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Abstract—Failure detection plays a central role in the engi-
neering of distributed systems. Furthermore, many applications
have timing constraints and require failure detectors that pro-
vide quality of service (QoS) with some quantitative timeliness
guarantees. Therefore, they need failure detectors that are fast
and accurate.

We introduce the Two Windows Failure Detector (2W-
FD), an algorithm that provides QoS and is able to react
to sudden changes in network conditions, a property that
currently existing algorithms do not satisfy.

We ran tests on real traces and compared the 2W-FD to
state-of-the-art algorithms. Our results show that our algo-
rithm presents the best performance in terms of speed and
accuracy in unstable scenarios.

Keywords-Failure Detectors, Quality of Service, Fault Toler-
ance, Distributed Algorithms, Reliability, Quiescence.

I. INTRODUCTION

Distributed systems should provide reliable and continu-

ous services despite the failures of some of their compo-

nents. As a consequence, failure detection plays a central

role in the engineering of such systems. A failure detector

(FD) provides suspicion information on which processes

have crashed. FDs are used in a wide variety of settings,

such as network communication and group membership pro-

tocols, computer cluster management and distributed storage

systems.

Many applications have timing constraints. They require

a FD that provides quality of service (QoS) with quanti-

tative timeliness guarantees as the QoS of the FD greatly

influences the QoS that upper layers provide. There is an

inherent tradeoff between conservative failure detection, i.e.,

reducing the risk of wrongly suspecting a correct process,

and aggressive failure detection, i.e., quickly detecting the

occurrence of a real crash. There is a continuum range of

valid choices between these two extremes and the correct

choice depends on the particular needs of each application

in terms of QoS.

Existing FDs [4], [1], [2], [6], [7], [11], [12], [10] keep

a sliding window that contains information about received

messages to make an estimate of the state (trusted or sus-

pected of having failed) of a monitored process. These FDs

assume that the network behaviour follows some stable or

slowly changing probability distribution in terms of message

delay and message loss, but are not designed to adapt their

behaviour to sudden changes in network conditions.

In this work, we present the Two Windows Failure Detec-

tor (2W-FD), a FD that adapts to sudden changes in unstable

network scenarios. This situation is likely to occur in WAN

scenarios, where packets travel across routes with varying

number of hops and are subject to latency jitter, as well

as present in LAN scenarios, possibly due to contention in

hardware switches or end systems, e.g. when a large amount

of data is suddenly sent to a machine. Virtualisation may

exacerbate the latter problem if applications with different

workloads are co-located on a shared machine. The 2W-

FD uses two sliding windows of past received messages; a

small one that stores very recent history (information about

the past few messages), and a bigger one that stores a larger

recent history. The small window allows the 2W-FD to react

rapidly to abrupt condition changes in network conditions.

The long-term window allows the 2W-FD to make better

estimations on stable periods or periods where conditions

change gradually.

We evaluated and compared the QoS of our algorithm

to the best-known existing ones [4], [1], [7], [12] in terms

of mistake rate and query accuracy probability. These algo-

rithms and concepts will be introduced in sections II and III,

respectively. We ran experiments over real traces taken from

an unstable WAN and a stable LAN scenario. Our results

show that the 2W-FD outperforms the others in the unstable

scenario and is similar to the best performing algorithms in

the stable scenario.

The rest of this paper is organised as follows. Section

II provides an introduction to the different technical areas

related to our work, Section III discusses related work,

Section IV introduces the 2W-FD algorithm. Section V

evaluates it, and compares it to other FD algorithms. Finally,

in Section VI we present conclusions on our work.
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II. BACKGROUND

We assume an asynchronous underlying system, where

it is impossible to precisely determine whether a remote

process has failed or has just been very slow [3]. Therefore,

we consider unreliable failure detectors [3] that can only

suspect a process failure. Unreliable FDs may be inaccurate,

i.e., suspect a process that has not failed, and incomplete,

i.e., overlook suspecting a failed process.

