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Abstract—Failure detection is a crucial service for dependable
distributed systems. Traditional failure detector implementations
usually target homogeneous and static configurations, as their
performance relies heavily on the connectivity of each network
node. In this paper we propose a new approach towards the
implementation of failure detectors for large and dynamic net-
works: we study reputation systems as a means to detect failures.
The reputation mechanism allows efficient node cooperation
via the sharing of views about other nodes. Our experimental
results show that a simple prototype of a reputation-based
detection service performs better than other known adaptive
failure detectors, with improved flexibility. It can thus be used
in a dynamic environment with a large and variable number of
nodes.

Keywords—Failure detection ; Reputation Systems ; Large scale
distributed systems

I. INTRODUCTION

Distributed systems should provide reliable and continuous
services despite the failures of some of their components. A
classical way for a distributed system to tolerate failures is to
detect them and then to recover. It is now well recognized that
the dominant factor in system unavailability lies in the failure
detection phase [1]. As a consequence, failure detection plays
a central role in the engineering of such systems. Chandra and
Toueg introduced in [2] the notion of unreliable failure detector
(FD). An FD is an oracle which provides information about
process crashes. It is unreliable as it can make some mistakes
for a while; for instance, some live nodes can be considered as
having crashed. FDs are used in a wide variety of settings, such
as network communication and group membership protocols,
computer cluster management and distributed storage systems.
Numerous implementations of FDs have been proposed, where
each node monitors the state of the others. However, most FD
implementations have two severe limitations:

• they consider all the nodes in a same way, there is no
distinction between well and bad behaved nodes;

• local oracles gather information from the other nodes
without any coordination [3], [4], [5].

In stable and homogeneous configurations such as clusters,
where nodes of a same type are linked through low latency
networks and subject to crash failures at the same rate, these
limitations have a low impact on the quality of the failure
detection. However, in large and dynamic systems such as
gaming platforms or large cloud infrastructures, nodes are
very different: some nodes (eg. Server) are powerful and
connected to the network with a high speed link whereas some

others have a limited power and slow connections. Taking into
account such differences is essential for the quality of the
detection. Furthermore, in such dynamic environments sharing
information on the state of the nodes could greatly increase the
global view of the distributed system. If one node has a good
connection to the other ones, it can share its view to slowly
connected nodes and thus prevent wrong views about failures.

In this paper, we propose a new collaborative failure de-
tector which exploits information about the behavior of nodes
to increase its detection quality both in terms of detection
time (completeness) and mistake avoidance (accuracy). To
classify the behavior of nodes we rely on a reputation service
where nodes periodically exchange heartbeat messages. The
reputation of a node dynamically increases if it sends its
heartbeat on time, and decreases if some heartbeats get lost
or arrive after the expected dates.

We conducted an extensive evaluation of our failure de-
tection on distributed configurations using real traces to inject
failures and message losses. We show that our detector out-
performs well-known implementations [4], [6]: it provides a
better accuracy while keeping short detection times, especially
when the network is subject to message losses.

The rest of the paper is organized as follows. Section II
presents the reputation system we use to implement our failure
detection service and details the detector implementation. Sec-
tion III describes two standard failure detector implementations
we then compare to our solution in the performance evaluation
of Section IV. Finally, Section V explores related work and
Section VI concludes the paper.

II. DETECTING FAILURES WITH A REPUTATION SYSTEM

Our solution uses a distributed reputation system to detect
failures. A reputation system [7] aims to collect and compute
feedback about node behaviors. Feedback is subjective and
obtained from past interactions between nodes, yet gathering
feedback about all the interactions associated with one node
produces a rather accurate representation of its behavior. In
our case, the reputation system focuses on behaviors that fall
within the scope of a given failure model.

The reputation system we present in this section is basic
and aims to reproduce the qualities of a good reputation system
according to [8]: fast convergence, precise notation of nodes,
resistance to malicious nodes, small overhead, scalability, and
adaptivity to peer dynamics. Our reputation system can be used
for a wide variety of middlewares and services. In a previous
work, we describe in details and use this reputation system to
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support another kind of application, namely cheat detection in
massively multiplayer online games [9].

A. Assessment of the reputation

Every node stores a local estimation of the reputation
associated with every node in the network. In our system,
a reputation value belongs to [0, 1000[. Value 0 represents a
node which never delivers its service correctly, whereas the
reputation value of a very trustworthy node tends to 1000.
Initially, a node with no known history in the network has its
reputation value set to 0.

