
A Communication-Efficient Causal Broadcast Protocol
João Paulo de Araujo

Sorbonne Université, CNRS, INRIA,

LIP6

Paris, France

joao.araujo@lip6.fr

Luciana Arantes

Sorbonne Université, CNRS, INRIA,

LIP6

Paris, France

luciana.arantes@lip6.fr

Elias P. Duarte Júnior

Federal University of Paraná

Curitiba, Brazil

elias@inf.ufpr.br

Luiz A. Rodrigues

Western Paraná State University

Cascavel, Brazil

luiz.rodrigues@unioeste.br

Pierre Sens

Sorbonne Université, CNRS, INRIA,

LIP6

Paris, France

pierre.sens@lip6.fr

ABSTRACT

A causal broadcast ensures that messages are delivered to all nodes

(processes) preserving causal relation of the messages. In this paper,

we propose a causal broadcast protocol for distributed systems

whose nodes are logically organized in a virtual hypercube-like

topology called VCube. Messages are broadcast by dynamically

building spanning trees rooted in the message’s source node. By

using multiple trees, the contention bottleneck problem of a single

root spanning tree approach is avoided. Furthermore, different trees

can intersect at some node. Hence, by taking advantage of both

the out-of-order reception of causally related messages at a node

and these paths intersections, a node can delay to one or more

of its children in the tree, the forwarding of the messages whose

some causal dependencies it knows that the children in question

can not satisfy yet. Such a delay does not induce any overhead.

Experimental evaluation conducted on top of PeerSim simulator

confirms the communication effectiveness of our causal broadcast

protocol in terms of latency and message traffic reduction.

CCS CONCEPTS

• Networks→ In-network processing;

KEYWORDS

Message Aggregation, Causal Order, Distributed Spanning Tree,

Hypercube-like Topology

ACM Reference Format:

João Paulo de Araujo, Luciana Arantes, Elias P. Duarte Júnior, Luiz A. Ro-

drigues, and Pierre Sens. 2018. A Communication-Efficient Causal Broadcast

Protocol. In ICPP 2018: 47th International Conference on Parallel Processing,
August 13–16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3225058.3225121

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00

https://doi.org/10.1145/3225058.3225121

1 INTRODUCTION

In distributed and parallel applications, processes cooperate among

themselves to perform some task, often requiring to communicate

with each other as a single group. Therefore, a communication

service which offers a message broadcast primitive that enables

a node to send a message to all other members of the group is of

great importance.

Due to the well-known logarithmic scalable properties of trees,

several broadcast protocols organize the nodes of the system in a

single static distributed spanning tree [19, 36, 42] that comprises

all nodes. Every message to be broadcast is then disseminated from

the root of this tree to the other nodes. However, this approach

presents the drawback that the root can become a bottleneck since

all message broadcasts start from it. Therefore, the ideal would

be to spread the root load by having one spanning tree per node,

i.e., every node of the system is a root of the spanning tree over

which it broadcasts its own messages. The trees should cover all

nodes, yet organized differently. Figure 1, where all nodes of the

system broadcast messages, confirms our statement. If messages

are disseminated over one single tree, there is a time where the root

of the tree will start queuing them because it can not process all of

them as fast as the input broadcast request rate. On the other hand,

if each node has its own broadcast tree, the load of messages is

better distributed among the nodes. Furthermore, reception latency

scales well for an increasing number of nodes/messages.

 128

 256

 512

 1024

 2048

 4096

 8192

 8 16 32 64 128 256 512 1024A
v
g
.

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

One tree per source
One tree for all

Figure 1: Reception latency for one fixed tree and for one

tree per source per unit of time [13].

Besides a broadcast primitive that allows dissemination of infor-

mation among nodes, many distributed/parallel applications require

ICPP 2018, August 13–16, 2018, Eugene, OR, USA de Araujo et al.

causal order of messages: broadcast messages must be delivered to

all other nodes by respecting the causal relation of their respective

broadcast events, i.e., the relation of cause and effect among mes-

sages of Lamport’s happened-before relationship [22]. Introduced

by Birman in the ISIS system [8], causal broadcast ensures that

if two messages are causally related and have the same destina-

tion, then they are delivered to this node in their sending order.

For instance, in a group discussion application, a causal broadcast

protocol guarantees that no members of the group will see answers

to a question before the question itself. It is worth emphasizing that

causal message ordering is of prime interest to the design of many

distributed applications. Examples of them are event notification

systems [25], multimedia applications [7, 30], multi-part online

games [16], systems that provide distributed replicated causal data

consistency [4], distributed snapshots [1], distributed database [39],

shared objects [29], publish/subscribe systems [13, 24], etc.

Operationally, direct communication between two processes

should always be faster than indirect communication where mes-

sages are relayed via intermediate nodes, the famous triangle in-
equality end-to-end latency. However, disparity in the speed of

communication links and network congestions can lead to triangle
inequality violation (TIV) [2, 30]. It is worth noting that existing

studies on TIV show that they are widespread and frequent [23, 41].

In case of TIV, node receives messages out of the causal order and,

therefore, some delay and additional treatment are imposed before

delivering them to the application in the correct order. Thereby, if

a process p receives a message out of causal delivered order, this

message should be held in and delivered to the application only

after the missing messages are received and delivered by p to the

application. For instance, in Figure 2, node 2 broadcasts message

m2. Upon delivering it, node 1 broadcasts messagem1 and just after

delivering m1, node 0 broadcasts message m0, i.e., broadcast m2

precedes broadcast m1, which, in its turn, precedes broadcast m0.

However, at node 3, messages are received out of the causal order.

Upon the reception ofm0, node 3 stores it in its local buffer and

will deliver it only after receiving and delivering bothm2 andm1.

Figure 2: Propagation of three causally relatedmessages and

their reception and delivery orders.

In the present work, we propose a causal order broadcast protocol

where, for disseminating a message, every node dynamically builds

a spanning tree, rooted at itself, on top of VCube [14] which logically
organizes nodes in a hypercube-like topology, presenting, thus,

logarithmic properties. The tree rooted in each node is organized

differently, i.e., the neighbors of a given node can vary according to

the root of the tree. We should point out that, thanks to the VCube
inference rules, the construction of different spanning trees present

no overhead.

Our protocol also guarantees causal order of messages. Further-

more, it exploits the above mentioned TIV problem of networks

for performance sake. The idea is that, even if the spanning trees

are organized differently over the VCube, parts of their paths may

intersect, i.e. a node p can be the parent of a node k in different trees.