A. Quality of Service (QoS) Specification for Failure Detec-
tors

In this section, we present our considered model and

notions on QoS for failure detectors.
1) Model for QoS Specification: We consider a system of

two processes, p and q. The failure detector at q monitors

p. Real time is continuous and ranges from 0 to ∞. At

any given time t, the output of the failure detector at q can

be either S, suspect, or T, trust. Whenever the output of

the failure detector in q changes, we say that a transition
occurs: an S-transition occurs when the output of q changes

from T to S; and a T-transition happens when the output of

the failure detector at q changes from S to T. Only a finite

number of transitions can take place during a finite period

of time.
2) QoS Metrics for Failure Detectors: QoS metrics mea-

sure how fast and accurate a failure detector is. These

metrics are applicable to all failure detectors, regardless of

how they are implemented. The most relevant metrics, as

introduced by Chen et al. [4], are described in this section.

• Detection Time (TD) is the time that elapses from the

moment that process p crashes until the failure detector

at q detects the failure and starts suspecting p for ever

(see Figure 1). More precisely, TD measures the time

that elapses from the moment that the crash of p occurs

to the moment when the final S-transition occurs (at q)

and there are no further transitions (see Figure 1).

Figure 1: Detection Time TD

• Average Mistake Rate (RM ) measures the rate at which

a failure detector makes mistakes, i.e., it is the number

of times q suspects a correct process p per unit of

time (see figure 2). This metric is important for long-

lived applications where a mistake results in a costly

interrupt, such as group membership applications and

cluster management protocols.

• Average Mistake Duration (TM ) measures the time a

failure detector takes, on average, to correct a mistake

(see figure 2). This metric is useful for applications

that operate in a degraded mode when a process is

incorrectly suspected.

• Query Accuracy Probability (PA) is the probability that

the failure detector’s output is correct when queried at

a random time. This metric is useful for applications

that interact with the failure detector by querying it. It

is easy to see that this metric can be derived from the

previous two.

Note that the first metric is related to a failure detector’s

speed, while the remaining relate to its accuracy.

Figure 2: Mistake Duration TM and Mistake Rate RM

III. RELATED WORK

In this section, we present the most relevant related failure

detection algorithms.

A. Chen Failure Detector

Chen et al. developed a failure detector that provides QoS

[4]. This algorithm estimates expected arrival times (EAs)

of heartbeats, which are then used to compute freshness
points (τs). A freshness point determines the moment until

when the failure detector will wait for a message from

the monitored process before starting to suspect that it has

crashed. The next freshness point is given by the following

equation:

τl+1 = EAl+1 + α (1)

where α is a constant safety margin chosen by the user

based on her needs on detection time TD and l is the largest

sequence number of heartbeats received so far.

To compute expected arrival times EAs, Chen FD stores

in a sliding window information regarding the n previous

messages (for some n). Let s1,s2,...,sn be the sequence

number of those messages and A1,A2,...,An their receipt

times at q. Then, EAl+1 is estimated by:

EAl+1 ≈ 1

n

(
n∑

i=1

Ai − η.si

)
+ (l + 1)η (2)

where η is the heartbeat sending interval, chosen by the

user. This equation first normalises each Ai by shifting it
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backwards ηsi time units. Then, an average of the A′is
is computed and, finally, this computed average is shifted

forward by (l + 1)η.

B. Bertier Failure Detector

Bertier et al. introduced a failure detector principally

intended for LAN environments [1]. Their algorithm uses

the same mechanism as Chen for estimating expected arrival

times EAs (see Equation 2), but a dynamic way of computing

freshness points based on Jacobson’s estimation [9], which is

used in the TCP protocol to estimate the delay after which

a transceiver retransmits a message. As in Chen FD, the

arrival times of the n previous messages are kept in order

to compute EAs. Jacobson’s estimation supposes that the

behaviour of the system is not constant, and it is used in this

algorithm to adapt the safety margin each time a heartbeat

is received. EAl+1 is calculated using Equation 2. With

this two values computed, the next freshness point τl+1 is

computed exactly as in Equation 1 (by replacing α with the

dynamic margin).