A reputation assessment primarily consists in comparing
inputs from neighborhood nodes with an expected behavior.
Applying this scheme to failure detection is simple: if a node
sends its heartbeat in a timely manner its reputation value
increases, otherwise it decreases according to a reputation pun-
ishment. We call this primary assessment a direct assessment;
it is in all ways similar to traditional failure detection. To
improve the detection in dynamic environments, we combine
the direct assessment with an indirect assessment.

The indirect reputation assessment of a node A by another
node B relies on three pieces of information: (i) the current
reputation value that B associates with A, (ii) the evolution
of the behavior of A as perceived by B, (iii) and the recent
opinions that B or other nodes may express about A.

Upon receiving fresh data about the behavior of a
node, reputation systems such as TrustGuard [10] use a
PID (proportional-integral-derivative) formula on these three
pieces of information to compute a new reputation value. The
principle of a PID formula is to carry out a weighted sum
of the local reputation value at t − 1, of the integral of the
local reputation values since the system startup, and of the
differential with newly received reputation values. Let R(t)
denote the reputation value of node n at time t:

R(t+ 1) = α ∗R(t) + β ∗ 1
t ∗
∫ t

0
R(x) dx+ γ ∗ d

dtR(t)

Our reputation system simplifies this computational model
to facilitate its implementation. This simplification, as detailed
in [9], transforms the full model into an arithmetic progression.
On any node in the network, the local computation of the repu-
tation Rm(t+1) associated with node m in our implementation
thus breaks down to:

PID(a,m) = α ∗Rm(t) + β ∗ Im(t−1)+a
2 + γ ∗ (a−Rm(t))

Rm(t+ 1) = PID(a,m)

where I(t) is the approximate value of the integral at time
t and a is the assessment of m at time t. a can be a reward
or a punishment for m, but it can also be a reputation value
for m received from another node in the network. Thus we
combine the local assessment with views from other nodes
of the network to compute Rm. This allows us to build up a
global view of the system on each node without overhead.

B. Parameters associated with our reputation system

Several parameters associated with our reputation system
allow to adapt it to the requirements of the application. Fine

tuning the values of these parameters requires a test phase
on the target network. Subsection IV-A includes a description
of our benchmarking methodology to adjust the settings of
our reputation-based failure detector. The present Subsection
gives general pointers for the parameterization of the reputation
system.

The first obvious set of parameters α, β, γ characterizes
every reputation assessment. A high value for α will confer a
greater importance to past reputation values stored locally. This
is useful in systems where close neighbors behave erratically.
Parameter β focuses on the history of the behavior of a
node. Systems with a high value for β slow down reputation
decreases induced by sporadic changes in the network such
as bursts of message losses. Finally, parameter γ reflects the
direct impact of a new opinion on the local assessment. A high
value for γ implies that the local reputation value of a node
will be more sensitive to new values expressed locally or by
other nodes. In the context of fault detection, we believe the
system should focus on its tolerance to jitter and to message
losses. As the main component of the formula for this purpose,
β ought to be set to a high value.

We determine whether a node acts correctly by enforcing
a global threshold T on reputation values: a node with a
reputation greater than T is considered as correct. T must be
set to the best trade-off between the accuracy and the efficiency
of the failure detection, and its value is highly dependent of
the quality of network links. If node connections incur high
jitter and/or high message loss rates, a high value of T will
induce many false failure detections. On the other hand, low
values of T could dramatically increase the detection time. As
this threshold is a crucial metric for determining faulty nodes,
we also describe how we fix its value in Subsection IV-A.

There are other, more secondary parameters with respect to
detection. Values υ (up) and δ (down) correspond respectively
to rewards and punishments. Also, a decay factor affects all
locally stored reputation values upon a reassessment timeout.
This strategy aims to force nodes to reassess reputations for
nodes with which they have no direct interaction for some
time. High values for the reassessment frequency and the decay
factor reduce the detection time, but increase the rate of false
detections.

C. Our reputation based failure detector

Algorithm 1 presents our reputation-based failure detector
implementation. In task T1, every node sends its neighbors
a heartbeat message every ∆H . Every heartbeat encapsulates
the reputation information the node cares to propagate. When
a node p receives a heartbeat message from a node q (task
T2), it computes a new reputation Rq(t + 1) which rewards
q with a maximum update value a = υ (line 11). Then for
each reputation information included in the message, p updates
the reputation of the corresponding node (lines 17–18). For
an eventual decrease of the reputation of all known faulty
nodes, a reputation reassessment occurs every HC heartbeats:
p then applies a decay factor to all locally known reputation
values (lines 14–15). To boost local detection, p punishes nodes
which haven’t sent heartbeats for two periods (task T3). We
used this value to be responsive whilst being resistant to small
jitters. Finally, task T4 handles fault detection requests from
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1 Task T1 [HeartBeat / Reputation propagation]
2 Every ∆H