Hence, as node p can deduce, without any overhead, every other

node’s spanning tree organization, p is aware of such intersections

and then delay the forwarding, to one or more of its tree’s children,

of those messages whose causal dependencies it knows that these

children can not satisfy them yet. As p is the responsible of forward-

ing the missing messages to those children, only upon receiving

them, p combines these messages plus the delayed one into a single

message and forwards it to the children in question. Therefore, the

number of messages sent over the network are reduced, with no

additional delay in their delivery latencies. We should point out

that, contrarily to some existing approaches [5, 18, 20, 37] where

messages are aggregated during a waiting time (implemented with

timers and timeout) which entails extra delays to delivery latency,

our approach does not induce any overhead neither degrades perfor-

mance as it is based on the principle that the sending of a message

to a node is worthless if the latter will not be able to deliver it. In-

terestingly that, due to such a reduction in the number of messages

over the network, the average delivery latency is improved since

there is less node contention.

We have implemented our causal broadcast protocol on top of

the event-driven PeerSim simulator [27] and experiments confirm

its effectiveness in terms of number of messages and transmissions,

and average message delivery latency.

The rest of the paper is organized as follows. Section 2 introduces

the hypercube-like topology VCube, followed by Section 3 that

summarizes message causal ordering principle. Section 4 describes

our message aggregation approach and our broadcast algorithm.

Section 5 presents evaluation results from experiments conducted

on PeerSim for different scenarios and metrics. Section 6 discusses

some related work and, finally, Section 7 concludes the paper.

2 VCUBE

In VCube [14], a node i groups the other N − 1 nodes in d = log
2
N

clusters forming a d-VCube, such that the cluster number s (s > 0)
has size 2

s−1
. The ordered set of nodes in each cluster s is denoted

by ci,s as follows, where ⊕ is the bitwise exclusive-or operator

(xor).

ci,s = i ⊕ 2
s−1 ∥ ci⊕2s−1,k | k = 1, .., s − 1

VCube is a distributed failure diagnosis system and it defines as

the neighbors of a node i the first faulty-free node of each cluster s
in ci,s . Periodically, i tests the first node in the ci,s to check whether
it is correct or faulty. Figure 3 shows node 0’s hierarchical cluster-

based logical organization of n = 8 nodes connected by a 3-VCube
topology as well as a table which contains the composition of all ci,s
of the 3-VCube. Let’s consider node p0 and that there are no failures.
The clusters of p0 are shown in the same figure. Each cluster c0,1,
c0,2, and c0,3 is tested once, i.e., p0 only performs tests on nodes

1, 2, 4 which will then inform p0 about the state of the other nodes
of their respective cluster.

Causal Aggregation Broadcast ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Hypercube virtuel pour le nœud 0

General ci,s table for 8 nodes

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s
1 1 0 3 2 5 4 7 6

2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4

3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

Figure 3: VCube hierarchical organization.

3 CAUSAL MESSAGE ORDERING

Causal order requires that the order in whichmessages are delivered

to the application processes respects the causal relation between

messages, i.e., the delivery of a message is dependent on the state

of the system as viewed by the sender of the message at emission

time. Therefore, causal order broadcast must ensure that if two

messages are causally related and have the same destination they

are delivered to the application in their sending order. In other

words, if a process broadcasts a messagem′ after it has delivered
another messagem, then no process in the system will deliverm
afterm′.

The causal order relation between broadcasts and delivers of

messages are based on thewell-known Lamport’s “happened before”

[22] relation between events in distributed systems. Thus, denoting

→ the causal precedence or “happened before” relation, formally:

broadcast(m1) → broadcast(m2) ⇒ delivery(m1) → delivery(m2).

We should point out that the order imposed by causal broadcast

is partial since non related messages might be delivered in different

order by the processes.

As proposed in [34], our causal broadcast protocol uses logi-

cal vector clocks [15, 26], to track information about causal order.

Every process i keeps a vector clock, denoted vci of size N . Each

messagem sent by i carries vci , wherem.vci [k] represents either
the number of messages sent by i , if k = i , or the number of k ′s
broadcast messages delivered by i before it broadcastsm. For in-

stance, considering the time diagram of Figure 2 with N = 4 nodes

where broadcast m2 → broadcast m1 → broadcast m0,m2.vc =
(0, 0, 1, 0) and, thus,m1.vc = (0, 1, 1, 0), andm0.vc = (1, 1, 1, 0).

Upon receptionm from j, i must delay the delivery ofm until

(1) it has delivered all messages from j that precedem, and (2) it

has delivered all messages delivered by j before the latter sendsm.

Formally:

∀k
{
(1)m.vc j [k] = vci [k] + 1, if k = j

(2)m.vc j [k] ≤ vci [k], otherwise

When process i delivers the messagem sent by j, it updates its
vector clock: vci [j] = vci [j] + 1.

It is worth remembering that Charron-Bost showed in [11] that

causality can be characterized only by vector timestamp of size N .

4 CAUSAL AGGREGATION BROADCAST

In this section, we present the causal broadcast protocol with mes-

sage aggregation that we propose. Firstly, we describe the adopted

system model. Then, we explain how our protocol exploits both the

VCube’s organization to dynamically build broadcast spanning and

the asynchronous nature of processes and communication channels

in order to combine causally related messages into a single message,

without degrading performance. Finally, we present the algorithm

that implements our causal broadcast protocol.

4.1 System model and definitions

We consider a distributed system composed of a finite set of Π =

{0, ..,N − 1} nodes (users) with N = 2
d
processes, where d > 0 is

the dimension of VCube. Each node has an unique identifier (id) and
nodes communicate only by message passing. Each single node exe-

cutes a task (process) and a user of the system corresponds to a node.

Therefore, the terms node, user, and process are interchangeable in

this work.

Nodes communicate by sending and receiving messages through

bidirectional channels. The topology of the connected (not necessar-

ily fully) network must allow nodes to be logically organized as an

hypercube interconnection network. Nodes do not fail and links are

reliable. Thus, messages exchanged between any two processes are

never lost, corrupted nor duplicated. The system is asynchronous,

i.e., relative processor speeds and message transmission delays are

unbounded.

We denote source of a message, the id of the node that broadcasts

a message. We also distinguish between the arrival of a message

(reception) at a process and the event at which the message is given

to the application (delivery). Note that only the latter respects

the causal order of broadcast messages, explained in the previous

section.

4.2 Dynamic building of spanning trees

In our protocol, the broadcast of a message by i to all nodes is

performed by dynamically building a spanning tree, rooted at i ,
on top of the virtual hypercube-like topology of VCube. In other

words, it takes advantage of VCube’s cluster hierarchy to build

different trees that comprises all nodes, but whose organization

depends on the source. However, as we consider that nodes do not

fail, VCube’s failure diagnosis feature is not exploited (see future

work in Section 7).

Consider d = log
2
N the dimension of VCube which is also the

height (h = d) of the related spanning tree. For broadcasting a

messagem, node i sendsm to the first node of each of its clusters

ci,s ,∀s ≤ h, to which i is linked. Upon receivingm, each of these

nodes j becomes the root of a subtree whose height is h = s − 1.
Therefore, if j is not a leaf (h , 0), it applies the same sending

procedure of i’s and so on. For instance, based on the VCube of
Figure 3, the spanning tree over which m0 will travel due to its

broadcast by node 0 is shown in the left side of Figure 4.