C. The ϕ Accrual Failure Detector

In the ϕ FD [7], the suspicion level is given by a value

called ϕ, expressed on a scale that is dynamically adjusted

to reflect current network conditions [5]. Let Tlast denote

the time when the most recent heartbeat was received, Tnow

the current time, and Plater(t) the probability of a heartbeat

arriving more than t time units after the previously received

one. Then, the value of ϕ at current time is calculated as

follows:

ϕ(Tnow) = −log10(Plater(Tnow − Tlast)) (3)

In this context, ϕ has the following meaning. Given a

threshold Φ, if the failure detector suspects p when ϕ ≥
Φ, then the probability that the ϕ failure detector makes a

mistake is about 1
10Φ .

The estimation of ϕ is done as follows. When heartbeats

arrive, their arrival times are stored in a sampling window

(as in Chen and Bertier FD algorithms). These past samples

are used to determine the distribution of inter-arrival times.

Finally, the distribution is used to compute the current value

of ϕ. The estimation of the distribution of inter-arrival

times assumes that they follow a normal distribution. The

parameters of the distribution are estimated by determining

the mean μ and the variance σ2 of the samples. Then, the

probability Plater(t) that a given heartbeat will arrive more

than t time units later than the previous heartbeat is given

by the following equation:

Plater(t) =
1

σ
√
2π

∫ ∞

t

e−
(x−μ)2

2σ2 dx (4)

= 1− F (t) (5)

where F (t) is the cumulative distribution function of a

normal distribution with mean μ and variance σ2. Finally,

the value of ϕ at time Tnow is computed by applying

Equation 3. This process is repeated by q for every new

heartbeat received.

D. Exponential Distribution Failure Detector (ED FD)

This FD [12] is based on the same principle as the ϕ
accrual failure detector. The difference lies in the fact that

the distribution considered for message delays by the ED FD

is the exponential one. In the ED FD, the suspicion level is

given by a value called ed, which is calculated as follows:

ed = F (Tnow − Tlast) (6)

F (t) = 1− e−
1
μ t (7)

where Tnow, Tlast and μ have the same meaning as in the

ϕ accrual failure detector (section III-C). For this FD, the

threshold is called Ed.

E. Bursty Traffic

In some scenarios, the probabilistic behaviour of the

network (message delay and message loss) can vary. The

algorithms presented in this section adapt their behaviour

to gradually changing network conditions (Chen failure

detector can be made adaptive by recomputing the heartbeat

interval η and timeout α every certain period of time [7]).

There are times when network conditions change very

rapidly due to bursty traffic. Such variations are common

in WAN networks, where message delays and message

losses are more likely to occur. The presented algorithms

that compute expected arrival times adapt well when the

following conditions hold [4]:

1) the occurrences of bursts are independent of each other

and follow some slowly changing probabilistic distribu-

tion.

2) the duration of each burst is short (smaller than the

heartbeat interval η).

In this case, heartbeats behave according to some new slowly

changing probability distribution that takes into account the

occurrence of bursts.

When 1) or 2) do not hold, some mechanism to estimate

the current behaviour of the network and adapt to it is

necessary.

Summary

In this section we have introduced related work in the area

of failure detection for distributed systems.

The algorithms presented throughout this section are

able to provide QoS guarantees to applications when the

message delay and message loss of the network behave

according to some probability distribution. Nevertheless, in

the presence of bursts of lost messages, these algorithms do

not provide a mechanism to quickly adapt to such changes.
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The estimation of expected arrival times and freshness points

that these probabilistic approaches use are dependent on the

past history of observed arrival times of a large amount of

previous messages. Keeping such a large history prevents

these algorithms from quickly reacting to sudden changes.

In the next section, we further explain this problem and

introduce our algorithm, which addresses unstable network

behaviour.