3

4 For each known node n Do
5 Insert REPUTATION(Rn, n) in heartbeat
6 Send HEARTBEAT to each neighbor
7

8 Task T2 [Heartbeat reception]
9 Upon reception of HEARTBEAT from q
10

11 Rq ← PID(υ, q)
12 If HCounter = HC Then
13 { Refreshment of reputation of all known nodes }
14 For each known node n Do
15 Rn ← Rn − decay
16 Hcounter ← 0
17 For each REPUTATION(Rn, n) in heartbeat Do
18 Rn ← PID(Rn, n)
19 HCounter ← HCounter + 1
20

21 Task T3 [Punishment]
22 Every ∆H ∗ 2
23

24 For each known node n Do
25 If !received(HEARTBEAT, n) Then
26 Rn ← PID(δ, n)
27

28 Task T4 [Decision]
29 Upon asking a detection for node n
30

31 If Rn > T Then
32 return NodeCorrect
33 Else
34 return NodeFaulty
35

Algorithm 1: Reputation based failure detector algorithm

the application layer. Our detector considers a node is correct
if its reputation value is greater than a given threshold T .

D. Scalability of our reputation-based detector

In order to scale up to a large number of nodes, our
reputation system imposes a network topology that avoids
all-to-all communication. We conceived a simple algorithm
(Algorithm 2) for the random generation of connected digraphs
where every common node has an average degree of 3. In
order to reproduce the skewness of connectivity in large scale
overlays, our algorithm also randomly designates super nodes
that possess direct links towards a third of the network. A
node has a probability Psuper of being a super node. Our
algorithm uses a coordinator node that builds a static network
topology for all connected nodes. Initially each node sends its
identifier to the coordinator (Task T1). The coordinator then
sends each node the list of its neighbors in the overlay (Task
3). In the algorithm, Random() generates a random number
in the interval [0, 1] and Subset(S, c) returns a random subset
of set S with a cardinality equal to c.

As we showed in [9], our reputation system scales ex-
tremely well with respect to the number of nodes involved.
Even though the solution may sound resource intensive, it only
uses 160 bytes per second per node in a system with 30000
nodes running the reputation system. This is due to the small
size of the reputation data that gets exchanged.

In the performance evaluation of Section IV, we limited the

1 Psuper ← 0.1
2 min_neighbors← 2
3 max_neighbors← network_size/3
4 network ← ∅
5

6 Task T1 [Node Initialisation]
7

8 Send ID(pi) to Coordinator
9

10 Task T2 [Neighbors reception]
11 Upon reception of NEIGHBORS(list) from Coordinator
12

13 neighbors← list
14

15 Task T3 [ID reception]
16 Upon reception of ID(pj)
17

18 network ← network ∪ pj
19 If |network| = network_size Then
20 For each node n in network Do
21 If Random() > Psuper Then
22 list← Subset(network,max_neighbors)
23 Else
24 list← Subset(network,min_neighbors)
25 Send NEIGHBORS(list) to n
26

Algorithm 2: Overlay generation

size of the network to 10 nodes to allow for a large number of
experiments over varying configurations. In particular, Subsec-
tion IV-H studies and compares the bandwidth consumption
of the three approaches in various experimental scenarios.
However we also ran an experiment involving 250 nodes to
check how our reputation-based failure detector behaves over
a larger network. We observed that, regardless of the network
size, the bandwidth consumption of our detector remains
steady. Every node that participates to our reputation system
consumes an average bandwidth of 144 Bytes per second,
with almost no deviation. We consider that this value is very
low and well within the capacity of most Internet connections
nowadays.

III. COMPARISON WITH OTHER FAILURE DETECTORS

In order to assess our reputation oriented approach, we
compare it with two other oracle-based failure detectors:
Bertier [4] and Swim [6]. These failure detectors constitute
references of efficient and well-known failure detectors. They
are briefly presented in this section, along with a first assess-
ment of each detector’s impact on the network.

A. Bertier’s failure detector

Bertier’s failure detector combines one of Chen’s estima-
tions [11] for the arrival time of heartbeat messages and a
dynamic safety margin based on Jacobson’s algorithm [12].

Chen’s estimation computes the expected arrival time EA
of heartbeat messages, and adds a constant safety margin
α to avoid false detections caused by transmission delay or
processor overload. EA results from adjusting the theoretical
arrival time of the next heartbeat with the average jitter
incurred upon the n latest heartbeat receptions. The value of α
requires a calculation with respect to QoS requirements prior
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to starting the system; it can not account for radical alterations
of the network behaviour.