Auxiliary functions: In order to easily build spanning trees and

detect intersection of their paths, we define the following functions,

called by i , which exploit VCube virtual hypercube topology:

ICPP 2018, August 13–16, 2018, Eugene, OR, USA de Araujo et al.

FirstChild(i, s): returns the first node in ci,s table (Figure 3), i.e.,
the node of ci , s which is linked to i . For example, FirstChild(0,1)

= 1, FirstChild(1,2) = 3, and

FirstChild(1,3) = FirstChild(7,2) = FirstChild(4,1) = 5.

Cluster(i, j): returns the index s of the cluster of node i that con-
tains node j , (1 ≤ s ≤ log

2
N). For instance, in Figure 3, Cluster(0,

1) = 1, Cluster(0, 2) = Cluster(0, 3) = 2, and Cluster(0, 4)

= Cluster(0, 5) = Cluster(0, 6) = Cluster(0, 7) = 3.

Children(r ,h): returns, with regard to the tree rooted at node r
with height h, the first child of each cluster ci,s of i , ∀s ≤ h′, where
h′ is the height of the subtree of i in the tree of r (see Algorithm 1).

We denote this set the children of i in the spanning tree of r . The
function is called by the broadcast protocol to either (1) obtain the

children of i in the spanning tree of r or (2) to build spanning trees.

Algorithm 1 Children of i in r ’s tree

1: function Children(node r , height h)
2: if i = r then

3: return FirstChild(i, s) | 1 < s ≤ h
4: else

5: return Children(FirstChild(r,Cluster(r, i)),Cluster(r, i) −1)

When i is equal to r , Children(r ,h) simply returns its h chil-

dren. Otherwise, the function recursively searches node i in the

tree of r using the cluster of r where i is present. When the subtree

rooted in i (i = r) is found, its respective children are returned. For

example, if node 4 wants to know its children in the tree rooted

in node 2, it invokes Children(2, 3) which will recursively call

Children(6, 2) → Children(4, 1) = {5} (see right side of Fig-

ure 4).

Children(i,h) function is also used for the construction of span-

ning trees. In order to broadcast messagem, by calling the function

CO_Broadcast(m) (see Algorithm 2), i becomes the root of the

spanning tree and sends m to its log
2
N children. Upon the re-

ception of m, j, a child of i , becomes the root of a subtree of i’s
tree with height Cluster(j, i) −1. Note that the number of chil-

dren of a node also decreases by one in relation to its parent’s

cluster. Hence, every node k ∈ Children(j,Cluster(j, i) - 1), i.e.,
every child of j in relation to a tree where j ′s parent is i , receives
m from j and this procedure continues untilm is received by all

nodes that do not have children (leaves of the spanning tree). For

instance, in order to broadcast message m0 (see left side of Fig-

ure 4), node 0 calls Children(0, log
2
N) = {1, 2, 4} and sendsm0

to them. Upon receiving m0, node 1 does not forward m0 since

Children(1, 0) = ∅, node 2 forwards it to Children(2, 1) = {3},
and node 4 to Children(4, 2) = {5, 6}; Node 5 does not forwardm0

since Children(5, 0) = ∅. Node 6 forwards it to Children(6, 1) =
{7} while node 7 does not forward it since Children(7, 0) = ∅.

4.3 Aggregating causally related messages

Although the spanning trees are organized differently, their nodes

may have some common children, i.e. some parts of the paths of two

messages may intersect at a node. By exploiting this spanning trees

intersection feature, a node can delay, to one or more of its children,

the forwarding of the messages whose some causal dependencies

it knows that the children in question can not satisfy yet. Upon

0

1 2 4

3 5 6

7

2

3 0 6

1 7 4

5

Figure 4: Function Children use to (left) build a spanning

tree and (right) find a node’s children in according to a given

source.

reception of these missing causally related messages, the node

aggregates all of them into a single one and forwards the latter

to the concerned child nodes. In other words, if (1) node i knows
thatm will not be able to be delivered by its child node k because i
has not received/delivered yet some messagem′ that precedesm
and (2) i is also responsible for forwardingm′ to k , i will postpone
sendingm to k because k would not be able to deliverm. Node i
will send all the missing messagesm′ andm to k aggregated in a

single message only after receiving the former.

It is worth emphasizing that node i can deduce, without any

overhead, the spanning tree of k . Furthermore, our approach does

not entail any performance overhead or delivery latency degra-

dation, i.e., even if the forwarding ofm to k was delayed, such a

postponement does not cause any extra delay inm’s delivery by k .

0

1 2 4

3 5 6

7

2

3 0 6

1 7 4

5

2

30

6

1

74

5

Figure 5: Example of spanning trees and intersection of tree

paths

Let’s consider Figure 5 wherem2 →m1 →m0. The broadcast

of these messages by nodes 0, 2, and 1 dynamically builds different

spanning trees, as shown in the right side of Figure 5 in a system

with 8 nodes. Upon the reception ofm0, node 4 verifies that it has

not eitherm2 orm1 yet. Thus, without the aggregation approach,

node 4 would forward m0 to its children in relation to the tree

rooted in node 0, i.e., nodes 5 and 6. However, as observed in the

figure, node 5 is 4’s child in bothm0’s andm2’s trees and node 4

knows it. Thereby, by applying our aggregation approach,m0 is

forwarded immediately to node 6, but not to node 5 becausem2

precedesm0 and node 4 has not receivedm2 yet. Upon reception

of it, node 4 aggregatesm0 andm2 within a single message and

sends it to 5. Note that (1) node 4 does not wait form1 to send the

aggregation message to 5 given that the latter is not a child of 4

inm1’s tree. In fact, node 5 is the parent of node 4 inm1’s tree; (2)

if node 4 had receivedm2 beforem0, the messages would not be

aggregated to 5 since, in this case, upon reception ofm2, node 5

would be able to deliver it without depending on the reception of

m0.

Causal Aggregation Broadcast ICPP 2018, August 13–16, 2018, Eugene, OR, USA

4.4 Causal Broadcast Algorithm

Every node i keeps the following local variables:

• vector_clock : stores information about delivered messages;

• vector_max : keeps information about messages that can be for-

warded;

• pendinд: the set of messages which were received but have not

been delivered yet.