IV. 2W-FD

In this section we introduce the Two Windows Failure
Detector (2W-FD) and the idea behind it.

A. Rationale

In order to adapt to bursty-traffic conditions, we propose

the use of two components for the estimation of expected

arrival times EAs and freshness points τi. Namely:

1) a short-term component that considers only the most

recent messages, which is used to quickly react to

sudden changes in network conditions, possibly due to

bursty traffic. Furthermore, we expect the algorithm to

benefit from the use of this component when the network

changes from a stable to an unstable state, i.e., the delay

of the last few messages has increased with respect to

the delay of the previous ones.

2) a long-term component that considers a bigger amount

of recently received messages that is not sensitive to

momentary fluctuations. The estimation calculated by

using the information stored by this component is useful

for periods of stability, and periods when the network

changes from an unstable to a stable state.

Whenever a message ml is received by q, both com-

ponents are used to estimate the freshness point τl+1 for

the next expected message ml+1, as we will explain in the

following section.

B. The Algorithm

Algorithm 1 presents the pseudo-code for the Two Win-

dows Failure Detection (2W-FD) algorithm for stable periods

of behaviour (after both windows have been filled). 2W-FD

keeps two sliding windows, W1 and W2 (of sizes n1 and

n2 respectively), of recently received heartbeat arrival times.

Whenever a message ml sent by p is received by q, q adds

the arrival time of message ml to W1 and to W2 (lines

15 and 16). The following step is to compute, using the

values stored in W1 and to W2, the expected arrival times

EAn1

l+1 and EAn2

l+1 (line 20). The key of the algorithm is

that, from the EAs computed, it uses the maximum of these

estimations for the computation of the next freshness point

τl+1:

τl+1 = max
(
EAn1

l+1, EAn2

l+1

)
+ α (8)

where α is a constant safety margin. Finally, if message

ml+1 is not received before time t = τl+1, q starts suspect-

ing p (line 23).

The formula used by the 2W-FD for computing expected

arrival times (EAs) for each value of n, is the following:

EAl+1 ≈ 1

n

(
n∑

i=1

Ai − ε.si

)
+ (l + 1)ε (9)

This equation presents a difference from equation 2; the

parameter ε replaces η, the parameter used by Chen and

Bertier FD. η is a fixed input parameter that indicates the

inter-sending arrival times at which the machine p is sending

heartbeats, whereas ε is the average of inter-arrival times, as

observed by q, computed by using the information stored in

the larger window. The reason behind proposing ε is that the

former approach poses a problem. When using η, it is highly

probable that process p might not be sending messages at

exactly that rate due to the fact that it is not possible to

predict that a machine is able to schedule the sending of

messages on an exact base. Even when that situation is not

present, a clock skew between the clocks at p and q would

mean that in reality η would have a different value for each

process. As time passes, the value used by Chen and Bertier

FD introduces an error that increases as the total number

of samples observed does. Such a behaviour explains why

Chen FD performs better with small window sizes, fact that

has been previously observed but not explained [11]. We

will provide empirical evidence supporting this statement in

section V.

C. Consequences of Using Two Windows

Intuitively, our algorithm is expected to work better than

the rest mainly in the presence of bursty traffic and rapid

changes in network conditions, because of the reasons ex-

plained in section IV-B. Given two window sizes n1 and n2,

our algorithm should be able to make fewer mistakes than

using a single window when using any of n1 or n2 as for

each analysed sample the 2W-FD computes the maximum

of the expected arrival times that would be computed for

each window size. The computation of the maximum implies

that the 2W-FD will only make the mistakes that a single-

windowed FD would make if it used both window sizes n1

and n2. This means:

Mistakes(n1, n2) = Mistakes(n1) ∩Mistakes(n2)
(10)

It is easy to see that, by picking the maximum of the

estimations of expected arrival times of messages, the failure

detector at q becomes more tolerant, i.e., more conservative.