Bertier’s failure detector solves this issue by using Jacob-
son’s algorithm to compute a dynamic safety margin. Jacob-
son’s estimation assumes little knowledge about the system
model; it is used in TCP to estimate the delay after which
the transceiver retransmits its last message. This estimation
relies on the error incurred upon reception with respect to the
estimated arrival time, and includes user-defined parameters to
weight the result.

B. Swim’s failure detector

Swim [6] relies on a ping approach. An initiator node
invites k other nodes to form a group, pings them and waits
for their replies. If a node does not reply in time, the initiator
then judges this node as suspicious and asks the other group
members to check the potentially faulty node. If this node
remains silent after three consecutive pings from all group
members, the detection is confirmed and the node is finally
considered as incorrect.

Swim’s failure detector allows a fair comparison in that,
instead of requiring an all to all communication, it shares the
same type of network footprint as a reputation system.

C. Communication complexity

The three algorithms we compare have different impacts
on the network.

1) Bertier: Bertier’s failure detector induces all to all com-
munication. Upon every period, every node sends a heartbeat
to every other node: their message complexity is n2 messages
per period.

2) Swim: The failure detector in Swim has two operational
modes: a standard one where the initiator assesses its group
of K nodes, and a degraded mode where all K nodes assess a
non-responsive node. This derives two message complexities:
(i) k ∗n messages per period in standard mode, and (ii) k ∗n2
in the worst case of the degraded mode.

3) Our reputation-based detector: Reputation systems usu-
ally incur a high communication complexity, so we reduced our
network footprint as much as possible. Nodes send periodic
heartbeats to their neighbors only, and propagate reputation
data by piggybacking it on the heartbeats. To reduce network
consumption even further, nodes only emit reputation values
that differ significantly from the last emitted value. This
produces a difference of behavior between good and bad nodes
as we will save a lot of bandwidth on good nodes reputation
propagation. In our experiments, setting the minimal variation
before emission to 50 on a 0 − 5000 scale reduced message
size by 50%, with no effect whatsoever on the quality of the
detection.

Let d be the average degree of nodes in the system: the
complexity of our detector is d ∗ n messages per period.

IV. PERFORMANCE EVALUATION

This section presents an evaluation of our approach. We
assess its performance and compare it with both Bertier’s [4]

and Swim’s [6] state of the art failure detectors. Throughout
this section we use BertierFD, SwimFD, and RepFD to refer
respectively to Bertier’s, Swim’s, and our reputation-based
failure detector.

A. Experimental settings

a) Application settings: All scenarios are run on ten
nodes for a duration of five minutes, with a heartbeat/ping
period of one second. Each experiment is run fifty times. The
standard deviation consistently remained very low: under 4%
for all our experiments. Hence we chose not to include it in
our figures.

b) Network settings: We ran our experiments on a
cluster made out of dual-Intel Xeon X5690 running at 3.47Ghz
and equipped with 143GB of RAM. Since our cluster incurs
near zero latency, we injected a 59ms latency for each message
to reproduce typical user broadband connections. This value
comes from our study of user experience that capitalizes on
statistics published by a very popular online game [13]. Our
code uses the UDP protocol for message exchanges, thus
preventing detections caused by connection closures.

BertierFD relies on all to all communication so we or-
ganized the network in a clique. For SwimFD, we fixed
the membership set to involve all ten nodes. Finally, we
generated the topology for our reputation system at random
upon every experiment by using the algorithm described in
Subsection II-D. The resulting graph is connected and the
degree of every node is greater than or equal to two. This
topology limits communications overhead while ensuring the
liveness of the propagation of reputation information among
nodes that generate the global view.

c) Failure detector settings: We set ∆H = 1s for
all the assessed failure detectors. BertierFD and RepFD send
heartbeat messages every second. SwimFD also sends ping
messages every second in order to obtain coherent detection
times.

BertierFD requires an additional setting: the initial detec-
tion time beyond which a missing heartbeat determines its
sender as suspicious. We followed the original implementation
and set this value to ∆H . All other parameters were also set
to the values advocated in [4].

RepFD relies on a reputation assessment which requires
some parameterization. The essential parameters of this as-
sessment are the weights α, β, and γ of the PID formula that
computes reputation values, as well as the threshold T that
distinguishes suspicious nodes from correct ones according
to their computed reputation value. To adjust the values for
these parameters, we first ran brute force simulations on top
of the Peersim simulator [14]. We set the reward value υ to
1000 (maximum reputation value), the punishment value δ to
0 (minimal reputation value), decay value to 50, HC to the
size of the network, and then ran simulations where α, β,
and γ varied from 0 to 1 and T varied from 400 to 800.
Our detector achieved its best quality of detection with the
following settings: α = 0, β = 0.8, γ = 0.2, and T = 700.