Algorithm 2 Causal broadcast at node i

1: Init

2: vector _clock [l] ← 0, ∀l = 0..N − 1
3: vector _max [l] ← 0, ∀l = 0..N − 1
4: pendinд ← ∅

5: procedure CO_Broadcast(messagem)

6: vector _clock [i] ← vector _clock [i] + 1
7: vector _max [i] ← vector _clock [i]
8: m .s ← i
9: m .vc ← vector _clock
10: CO_Deliver(m)
11: for all k ∈ Children(i, log

2
N) do

12: Send({m }) to k

13: upon receivemSet from j
14: for allm ∈ mSet do
15: pendinд ← pendinд ∪ {m }
16: while (∃m′ ∈ pendinд |m′ .vc[m′ .s] = vector _max [m′ .s] + 1) do
17: vector _max [m′ .s] ← vector _max [m′ .s] + 1
18: for all k ∈ Children(i,Cluster(i, j) - 1) do
19: aдд ← CheckAgg(k,m)
20: if aдд , ∅ then
21: Send(aдд) to k
22: CheckDelivery()

23: function CheckAgg(k ,m)

24: aдд ← ∅
25: for allm′ ∈ pendinд | k ∈ Children(m′ .s, log

2
N) do

26: ifm′ .vc[m .s] ≥ m .vc[m .s] and∄l :
(

m′ .vc[l] > vector _max [l]
and k ∈ Children(l, log

2
N)

)
then

27: aдд ← aдд ∪ {m′ }
28: return aдд

29: procedure CheckDelivery()

30: while

(
∃m′ ∈ pendinд |

(
(m′ .vc[m′ .s] = vector _clock [m′ .s] + 1)
and (m′ .vc[k] ≤ vector _clock [k], ∀k , s)

))
do

31: CO_Deliver(m′)
32: vector _clock [m′ .s] ← vector _clock [m′ .s] + 1
33: pendinд ← pendinд ∖ {m′ }

When node i wants to broadcast messagem, it calls the function

CO_Broadcast(m) (lines 5-12), which increments i’s own entry

in the local vector clock (line 6), assigns the identifier of i and the

value of its local vector clock tom, deliversm to itself, and forwards

m (as a set that containsm) to i’s log
2
N children.

Due to aggregation of messages, a node receives a set which

contains one or more messages sent by its parent j in the tree

(line 13). Each messagem in the set is handled independently by

the receiver i and included in the pendinд set (line 15).

Node i keeps track of message receptions from each other node,

by maintaining the vector vector_max (lines 16-17) of size N . Each

entry l of the vector keeps the sequence number of the last received

messagem′ from l , such that all messages sent by l that precedes
m′ have also been received.

Then, considering the reception of m, i calls, for each of its

child k in regard with m’s spanning tree (line 18), the function

CheckAgg(k,m) (lines 23-28) in order to aggregate all the mes-

sages in pendinд (including m), which do not have any missing

pending precedence related to messages that must be sent to k by i
(i.e., i is the parent of k with respect to the spanning tree of these

messages): for every pending messagem′ where i is the parent of k
in the spanning tree ofm′ (line 25), ifm precedesm′ (first condition
of line 26) and i received all dependencies ofm′ to which i is re-
sponsible to forward to k (second condition of line 26),m′ is added
to the aдд set. Otherwise, the forward ofm′ (which can be equal

tom since the latter was added to the pendinд set) is postponed. If

not empty, the set of aggregated message, which can be justm in

the case of no possible aggregation, is then sent to k (line 21).

We note m
j
i the jth message broadcast by i . Considering the

VCube of Figure 3 and the spanning trees of Figure 4, let’s suppose

that node 2 broadcasts 3 messages and node 0 broadcasts 1 message

such that: broadcast m1

2
→ broadcast m2

2
→ broadcast m3

2
→

broadcast m1

0
and all messages have been received by 4, except

m2

2
. In this case, vector_max[2] = 1 even ifm3

2
was received. Since

m1

0
.vc[2] = 3, the conditions of line 26 are satisfied only tom1

2
, that

will be sent to node 5. On the other hand, upon reception ofm2

2
,

vector_max[2] = 3, the conditions will be true form2

2
,m3

2
, andm1

0

which will be aggregated into a single message and sent to node 5.

Such an aggregation takes place only for node 5. Node 4 directly

sendsm0 to node 6 upon its reception.

The first condition of line 26 of CheckAgg(k,m) function is

necessary in order avoid sending twice the same message. Let’s

take a second example where broadcast m1

2
→ broadcast m1

0
→

broadcast m2

0
and that node 4 receives m1

0
, m2

0
, m1

2
in this order.

Upon reception ofm1

0
, node 4 forwards it to 6 but not to 5 and, thus,

m1

0
is held in (pendinд = {m1

0
}). The same happens upon reception

m2

0
(pendinд = {m1

0
,m2

0
}). However, if the first condition was not

included in line 26, m1

0
would be sent again to node 6 since the

second condition is satisfied. Upon reception of m1

2
, node 4 will

send the 3 messages aggregated into a single one to node 5.

Lastly, for each messagem′ ∈ pendinд, i delivers all messages

whose delivery is possible following the reception ofm (function

CheckDelivery, lines 29-33). A message can be delivered provided

that the two conditions described in Section 3 are satisfied. Once

a message is delivered, it is removed from pendinд. Note that the
delivery of one message can trigger the delivery of other messages.

This explains why all current remaining messages in pendinд are

re-checked until no more message is delivered (line 30).

5 EXPERIMENTAL RESULTS

We have implemented the proposed causal broadcast algorithm

on the top of the event-driven PeerSim simulator [27] and have

then conducted several experiments with different configuration

scenarios.

For sake of clarity, we denote message the data message of the

application/user to be broadcast and packet the message of the

broadcast protocol. A packet can, thus, aggregate several messages.
Based on the packet-switched network delay model of [21], we

consider that each packet sent by a node to another consumes

tpc +tq +tt +tpp units of time (u .t .): tpc accounts for the processing
time of amessage by a node, e.g., checksum verification, aggregation

ICPP 2018, August 13–16, 2018, Eugene, OR, USA de Araujo et al.

and routing decisions; tq is the time a message must wait in the

sending queue before being transmitted; tt is the time necessary to

transmit all bits of the packet to the link, and tpp expresses how long

it takes for a packet to transverse the link and reach the destination

node. Assuming that there is no broadcast mechanism available in

the system, if a message is sent to multiple destinations, a copy of

it is inserted in the sending queue for each of the destinations.

We use amaximum transmission unit (MTU) of 1500 bytes, where

20 bytes represent the packet header (the minimum value used by

the Internet Protocol [31]). The size of a message was set to 50 bytes,

similarly to the payload size of control messages or messages carry-

ing monitoring information. As messages are gradually aggregated

into a packet, if the current size of the packet reaches the MTU size,

not necessarily with all messages that must be aggregated into, our

protocol implementation sends the packet and stores the missing

messages in a new packet.

The number of nodes N vary from 8 up to 1024, in a power of

two. Each simulation was executed 30 times and we present the

average values. Nodes broadcast a new message in random time

given by a Poisson distribution with interval rate λ = 1000 u .t .
while the propagation time tpp of a message follows a normal

distribution with mean value µ = 100 u .t . and standard deviation

σ = 25 u .t . Still, based on [33], we set tpc = tt = 1 u .t ., whereas
the time a message stays queued (tq) is a function of the rate of

incoming/outgoing messages and can vary for each message. The

following metrics are considered:

• Number of packets: the overall number of packets exchanged

between nodes.

• Number of messages per packet: maximum number of messages

that nodes aggregate into a single packet.