This occurs because for each heartbeat, the 2W-FD will

wait for the maximum of the times estimated by each

window before starting to suspect a crash, a fact that directly

reduces the probability of making mistakes. The drawback

of this approach is that it increases the detection time TD

of the algorithm. At first sight, this would suggest that the

algorithm would not be able to work in aggressive ranges
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Algorithm 1 Two Windows Failure Detector Algorithm

Process p: 	 Using p’s local clock

1: for all i ≥ 1 do
2: at time i · η send heartbeat mi to q
3: end for

Process q: 	 Using q’s local clock

4: Initialization:

5: τ0 = 0;

6: l = -1; 	 keeps the largest sequence number of messages seen

7: W1 = {}; 	 contains the last n1 message arrival dates
8: W2 = {}; 	 contains the last n2 message arrival dates
9: EA0 = EAn1

l+1 = EAn2

l+1 = 0;

10: upon τl+1 = the current time:

11: output← S; 	 suspect p
12: upon receive message mj at time t:
13: if j>l then 	 Received a message with a higher sequence number

14: l← j;

15: W1←W1 ∪ {tj}
16: W2←W2 ∪ {tj}
17: W1←W1 \ {tj−n1}
18: W2←W2 \ {tj−n2}
19: Compute EA1[n1]l+1 and EA2[n2]l+1 	 using Equation 9
20: EAl+1←max(EAn1

l+1,EAn2

l+1)
21: τl+1 ← EAl+1 + α 	 set the next freshness point using Equation 1

22: if t<τl+1 then
23: output← T ; 	 trust p
24: end if
25: end if

of detection, where the required TD is very small. In the

next section we will show that the trade-off between the

increase in TD and the gain in accuracy (PA and RM ) is

positive; our algorithm outperforms the others to which we

have compared it to in scenarios where network conditions

vary, particularly in the aggressive range.

V. EVALUATION

In this section, we present the results of the experiments

we conducted to study the performance of our algorithm.

First, we evaluate the performance of the 2W-FD when

using different window sizes and conclude about optimal

configurations for the parameters n1 and n2. Later, we

compare the performances of 2W-FD to the algorithms

presented in section III.

A. Heartbeat Traces

All tests were performed on real traces. To generate them,

a simple software was executed on two computers for an

arbitrarily long period of time:

• Computer 1, periodically sending heartbeat messages

to the other one,

• Computer 2, receiving heartbeats and logging their

arrival information.

Whenever a heartbeat arrives to Computer 2, the heartbeat

monitor logs its sample number and arrival time. The full

logs are used later to replay the execution on each FD

algorithm. Therefore, all failure detectors were compared

under the same experimental conditions. Heartbeat messages

were sent using the UDP/IP protocol. During the recording

of traces, the average CPU load of both computers was

nearly constant and below the full capacity of each computer.
Tests Scenarios: We used two different traces for our

experiments. One taken from a WAN scenario, and the other

one, from a LAN scenario.
WAN Scenario.: This traces were taken by Hashibara

et al. for their evaluation of the ϕ FD [7]. They were also

used by the authors of the ED FD [12], and for evaluation

of other work on failure detectors [11], [10]. The traces are

publicly available at [8].
The heartbeat sending computer was located in Switzer-

land, at the Swiss Federal Institute of Technology in

Lausanne (EPFL). The monitoring computer, in Japan, at

the Japan Advanced Institute of Science and Technology

(JAIST). They communicated through a normal interconti-
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nental Internet connection. The experiment lasted for a full

week. Neither machine failed during the experiment. Heart-

beats were sent at a frequency of one heartbeat every 100

ms. The measured sending rate was actually one heartbeat

every 103.5 ms (standard deviation: 0.19 ms; min.: 101.7

ms; max.: 234.3 ms). Almost 6 million heartbeats were sent,

from which about 0.4% were lost.