To reach a better understanding of why these settings work
well, we experimented further on top of our ten-node cluster.
We set threshold T to 700 and measured both the accuracy
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Fig. 1: Impact of beta and gamma on the quality of the
detection

and the detection time of our detector with varying values
for α, β, and γ. We started with a separate study of each
weight. To do so, we initially incremented the value of a
single weight by 0.1 between 0 and 1, and set the other two
weights equal to 1−(studied_parameter)

2 . Conversely to β and γ
in these experiments, we observed that no value of α leads to
a good quality of detection. α > 0.25 prevents any detection,
while values below 0.25 induce detection times of at least
3.74 seconds. We will show in the following experiments that
this is a poor detection time, but one can reach this conclusion
intuitively as it represents almost four times the period between
heartbeats. Hence the first conclusion we can draw from our
study is that the local view of past detections bears too much
influence on future detections and should be discarded entirely.

We therefore focused our study on β and γ: we incremented
the value of γ by 0.1 between 0 and 1, and set β = 1 − γ.
Figure 1 plots the detection time and the accuracy for all values
of β in this last series of experiments. Introduced in [11], query
accuracy probability (noted PA) reflects the probability that a
failure detector’s output is correct at any random time. These
results confirm those reached through our simulations: beyond
β = 0.8 the detection time will not decrease much further,
but the accuracy starts shooting down. Our understanding is
that detection assessments from distant nodes, included in γ,
actually slow down the local detection and help avoid mistakes.
Meanwhile, β has a positive influence on detection time as it
reflects the consistency between the latest local detections and
those of neighbor nodes.

This extensive study leads to the following settings for our
reputation-based detector throughout our experiments: α = 0,
β = 0.8, γ = 0.2, and T = 700.

B. Measuring the accuracy of multiple detectors

In order to measure the accuracy of the detection, we
introduce a metric we call global node correctness. The global
node correctness of a node n is the average number of correct

nodes that deemed n correct. A value of 1.0 means that all
nodes consider n as correct.

First we define a correctness value for any node n of the
network as:

correctness(n, p) =

{
1, if n is deemed correct by p
0, otherwise

With our reputation system, a node n with reputation Rn

is deemed correct if Rn > T .

To calculate global node correctness at any given mo-
ment, we compute the global node correctness of a node n
as the average correctness associated with n throughout the
network.

global node correctness(n) =
average( correctness(n, p),∀ p ∈ network)

For example with a perfect detector all nodes will
detect incorrect nodes as incorrect, therefore the average
global node correctness of the incorrect nodes will be 0.

C. False positives in the absence of failures

We first measure and compare the accuracy of the studied
failure detectors by testing for false positives in the absence
of failures.

BertierFD initializes its heartbeat detection period to ∆H ,
and then requires some time to estimate the real RTT of
nodes which includes the latency. It takes approximately 14
seconds to converge but behaves extremely well once the
system stabilizes : it does not produce a single false positive.
The resulting plot, a straight line, is therefore uninteresting and
we decided not to include the figure in this paper.

SwimFD also converges very fast: its stabilization time is
similar to that of BertierFD, around 14 seconds. However, even
in the absence of failures, SwimFD does not handle jitter of
connection very well. As shown in Figure 2, small changes of
latency quickly drive nodes into SwimFD’s list of suspicion.
A suspicion does not directly translate to a detection for
SwimFD, though: an overdue heartbeat launches the degraded
mode where nodes in the same group exchange their views
on the suspected nodes. Overall SwimFD introduces a lot of
false suspicions and thus generates significant network usage
overhead, but it does not produce false detections.

RepFD is noticeably slower at converging: it takes about 30
seconds to stabilize. This is the time required by the underlying
reputation system to build its view of the network. Upon
stabilization, RepFD also behaves well: it produces no false
detection in the absence of failures. Figure 3 plots the average
reputation value over time. RepFD initializes reputation values
at 0, but starts storing them after the first call to PID function:
hence the first reputation value represented on the graph is
higher than 600. Since a correct behavior systematically entails
a reward υ for the observed node, the reputation of correct
nodes quickly converges towards the highest possible value
and will never decrease below the 700 threshold value.
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D. Permanent crash failures

After analyzing the behavior of the detectors in a failure
free environment, we introduce silent crash failures. At the ini-
tialization of the experiment, the system randomly designates
two nodes as faulty. Nodes programmed for incorrect behaviors
crash silently and never recover. An incorrect node implements
the silent crash by shutting down its network connections after
the full stabilization time of the studied detectors. We therefor
set the crash time to 50 seconds in order to ensure that all
systems have fully converged.

The detection time corresponds to the time elapsed between
the moment the failure occurs and the moment all correct nodes
detect the failure. As such it is relative to the length of the
heartbeat period but, in our case, setting the same heartbeat
period for all three detectors offers a fair comparison.