• Size of packets: size of the packet header plus k × (size of the

vector clock plus the size of the message), where k is the number

of aggregated messages.

• Reception (resp., delivery) latency: the time a message takes from

its broadcast till it is received (resp., delivered) by a node.

• Number of buffered messages: number of messages, received by a

node, which are held in before being delivered to the application.

Without loss of correctness in capturing causal order, we have

implemented the vector clock compression algorithm proposed by

Birman [9]. When broadcasting a newmessage, instead of including

in it the N entry values of its current vector clock, a node includes

just the values of those entries that have been modified since the

last broadcast by the node.

5.1 Number of packets

A straightforward consequence of message aggregation is the re-

duction in the number of packets that transverse the links. In the

simulations, for each execution, each node broadcasts one message

(i.e., all the nodes are source). Hence, for a system with N nodes

with no aggregation, the total number of packets sent over the net-

work is N × (N − 1), as each spanning tree has N − 1 links. Table 1
shows the number of sent packets with and without aggregation.

With aggregation, the greater the number of source nodes, the

longer the paths and the higher the number of different paths (due

to the organization of the trees), path intersections, and the possi-

bility of causal relation between messages. Therefore, the number

of message aggregations increases as well, leading, for instance, to

in average 28.8% less transmissions with 1024 nodes.

Even if a great number of messages are not combined to others

into a packet, the percentage of aggregation causes a substantial

reduction in the number of packets traveling through the network,

specially with 1024 nodes. This fact impacts other metrics, as dis-

cussed hereafter in this section.

Table 1: Average number of sent packets.

Nodes No aggr. Aggr. % of reduction % of aggr.

16 240 232 3.33 3.02

32 992 919 7.36 5.77

64 4032 3513 12.87 9.05

128 16256 13759 15.36 11.04

256 65280 49262 24.54 15.41

512 261632 191528 26.79 16.70

1024 1047552 745943 28.79 19.14

Another interesting metric to evaluate is the number of packets

that actually contain more than one message. The last column of

Table 1 shows that from 3% up to 19% of the packets have more than

one message while Table 2 gives, for a scenario with 256 nodes, the

percentage of the overall packets (second column) that have a given

number of messages. As we can observe, 84.59% of the packets

have no aggregation at all and those with two and three messages

represent 9.16% and 3.12% of the transmitted packets, respectively.

Likewise, considering only the packets with more than one message

(third column), those with two or three messages account for 79%

of these packets. On the other hand, only 1.2% of all packets carries

more than 5 messages (up to the limit where four packets have

aggregated 15 messages each).

Table 2: Distribution of the number of messages per packet

for a 256 node scenario.

Messages per packet % of all packets % of aggr. packets
1 84.59

2 9.16 59.46

3 3.12 20.25

4 1.26 8.18

5 0.66 4.31

(5,15] 1.2 7.8

5.2 Size of messages and packets

Besides the 20-byte header of a packet, every message included in

the packet is associated with a vector clock. By applying Birman’s

compression algorithm in order to reduce the size of the vector

clock, a message sent by i includes only the tuples (k,vci [k]), 0 ≤
k < N such that vci [k] has changed since the last broadcast of i .
Each modified entry is represented by 4 bytes.

We have evaluated the size of messages’ vector clocks and the

number of bytes sent over the network in a scenario with 256 nodes.

Note that since the size of a packet is bounded to 1500 bytes, an

aggregated message may require more than one packet (each one

with a 20-byte header).

Considering the aggregated approach, Figure 6 shows the per-

centage of messages whose vector clock carries a given number of

Causal Aggregation Broadcast ICPP 2018, August 13–16, 2018, Eugene, OR, USA

dependencies. With no aggregation, the simulation presented the

same behavior with a variation of up to 2.73% in the results.

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

1 5 10 15 20 25 30 35 40 45 50 55

P
e
r
c
e
n
t
a
g
e

o
f

m
e
s
s
a
g
e
s

Number of causal dependencies

AGG

Figure 6: Distribution of the number of causal dependencies

of a message in a scenario with 256 nodes with aggregation.

We observe in Figure 6 that 27% of the messages have no causal

precedence, i.e., each of them carries only its own entry in the vector

clock. However, despite the small size of their respective vector

clocks, these messages cannot be aggregated by our approach since

the latter only combines messages with causal relation. For the

remaining messages, 28.5% (resp., 18.4%) of them contain no more

than 4 (resp., 9) causal dependencies, and this percentage continues

to drop till only 1 message which depends on 54 others. As each

entry requires 4 bytes, 23% of the messages (those with more than

12 causal dependencies) spend more space for storing vector clock

entries than the actual data from the application whose size is 50

bytes. On the other hand, the greater the number of vector clock

entries, the more information gathered about causal order, which

can result in more message aggregation.

Table 3: Distribution of the packets according to their size in

bytes, for a scenario with 256 nodes.

Size (bytes) % of packets (No Aggr.) % of packets (Aggr.)

< 100 52.66 63.67

(100,200] 31.28 30.30

(200,300] 7.62 6.03

(300,400] 3.91 0.00

> 400 4.54 0.00

Another consequence of message aggregation is the reduction

in the overall number of bytes sent through the links. Since each

packet has a 20-byte header, the greater the number of packets,

the greater the number of headers. Table 3 shows the distribution

of different packet sizes in the same 256 node scenario. The main

observation is that 8.45% of the packets with aggregation are bigger

than all packets with no aggregation. With aggregation there is

also a reduction in the number of packets of small sizes (< 100

bytes), specially because some messages which would be sent alone

are grouped with others causally related ones into a single packet.

Closer to themaximum packet size, aggregation presents only 0.29%

of the packets with more than 1400 bytes. The reason for this low

percentage is that a packet is forwarded whenever it is not possible

to include one more message in it due to lack of space, which

happened to 117 out of 49262 packets in the simulation analyzed in

the table.

5.3 Reception and delivery latencies

We consider two different latencies metrics : (1) reception latency of

a message is the time interval comprised from the broadcast of the

message till it arrives at the destination node; (2) delivery latency of
a message is given by the reception latency plus the queuing time,
i.e., the additional time a message is held in at the destination node

from its reception time till it is delivered to the application. For the

experiments, every node broadcasts one message.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800

A N A N A N A N A N A N A N A N

A
V
G

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes
(A = Aggregation, N = No Aggregation)

Reception
Delivery

10245122561286432168

Figure 7: Average reception and delivery latencies.

Figure 7 depicts the average reception and delivery latencies

with and without aggregation. A first observation concerns the

variation in the reception latency when the number of nodes in-

creases. Even if the number of nodes increases 128-times (from 8 up

to 1024), the average reception latency is just 2.1 times higher with

aggregation and 2.2 times without it (maximum increase of 3.9 and

4.1 times, respectively). This near-logarithmic behavior can mainly

be explained by the use of spanning trees to broadcast messages.

As expected, the postponement of the forwarding of messages

whose dependencies are missing leads to higher reception latencies.

