi-Naimi’s present a better absolute standard deviation. However Naimi-Suzuki exhibits a

better relative standard deviation. For ρ > 3N , Naimi-Suzuki has the smallest σ as show in figure

5.(a).

4.6 Intra algorithm choice
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Figure 6: Intra Algorithm

We have carried out several experiments aiming at choosing the best intra algorithm with respect

to the behavior of the applications. In order to make clear figure 6, we just show the curves when

the inter algorithm is fixed to Naimi’s. Experiments with the other two algorithms have presented

the same behavior.
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In terms of the number of inter cluster messages, all algorithms have an acceptable local over-

head. One could argue that since Suzuki’s algorithm sends a much higher number of request

messages per critical section than the other two algorithms, it might be not chosen as the intra

algorithm. However, as nodes within a cluster are linked by a LAN, a multicast primitive could be

used to diffuse the request which will significantly reduce the number of sent messages.

Concerning the obtaining time (figure 6.(a)), all algorithms present almost the same curve,

independently of ρ with a slight advantage for Suzuki-Naimi’s. On the other hand, the latter has

a weaker regularity (figure 6.(b)) than Naimi-Naimi’s. This difference is due to the lack of fairness

of Suzuki’s algorithm when appending nodes to the token queue Q since it does not consider the

arrival time of the requests.

Therefore, Naimi’s algorithm has been chosen in the expermients as the intra algorithm in the

experiments of the previous sections because of its regularity and performance.

4.7 Choosing the best composition of mutual exclusion algorithms

Based on the evaluation performance results presented in the previous sections, we can pointed out

that the choice of a good inter mutual exclusion algorithm depends on the application behavior

and the trade-off between the obtaining time and the total number of sent messages.

For low parallel applications (ρ < N), Martin’s inter algorithm presents the same obtaining

time as Suzuki’s and Naimi’s but it sends far less inter cluster messages than the other two. Hence,

when almost all application processes request the CS, Martin’s is the most effective.

In the case of intermediate parallel applications (N ≤ ρ < 3N), Naimi’s and Suzuki’s are

equivalent in terms of the obtaining time and regularity but Suzuki’s presents a higher message

overhead. Therefore, Naimi’s is the inter algorithm best choice in this case.

Finally, for highly parallel applications (ρ ≥ 3N), Suzuki’s algorithm generates much more inter

cluster messages than the other two algorithms due to the broadcast of request. However, since

the obtaining time of Suzuki’s is much smaller than the obtaining time of the other two algorithms,

Suzuki’s is a good choice when the application is massively parallel.

It is worth remarking that another feature of our composition approach is to be more scalable

than the original algorithm. For instance, considering the total number of nodes N of a Grid, the
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original Suzuki’s algorithm presents poor scalability since it requires N message per critical section

and the size of messages exchanged is proportional to N . However, the ”Suzuki-Suzuki” algorithm

composition scales much better since the number of messages required per critical section in the

inter algorithm and intra algorithm is respectively the number of clusters and the number of nodes

within a cluster. As explained in section 4.4, the composition ”Naimi-Naimi” also presents better

scalability than the original Naimi’s.

5 Related work

Several studies have propose to adapt existing mutual exclusion algorithms to a hierarchical scheme.

In Mueller [11], the author presents an extension to Naimi-Tréhel’s algorithm, introducing the

concept of priority in it. A token request is associated with a priority and the algorithm first

satisfies the requests with higher priority. Bertier et al. [3] adopt a similar strategy based on the

Naimi-Tréhel’s algorithm which treats intra-cluster requests before inter-cluster ones.

Some approaches have adapted the mutual exclusion mechanism of a DSM system to the latency

hierarchy of an interconnection of clusters. In [1] or [2], the authors propose a solution based on a

centralized token-based mutual exclusion protocol.

Finally, several authors have propose hierarchical approaches for combining different mutual

exclusion algorithms. Housni et al. [6] and Chang et al. [4]’s mutual exclusion algorithms gather

nodes into groups. Both articles basically consider hybrid approaches where the algorithm for

intra-group requests is different from the inter-group one. In Housni et al. [6], sites with the same

priority are gathered at the same group. Raymond’s tree-based token algorithm [14] is used inside

a group, while Ricart-Agrawala [15] diffusion-based algorithm is used between groups. Chang et

al.’s [4] hybrid algorithm applies diffusion-based algorithms at both levels: Singhal’s algorithm

[16] locally, and Maekawa’s algorithm [9] between groups. The former uses a dynamic information

structure while the latter is based on a voting approach. Similarly, Omara et al. [13]’s solution

is a hybrid of Maekawa’s algorithm and Singhal’s modified algorithm which provides fairness. In

Madhuram et al. [8], the authors also present a two level algorithm where the centralized approach

is used at lower level and Ricard-Agrawala at the higher level. Erciyes [5] proposes an approach

close to ours based on a ring of clusters. Each node in the ring represents a cluster of nodes. The
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author then adapts Ricart-Agrawal to this architecture.

Our work is close to these hybrid algorithms when gathering machines into groups (clusters

in our case) which has in influence in the conception of the algorithm. However, such algorithms

do not consider differences in communication latency as the main reason for grouping machines.

Furthermore, our approach is more generic as it tries to chose the good combination of algorithms

according to the application’s behavior comparing different mutual exclusion algorithm composi-

tions on top of Grid.

6 Conclusions

In this paper, we have proposed a new approach for the composition of mutual exclusion algorithms

for Grid environments where application processes are spread over several clusters interconnected

by long distance links. Such a composition is totally transparent to the application and any classical

token-based algorithm can be chosen as both inter and intra algorithms. Our two-level approach

is scalable and can be easily extended to multiple levels of algorithm hierarchy which render it

extremely suitable for large-scale systems.

Performance evaluation results from experiments conducted on a real national wide Grid show

that the degree of parallelism of an application has an impact on the choice of the inter algorithm.

Such a choice depends on the logical topology that the algorithm takes into account for transmitting

the token request. To this end, Martin’s, Naimi-Tréhel’s and Suzuki-Kasami’s algorithms which

respectively consider a ring, a tree and a complete graph topology, where used as the inter algorithm

in our tests. When the system is stressed (the rate of CS request is high and there are requests

in all clusters), a ring topology is the most effective; when the rate is lower (ie., the application

exhibits a higher degree of parallelism) both the tree and the complete graph configurations are

more efficient since they reduce the number of hops of CS request messages. Such results prove

that our composition approach provides a framework for easily choosing the best two algorithms

combination. Therefore, we propose as a future work, a dynamic and adaptive composition scheme

where the the inter algorithm will be replaced according to the application behavior.
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