Table 4 displays the average detection times exhibited
by the detectors. All three detectors react within the same
timeframe. SwimFD may seem faster: its displayed detection
time is roughly 20% shorter than those of BertierFD and
RepFD. However, SwimFD’s detection time corresponds to
the time elapsed from the moment of the crash to the moment
all correct nodes have pushed the faulty node in their list of

suspicion. The true detection requires three more RTTs among
the nodes of the detection group.

BertierFD SwimFD RepFD
Detection time (s) 2.48 1.97 2.578

Fig. 4: Detection time of a permanent crash failures

We also study the accuracy of the detection for each detec-
tor. For this purpose, we measure the global node correctness
of correct nodes and that of faulty nodes separately over
time. Figures 6, 7, and 8 represent our results for BertierFD,
SwimFD, and RepFD respectively. All three detectors behave
similarly towards faulty nodes: once they start suspecting a
permanent failure, they will not reconsider. SwimFD does
not handle correct nodes as well as BertierFD and RepFD,
however: it keeps suspecting them intermittently.

The overall conclusion of this set of experiments is that,
even though SwimFD takes a little less time to reach a
decision towards suspicion, it pays a heavy price in terms
of accuracy. RepFD and BertierFD are much more stable in
their estimation of correctness. It is important to point out
that BertierFD achieves this over an all to all communication
protocol, whereas a connected graph suffices for our failure
detector.

E. Crash/recovery failures

The following set of experiments evaluates the behavior of
the studied failure detectors in a more complex environment,
where faulty nodes stop receiving/sending messages for a given
amount of time and then resume communications. In our
crash/recovery scenario, faulty nodes cease their network inter-
actions every 30 seconds for a duration of 30 seconds. Please
note that this scenario is not common in the literature about
failure detectors; most studies focus on permanent crashes.
However, crash/recovery failures are far more representative
of the large and dynamic systems we target.

We first study the detection time in this series of ex-
periments, and collect measures taken after each detector’s
respective stabilization time. Table 5 displays the average
detection times for all three detectors.

BertierFD SwimFD RepFD
Detection time (s) 3.19 2.6020 2.5776

Fig. 5: Average detection times in crash/recovery environments

Our first observation is that, in this scenario too, all three
detectors spot failures within the same timeframe. Yet upon
closer inspection, it appears that introducing recovery does
affect the detection times of BertierFD and of SwimFD:
compared to the permanent crash scenario, they increase by
28% and by 32% respectively. Conversely, the introduction
of recoveries does not impact the average detection time of
RepFD. The increase is not surprising in the case of SwimFD.
SwimFD does not rely on a history of past detections but
on a group decision. Given its lower accuracy and the fact
that it generates a considerable amount of network overhead
upon suspicion, its average detection time converges towards
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that of the other detectors when repeated occurrences of
multiple crash/recoveries complicate the detection. The more
complicated it is to reach a common decision, the more time it
takes for SwimFD detectors to reach it. BertierFD and RepFD
both rely on past detections, so in light of the permanent crash
experiment results we were expecting their detection times
to be similar again. However we were underestimating the
sensitiveness of Bertier’s RTT estimation to latency variations.
An analysis of our logs showed indeed that our cooperative
reputation assessment adjusts much faster to crash/recovery
than Bertier’s RTT estimation computed single-handedly on
every node.

We then study the accuracy of each studied detector in
our crash/recovery scenario. As expected, SwimFD has a hard
time avoiding mistakes in its assessment of both correct and
faulty nodes. Figure 10 illustrates this situation: both graphs
show that all nodes incur a lot of suspicion, even nodes that
behave correctly throughout the experiment. BertierFD is far
more stable (Figure 9): there are no haphazard mistakes once
a node is considered either correct or suspect. But changes of
state of faulty nodes lead to some degree of hesitation for
BertierFD: the points where faulty nodes stop/resume their
communications do not appear as sharp angles on the associ-
ated graph. This hesitation comes from the RTT reevaluation
every time a change of state occurs. Our reputation-based
detector produces the results shown in Figure 11b: no jitter
and clear-cut angles. This shows that RepFD responds very
well to the crash/recovery scenario. Figure 11a explains why
by plotting the evolution of the reputation values used to
determine correctness. The uncertainty associated with the
assessment translates to the oscillation of the reputation values,
while the threshold enforces both mistake avoidance and a
quick discrimination between correct and faulty nodes.