Therefore, in the same figure, we observe that reception latency is

higher with aggregation when compared to no aggregation (except

for 1024 nodes) and, as the number of nodes increases, so does the

average reception latency. Furthermore, as discussed in Section 5.1,

aggregation rate increases with the number of nodes. For instance,

with 256 nodes, aggregation poses a reception latency in average

8.1% higher compared to the same scenario with no aggregation.

The different behavior with 1024 nodes is related to the number of

messages that the systemmust deal with. In such a scenario, average

reception latency with aggregation is 7.4% smaller because the

average time ofmessage forwarding postponement becomes smaller

than the overhead in time necessary to send packets containing a

single message. On the other hand, with no aggregation, packets

stay in average 53.4% more time in the sending queue before their

sending request is processed. Such waiting time is around 50 u .t .,
which is compliant with the difference in the same figure for the

reception latency of the two approaches with 1024 nodes.

Relating to delivery latency, the results of the figure confirm our

statement that delaying the forwarding of causal related messages

does not degrade delivery latency but, actually, reduces it when

ICPP 2018, August 13–16, 2018, Eugene, OR, USA de Araujo et al.

compared to no aggregation. In networks up to 512 nodes, delivery

latency difference with and without aggregation varies up to 3.2%

(32 nodes), explained by the normally distributed tpp (propagation

time per hop). Hence, the only difference in time that aggregated

messages can suffer from when compared to no aggregated mes-

sages is related to propagation or queuing times of the packets

which contain them. In the scenario with 1024 nodes, there exists

a greater difference between the two approaches: our causal ag-

gregation broadcast delivers messages in average 12.2% faster. The

reason is that, as previously discussed, messages are received faster

with aggregation, and possibly several messages in one packet.

Another remark about Figure 7 concerns the time that messages

are held in (pending) before being delivered to the application. Re-

gardless the number of nodes, messages are, in average, held in

longer with no aggregation than with aggregation. This difference

ranges from 5% (16 nodes) up to 53.4% (1024 nodes) since, with

aggregation, upon the reception, more messages can be delivered

immediately, reducing, therefore, the time messages are held.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850

A N A N A N A N A N A N A N A N

A
V
G

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes
(A = Aggregation, N = No Aggregation)

Reception
Delivery

10245122561286432168

Figure 8: Average reception and delivery latencies for mes-

sages of aggregated messages

In order to profile the impact of message aggregation in latency,

for different network sizes, we consider only those packets that

have two aggregatedmessages and compared them to the individual

transmissions of the corresponding messages without aggregation,

in exactly same scenarios. We can observe in Figure 8, that for

networks with 8 nodes, there is no message aggregation. However,

for the other network sizes, delivery latencies are the same (except

for 1024 nodes for the reasons discussed before) since, for the ag-

gregation approach, the reception latency increases (in average up

to 13.6%) but the delay to delivery a message decreases (59% for

512 nodes, reaching up 74% for 64 nodes).

5.4 Distribution of pending messages

Figure 9 shows the number of buffered messages by each node (set

pendinд of Algorithm 2) in a scenario with 1024 nodes, each of

them broadcasting one message. With aggregation, more than 50%

of the nodes (569) buffer at most only 50 messages, while with no

aggregation the ratio drops to less than 25% of the nodes. On the

other hand, there exist only 24 nodes, in the aggregation case, and

212 nodes, without it, that keep at some moment more than 250

messages, Such a difference is due to our aggregation approach that

avoids unnecessary buffering.

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300
 330
 360
 390
 420
 450
 480
 510
 540
 570

25 50 75 10
0
12
5
15
0
17
5
20
0
22
5
25
0
27
5
30
0
32
5
35
0
37
5
40
0
42
5
45
0
47
5

N
u
m
b
e
r

o
f

n
o
d
e
s

Maximum number of buffered messages at a time

AGG
No-AGG

Figure 9: Distribution of the maximum number of messages

buffered per node, with and without aggregation.

In Figure 10, we can observe how each node collaborates in

the aggregation process in a simulation with 1024 nodes, for two

message sizes: 50 and 5 bytes. For both sizes, the distribution of the

maximum number of messages aggregated in a packet per node

seems to follow a normal distribution although, for the 5-byte size,

there are more nodes which have aggregated a higher number

of messages per packet. The reason for such a difference is the

limitation in the number of messages that a packet can hold: the

smaller the size of the message, the greater the number of messages

that it can keep. Every node participates in the aggregation process

and most of them with a close maximum aggregation size. For the

50-byte size, 95.5% of the nodes have aggregated at some moment

between 7 and 11messages while no node has aggregatedmore than

14 messages. For the 5-byte size, 833 nodes (81.3%) have aggregated

between 8 and 12 messages.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

n
o
d
e
s

Maximum number of aggregated messages at a time

Payload 5
Payload 50

Figure 10: Distribution of the maximum number of mes-

sages aggregated per node for messages of size 5 and 50

bytes.

5.5 One tree versus multiple trees

We have also conducted some simulations where all nodes broad-

cast messages through the same single spanning tree rooted at

node 0. Furthermore, in order to simulate out-of-order message

receptions, we have varied latencies of 0’s spanning tree links each

time a link is used, following a Gaussian distribution, as if messages

took differently routes at each broadcast. The first remark is that

node 0 becomes a bottleneck and reception latencies have the same

Causal Aggregation Broadcast ICPP 2018, August 13–16, 2018, Eugene, OR, USA

behavior of Figure 1, presented in the Introduction. We have also

evaluated the average number of aggregated messages and num-

ber of delayed messages (in buffer waiting for delivery) for both

approaches (unique andmulti trees). The results are gathered in Fig-
ure 11. With a unique tree, there are at least 86% (resp.,84%) fewer

aggregations (resp., delayed messages), performed by 32 nodes

(resp., 128 nodes). Such results confirm that our aggregation ap-

proach performs better with one tree per source compared to a

single one because the former naturally exploits existing delays

induced by different paths. The smaller number of aggregations for

single tree is due to the fact that out-of-order message receptions at

nodes is limited, in this case, only to latency variations of the com-

mon links over which all messages travel, which also justifies the

reduced time messages are held in before delivery. For unique tree

with 1024, the number of aggregations decrease due to contention

in the root of the tree.

20
21
22
23
24
25
26
27
28
29
210
211
212
213
214
215
216
217
218

 8 16 32 64 128 256 512 1024

N
u
m
b
e
r

o
f

m
e
s
s
a
g
e
s

Number of nodes

Aggregated - Multi
Aggregated - Unique

Delayed - Multi
Delayed - Unique

Figure 11: Number of aggregated and delayedmessages with

one spanning tree per source and a single rooted spanning

tree (logarithmic scale).

6 RELATEDWORK

Over the years, several attempts have been proposed to reduce the

amount of information necessary to ensure causal order delivery ei-

ther by modifying the underlying topology [3, 10] or using different

types of logical clocks [28, 32, 38].

In [3], the nodes of a system are logically organized in a tree in

such a way that a node directly communicates only with a few other

nodes. Hence, a node uses just the information about the receptions

from those nodes to respect causal delivery and to timestamp its

own messages. Blessing et al. [10] go further by eliminating the

use of meta-data carried by the messages. They exploit application-

defined causal order [6] in order to organize the actors (processes)

of an application into a tree topology that guarantees causal order

delivery. The path used by the “causing” message must somehow be

included in the path of the “caused” ones. However, the model for

organization of the tree is time-costly and application-dependent.

Singhal et al. [38] observe that over a series of successive events

at a same process, only a few entries in the vector clock are likely

to be modified. Based on such a behavior, in their approach, a

process i sends to a process j only the entries of its vector clock that
changed since the last message i sent to j. Their approach reduces

the size of the information related to causal order included in the

messages, but fails to characterize causality when messages from

the same source arrive out of order. Prakash et al. proposed in [32]

the causal barrier, a structure which keeps information only about

direct dependencies. The key advantage of the causal barrier is that,
since the tracking of message causal ordering does not depend on

nodes’ identifiers (per node vector), the broadcast protocol might

scale and tolerates more easily changes in system membership.

A new type of clock based on plausible clocks [40] is presented

by Mostefaoui et al. [28]. Motivated by the observation that, for

some scenarios, a system can deliver most of the messages in the

causal order without any explicit control, the authors propose a

probabilistic approach to reduce the size of vector clocks at the

cost of a small rate of errors in the causal delivery. Even if all these

logical clocks reduce the size of causal order information included

in messages, they are not suitable for the implementation of our

causal broadcast protocol since our aggregation mechanism aims

at combining as much as possible causally related messages into a

single message. The ideal is, therefore, that nodes have knowledge

about the entire and exact chain of causal dependencies of a received

message, and not incomplete or partial ones.

Many distributed systems and application on different research

areas such as Peer-to-Peer Overlay Networks [17, 18, 37], Internet of

Things (IoT) [20, 35], Wireless Sensor Networks (WSN) [5], Parallel

Discrete Event Simulation (PDES) [12],among others, exploit the

possibility of combining/aggregating information or messages into

a single message in order to reduce communication cost improving,

therefore, performance.

In [18], a structured peer-to-peer routing protocol combines sev-

eral lookup messages into a single one with the goal of reducing the

average number of hops of messages. In [17], the circular logical

identifier space of the P2P system is divided into slices, coordinated

by a leader node. The latter collects all membership change noti-

fications sent from the nodes of its slice during a period of time

and, aiming at reducing bandwidth usage, aggregates them into a

message before sending them to the other slice leaders. Similarly,

in [37], a message bundling technique improves network through-

put by reducing the number of packet transmissions and mitigates

the load of nodes on an overlay that forwards messages.

Chetlur et al. [12] propose to optimize the communication sub-

system of Time-Warp simulators, which suffer from high overheads

due to frequent communication, by dynamically aggregating, within

a single message, those messages with the same destination that

must be sent in close temporal proximity. Considering that static

overhead is independent of message size, the authors state that

it is more efficient to communicate two data items using a single

physical message than using two separate messages.

The main motivation of data aggregation in WSN and IoT is to

provide energy savings through reducing the number of message

transmission. However, it may have an impact on other performance

metrics such as latency, load processing, or fault tolerance.

Our message aggregation strategy differs from all the above ones

since it does not rely on waiting time for performing message aggre-

gation which may increase delivery latencies. It exploits possible

path intersections of different distributed spanning trees along with

the causal relation among messages in order to aggregate them.

Thus, even if the forwarding of a message is postponed there is no

additional delay in its delivery by the destination nodes.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA de Araujo et al.

7 CONCLUSION

We have presented a causal broadcast protocol where nodes are

logically organized in a hypercube-like topology and broadcast

messages are disseminated over dynamically built spanning trees

rooted at the respective source nodes. The multiple spanning trees

avoid root contention bottleneck problem of existing protocols

that broadcast using a single root tree. By exploiting both the TIV

problem and intersection of trees’ paths, a node may buffer out-of-

order messages and forward them to its child (or children) in the

related spanning tree only when they become deliverable. Such an

aggregation mechanism does not induce any overhead since the

sending of a message to a child node is worthless if the latter will

not be able to deliver it upon reception.

Evaluation results of our experiments on the simulator PeerSim

corroborate the communication effectiveness of our multi spanning

trees message aggregation approach. Combining messages into

a single packet reduces packet traffic as well as average delivery

latencies since there is less node contention. Moreover, when re-

ceiving a packet with more than one message, a node is more likely

to deliver them all to the application faster, reducing, therefore, non

deliverable messages held in time.

Future directions in our work include adding reliability to our

causal broadcast protocol (CBCAST) in order to tolerate node fail-

ures, exploiting VCube ′s diagnosis features to detect faults, as well

as handling dynamic node membership.

ACKNOWLEDGMENTS

This work was supported by a scholarship (PhD – GDE) from CNPq

(Brazil) and by Fundação Araucária/SETI (Brazil) under the project
45112, grant 144/15.

REFERENCES

[1] A. Acharya and B. R. Badrinath. 1992. Recording Distributed Snapshots Based

on Causal Order of Message Delivery. Inf. Process. Lett. 44, 6 (1992), 317–321.
[2] F. Adelstein and M. Singhal. 1995. Real-time causal message ordering in multi-

media systems. In Proceedings of 15th ICDCS. 36–43.
[3] N. Adly and M. Nagi. 1995. Maintaining Causal Order in Large Scale Distributed

Systems Using a Logical Hierarchy. In Proc. IASTED Int. Conf. on Applied Infor-
matics. 214–219.

[4] M. Ahamad, P. W. Hutto, and R. John. 1991. Implementing and programming

causal distributed shared memory. In 11th ICDCS. 274–281.
[5] K. Akkaya, M. Demirbas, and R. S. Aygun. 2008. The Impact of Data Aggregation

on the Performance of Wireless Sensor Networks. Wirel. Commun. Mob. Comput.
8, 2 (Feb. 2008), 171–193.

[6] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. 2012. The Potential

Dangers of Causal Consistency and an Explicit Solution. In 3rd ACM Symp. on
Cloud Comp. (SoCC ’12). 22:1–22:7.

[7] R. Baldoni, M. Raynal, R. Prakash, and M. Singhal. 1996. Broadcast with Time

and Causality Constraints for Multimedia Applications. In EUROMICRO. IEEE
Computer Society, 617–624.

[8] K. Birman and T. A. Joseph. 1987. Reliable Communication in the Presence of

Failures. ACM Trans. Comput. Syst. 5, 1 (1987), 47–76.
[9] K. Birman, A. Schiper, and P. Stephenson. 1991. Lightweight Causal and Atomic

Group Multicast. ACM Trans. Comput. Syst. 9, 3 (Aug. 1991), 272–314.
[10] S. Blessing, S. Clebsch, and S. Drossopoulou. 2017. Tree Topologies for Causal

Message Delivery. In Proceedings of the 7th ACM SIGPLAN Intl. Workshop on
Programming Based on Actors, Agents, and Decentralized Control (AGERE 2017).
1–10.