Another interesting point of our approach is that, while
detectors gather reputation values, they also build a global view
of the network. Therefore, even temporarily isolated nodes will
still have a global view of the system while the network link
is down. This provides meaningful data for identifying points
of failure.
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Fig. 7: Accuracy of SwimFD with respect to fail silent failures
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(a) Reputation value of incorrect nodes
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(b) Correctness with our reputation based failure detector

Fig. 8: Accuracy of RepFD with respect to fail silent failures
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Fig. 9: Accuracy of BertierFD in our crash/recovery scenario
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Fig. 10: Accuracy of SwimFD in our crash/recovery scenario

F. Overnet experiment: measuring up to a realistic trace

In order to test the failure detectors in an environment that
reproduces realistic failures, we took the Overnet trace from
the Failure Trace Archive [15]. Overnet is representative of
the large and dynamic environments we target: it constantly
sustains a high number of omissions from all nodes.

During each experiment, every node reads a separate node
trace selected at random, and then connects to or disconnects
from the system according to the trace. This creates an
environment where incorrect nodes omit heartbeat emissions.
The average time between two disconnections is 4 seconds;
incorrect nodes generate an average of 1 failure every 10
heartbeats. Our testbed produced more than 280,000 node
reconnections throughout this series of experiments.

We start by studying the detection time of each detector
in this scenario. The presentation of our results differs from
previous Subsections because average values would mask the
important detection time variations incurred by the detectors.
Figure 12 uses boxes to represent the second and third
quartile; the crossing line inside the boxes represents the
median; and finally the whiskers represent the 90th and 10th
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(a) Reputation values in our crash/recovery scenario
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(b) Correctness deduced from the reputation assessment

Fig. 11: Accuracy of RepFD in our crash/recovery scenario

percentile. All three detectors produce very similar behaviors
in terms of detection time: this confirms the results we obtained
for SwimFD and RepFD in the crash/recovery scenario of
Subsection IV-E. The high frequency of the reconnections
explains that the detection times of BertierFD remain close
to those of SwimFD and RepFD. As soon as BertierFD starts
suspecting a faulty node, the latter resumes its communications
and BertierFD cancels its RTT reevaluation. While this helps
BertierFD maintain reasonable detection times, it seriously
impacts its accuracy.

G. Query accuracy probability

Query accuracy probability (PA) [11] reflects the proba-
bility that a failure detector’s output is correct at any random
time. We computed the PA associated with each detector in
every experiment. Table 13 compiles the resulting values.

In a failure free context, all detectors exhibit a PA above
0.9.Yet in this experiment as in all others, the PA of SwimFD
is notably lower than those of BertierFD and RepFD. SwimFD
frequently suspects nodes because of the jitter induced by its
suspicion list. It spends roughly 10% of its time suspecting
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Fig. 12: Overnet - Comparison of the detection times

Experiment BertierFD SwimFD RepFD
No crash 0.999 0.904 0.998

Permanent crashes 0.999 0.886 0.997
Recovery 0.965 0.824 0.997

Frequent omissions 0.854 0.812 0.951

Fig. 13: Query accuracy probability of the studied detectors

nodes due to longer response times and pinging them to infirm
the detection.

In the permanent crashes experiment, BertierFD exhibits
a PA that is consistent with its original crash detection re-
sults [4]. The accuracy of RepFD also remains constant in this
experiment. SwimFD has to produce more messages when a
crash occurs. This slightly impacts the whole system, lowering
the detector’s PA down from 0.904 to 0.886: a 2% degradation.

In the crash/recovery experiment, both BertierFD and
SwimFD incur a noticeable decrease of their PA: a 3.5% and a
9.7% degradation respectively. As the delay of one detection is
reproduced multiple times in the experiment, the accuracy of
both state of the art detectors decreases. Note that the PA for
BertierFD remains above 0.96. Our detector actually produces
the best PA value in this experiment. The responsiveness of
the PID computation shines when it comes to addressing node
recoveries repeatedly over time.

The FTA trace generating frequent omissions impacts
strongly on both SwimFD and BertierFD, whereas it bears
little impact on our detector. Their respective PA results verify
this observation: whereas our detector keeps a steady PA

value, strong dynamicity impedes the accuracy of BertierFD
(PA = 0.854). The accuracy of SwimFD remains the lowest
but switching from infrequent crash/recoveries to frequent
omissions degrades the accuracy of BertierFD the most: 11%
degradation, whereas the accuracy of both SwimFD and
RepFD only incurs a 1% degradation. Bertier’s RTT estimation
does not converge fast enough, hence the important degra-
dation of the accuracy of BertierFD during this experiment.
Conversely, since SwimFD does not rely on past detections,
the level of dynamicity of the system impacts less on the
degradation of its accuracy.