[11] B. Charron-Bost. 1991. Concerning the Size of Logical Clocks in Distributed

Systems. Inf. Process. Lett. 39, 1 (July 1991), 11–16.

[12] M. Chetlur, N. Abu-Ghazaleh, R. Radhakrishnan, and P. A. Wilsey. 1998. Op-

timizing communication in Time-Warp simulators. In Parallel and Distributed
Simulation, 1998. PADS 98. Proceedings. Twelfth Workshop on. 64–71.

[13] J. P. de Araujo, L. Arantes, E. P. Duarte Jr., L. A. Rodrigues, and P. Sens. 2017.

A Publish/Subscribe System Using Causal Broadcast over Dynamically Built

Spanning Trees. In 29th Intl. Symp. on Computer Arch. and High Perf. Comp.
(SBAC-PAD). 161–168.

[14] E. P. Duarte Jr., L. C. E. Bona, and V. K. Ruoso. 2014. VCube: A Provably Scalable

Distributed Diagnosis Algorithm. In Proceedings of the 5th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems (ScalA ’14). 17–22.

[15] C. J. Fidge. 1988. Timestamps in Message-Passing Systems that Preserve the

Partial Ordering. In 11th Australian Computer Science Conf. 55–66.
[16] J. S. Gilmore and H. A. Engelbrecht. 2012. A Survey of State Persistency in

Peer-to-Peer Massively Multiplayer Online Games. IEEE Transactions on Parallel
and Distributed Systems 23, 5 (May 2012), 818–834.

[17] A. Gupta, B. Liskov, and R. Rodrigues. 2004. Efficient Routing for Peer-to-peer

Overlays. In Proceedings of the 1st Conf. on Symp. on Networked Systems Design
and Implementation (NSDI’04). USENIX Association, Berkeley, CA, USA, 14.

[18] N. Hidalgo, L. Arantes, P. Sens, and Xavier X. Bonnaire. 2010. An Aggregation-

Based Routing Protocol for Structured Peer to Peer Overlay Networks. In AP2PS
2010 - 2nd Intl. Conf. on Advances in P2P Systems. 76–81.

[19] K. Kim, S. Mehrotra, and N. Venkatasubramanian. 2010. FaReCast: Fast, Reliable

Application Layer Multicast for Flash Dissemination. In Middleware (Lecture
Notes in Computer Science), Vol. 6452. Springer, 169–190.

[20] A. Koike, T. Ohba, and R. Ishibashi. 2016. IoT Network Architecture Using Packet

Aggregation and Disaggregation. In 2016 5th IIAI Intl. Congress on Advanced
Applied Informatics (IIAI-AAI). 1140–1145.

[21] J. F. Kurose and K W. Ross. 2012. Computer Networking: A Top-Down Approach
(6th ed.). Pearson.

[22] L. Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558–565.

[23] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee. 2009. Triangle inequality

variations in the internet. In Internet Measurement Conf. ACM, 177–183.

[24] C. Lumezanu, N. Spring, and B. Bhattacharjee. 2006. Decentralized Message

Ordering for Publish/Subscribe Systems. In Middleware. Springer-Verlag New

York, Inc., New York, NY, USA, 162–179.

[25] C. H. Lwin, H. Mohanty, and R. K. Ghosh. 2004. Causal Ordering in Event

Notification Service Systems for Mobile Users. In ITCC (2). 735–740.
[26] FriedemannMattern. 1989. Virtual Time and Global States of Distributed Systems.

In Proceedings of the Workshop on Parallel and Distributed Algorithms. 215–226.
[27] A. Montresor and M. Jelasity. 2009. PeerSim: A scalable P2P simulator. In 2009

IEEE Ninth Intl. Conf. on Peer-to-Peer Computing. 99–100.
[28] A. Mostéfaoui and S. Weiss. 2017. A Probabilistic Causal Message Ordering Mech-

anism. Springer Intl. Publishing, Cham, 315–326.

[29] M. Perrin, A. Mostefaoui, and C. Jard. 2016. Causal Consistency: Beyond Memory.

In Proceedings of the 21st ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP ’16). Article 26, 12 pages.

[30] C. Plesca, R. Grigoras, P. Queinnec, G. Padiou, and J. Fanchon. 2006. A

coordination-level middleware for supporting flexible consistency in CSCW. In

14th Euromicro Intl. Conf. on Parallel, Distributed, and Network-Based Processing.
6 pp.–.

[31] J. Postel. 1981. Internet Protocol. STD 5. RFC Editor. http://www.rfc-editor.org/

rfc/rfc791.txt

[32] R. Prakash, M. Raynal, and M. Singhal. 1996. An efficient causal ordering algo-

rithm for mobile computing environments. In Proceedings of 16th Intl. Conf. on
Distributed Computing Systems. 744–751.

[33] R. Ramaswamy, N. Weng, and T. Wolf. 2004. Characterizing network processing

delay. In GLOBECOM ’04, Vol. 3. 1629–1634 Vol.3.
[34] A. Schiper, J. Eggli, and A. Sandoz. 1989. A New Algorithm to Implement Causal

Ordering. In 3rd Intl. Workshop on Distributed Algorithms. 219–232.
[35] L. Schmidt, N. Mitton, D. Simplot-Ryl, R. Dagher, and R. Quilez. 2011. DHT-

based distributed ALE engine in RFID middleware. In 2011 IEEE Intl. Conf. on
RFID-Technologies and Applications. 319–326.

[36] F. B. Schneider, D. Gries, and R. D. Schlichting. 1984. Fault-Tolerant Broadcasts.

Sci. Comput. Program. 4, 1 (1984), 1–15.
[37] K. Shudo. 2017. Message bundling on structured overlays. In 2017 IEEE Symp. on

Computers and Communications (ISCC). 424–431.
[38] M. Singhal and A. Kshemkalyani. 1992. An efficient implementation of vector

clocks. Inform. Process. Lett. 43, 1 (aug 1992), 47–52.
[39] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and C. Hauser.

1995. Managing Update Conflicts in Bayou, a Weakly Connected Replicated

Storage System. In SOSP. 172–183.
[40] F. J. Torres-Rojas and M. Ahamad. 1999. Plausible clocks: constant size logical

clocks for distributed systems. Distributed Computing 12, 4 (1999), 179–195.

[41] G. Wang, B. Zhang, and T. S. Eugene Ng. 2007. Towards network triangle

inequality violation aware distributed systems. In Internet Measurement Conf.
175–188.

[42] Y.Wang, J. Fan, X. Jia, and H. Huang. 2012. An algorithm to construct independent

spanning trees on parity cubes. Theor. Comput. Sci. 465 (2012), 61–72.