H. Bandwidth usage

Experiment BertierFD SwimFD RepFD
No crash 840.0 100.8 144.1

Permanent crashes 840.0 102.5 144.9
Recovery 840.0 109.2 145.7

Frequent omissions 840.0 336.2 252.0

Fig. 14: Bandwidth consumption of the studied detectors in
bytes/s per node

Another important metric for comparing failure detectors
is their network cost. Subsection III-C assesses their respective
message complexities, but we chose to measure the overhead
generated by each detector in our experiments too. To assess
this overhead, we measure bandwidth consumption by logging
the number of messages sent and by assuming a default size of
ping/heartbeat of 84 bytes: 20 bytes for IP headers, 8 bytes for
the ICMP header, followed by the default 56 bytes of extra data
as specified for Unix ping requests. In the case of RepFD, the
size of heartbeats also includes updates of reputation values.
The table of Figure 14 compares the network costs of the three
studied detectors: it shows the average bandwidth consumption
per node and per second in every scenario.

All the values in this table remain low by the standards
of current broadband connection networks. However, it is
important to remember that we target large and dynamic
systems where network overloads are common. Moreover,
some of the failures we aim to detect can be induced by such
overloads. In this context, a lightweight protocol is paramount
for failure detection.

As expected, the all to all heartbeat protocol of BertierFD
is the most costly. It generates a constant overhead of nearly
1 kilobyte per second per node, regardless of the scenario.

Under favorable conditions, for instance a low frequency
of failures, the optimistic approach of SwimFD is very cost-
efficient. On the contrary, in a context of high omissions the
suspicion mechanism of SwimFD triggers the degraded mode
often. This generates a lot of network overhead, and the costs
would rise even higher in a larger network.

RepFD also proves very cost-efficient. Its overhead is
slightly higher than that of SwimFD when the frequency of
failures is low. But RepFD reacts well to nodes with very er-
ratic heartbeat emissions: it consumes 25% less bandwidth than
SwimFD in the Overnet experiment. Two factors contribute to
this behavior: the low average degree of nodes imposed by our
reputation system, and the fact that variations of the reputation
values are piggybacked on heartbeats. An added advantage of
this design is that it scales well.

V. RELATED WORK

Since the introduction of the notion of unreliable failure
detectors by Chandra and Toueg in 1996 [2] there have been
many research efforts in this area.

A first class of detectors, such as Swim [6], is based on
probing: nodes periodically probe their neighbors by sending
ping messages. A second class relies on heartbeats: Bertier [4]
and Chen [11] belong to this second class. Several efforts
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have been made towards scaling up failure detectors im-
plementations. In [16], a hierarchical topology is used to
reduced message complexity. Larrea et al. also aim to diminish
the amount of exchanged information in order to scale up.
To do so, they propose to use a logical ring to structure
message exchanges [17]. Finally, Swim [6] scales by using
a probabilistic approach: nodes randomly choose a subset of
neighbors to probe.

In a recent work, Leners et al. propose Falcon [1]. It
focuses on the fault detection speed and on the reliability
of failure detectors: a process detected as faulty is never up
(i.e., always effectively faulty). Falcon may kill components to
ensure this property. It is mainly designed to be used among
processes within a same local area network (e.g., a single data
center).

All the failure detectors presented above classify processes
either as correct or as faulty. Accrual failure detectors [3]
associate a value with each process, which represents the risk
that the process is indeed faulty.

Our failure detector, based on a reputation mechanism, can
rely on a more global (yet still fuzzy) view of the system
than the state-of-the-art detectors. In this work we use our
own reputation system presented in Section II-A to detect
faults among nodes. However, other reputation systems such
as [10] or systems with more advanced concepts like the ones
described in [7], [18] could also act as failure detectors as long
as the system is well tuned to detect faults. For short, the aim
of this work is not to propose a novel reputation system, but
to demonstrate that a reputation system can be used to build
efficient failure detectors for large and dynamic networks.

VI. CONCLUSION

In this paper we present an approach for implementing
failure detectors that target large scale networks where dy-
namic reconfigurations are frequent. We show that a failure
detector built on top of a reputation system achieves excellent
accuracy and completeness while tolerating high levels of
omissions. The exchange of subjective assessments among
nodes leads to an efficient cooperation towards an accurate and
up-to-date view of failures. Overall, a reputation-based detector
combines reasonable detection times with good accuracy when
the system runs well, and slows down the local detection
just enough to prevent false positives when the system incurs
frequent omissions.

We are currently running a large experiment over Planet-
Lab: we aim to exploit the unreliableness of the nodes to verify
the robustness of our approach and its ease of deployment.
We also plan to check how our approach withstands network
partitions. Another related and forthcoming study is the coop-
erative exploration of the system to identify multi-nodal points
of failure as they occur.
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