During the experiment, the round-trip time (RTT) was also

measured. The average measured RTT was 283.3 ms with a

standard deviation of 27.3 ms, a minimum of 270.2 ms, and

a maximum of 717.8 ms.

It was observed that message losses tended to occur in

bursts. The distribution of burst lengths, as well as more

detailed information, can be found in [8].

There was a period where more messages were lost.

According to the authors, such event was likely caused by an

outbreak of the W32/Netsky.T@mm Internet worm, as dates

coincided.

LAN Scenario.: The experiment used two identical

computers connected through a single unshared 100 Mbps

Ethernet hub. The heartbeat interval was set to 10 ms. More

than 7 million samples were collected. The average received

interval at the monitoring computer was around 12 ms. Not

a single heartbeat was lost. The largest interval between

the reception of two heartbeats was about 1.5 seconds.

Nevertheless, the variance was very small. The average

transmission delay was around 100 μs.

B. Experiments

All failure detectors considered in these experiments rely

on window(s) of past samples to compute their estimations.

As the behaviour of the failure detectors is stable only after

the window is full, we do not include in our analysis data

obtained before that moment.

Detection Time TD.: In all experiments, we have com-

puted an estimation for the average detection time TD as

follows. Assuming that a crash would occur exactly after

successfully sending a heartbeat (worst-case scenario), we

measure the time elapsed until the failure detector would

report a suspicion, for each analysed sample. In section

V-B2, with the ϕ and ED failure detectors, we consider the

algorithms’ threshold values (Φ and Ed) and reverse the

computation of ϕ and ed to obtain the equivalent timeout

Δto. We compute this equivalent timeout each time a new

heartbeat is received and take the mean value Δto. We

estimate the mean propagation time Δtr based on round-

trip times. Then, for each sample, we compute the average

(worst-case) detection time as follows.

DT ≈ Δtr +Δto (11)

1) 2W-FD - Window Sizes: This experiment measures the

effect of window sizes on the performance of our developed

algorithm, 2W-FD. We varied the sizes of windows and
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Figure 3: 2WDF with different Window Sizes in a WAN

scenario

measured the accuracy obtained with our failure detector

when run over the traces. In order not to overload the figures,

we have only plotted the curves of the configurations that

presented the best results. In the figures, the used notation is

WS = n1-n2, where n1 expresses the size of the long-term

window and n2, the size of the small one.

Results in a WAN.: Figure 3(a) shows the results on

mistake rate RM (number of mistakes per second) vs.

detection time TD in the unstable WAN scenario. RM is

represented on the vertical axes, expressed in logarithmic

scale, and TD in the horizontal axes. Figure 3(b) shows the

results on query accuracy probability PA vs. detection time

TD in the same scenario.

In terms of RM , the 2W-FD presents the best performance

when n1=10,000-n2=1. The curves with n1=10,000 outper-

form the rest in the aggressive range, i.e., for TD values

smaller than 0.5 ms, when n2=1, 10 . The configuration

890
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Figure 4: 2WDF with different Window Sizes in a LAN

scenario

n1=1,000-n2=1 presents a very good performance in the

conservative range. Regarding PA, the best results are ob-

tained for the configurations n1=10,000-n2=1 and n1=1,000-

n2=1.

Results in a LAN: Figures 4(a) and 4(b) show the

results of the test over the traces taken from the stable LAN

scenario. The results show that the configuration n1=1,000-

n2=1 presents the best performance, both in terms of RM

and PA, for all values of TD.

Experiment’s Conclusions.: From the previous exper-

iments we observe the following tendency. In terms of

both RM and PA, our algorithm behaves better in unstable

scenarios as the size of the big window increases and as the

size of the small window decreases. It’s also noticeable from

the figures that curves for tests which share the same size

for the short-term window tend to behave similarly. For the

short-term window, the experiments suggest that the best

size is one (1). Such observation ensures the principle of

the short-term window, introduced in section IV-A, which is

reactive to very recent behaviour.
2) Comparison to Other Algorithms: In this experiment,

we compare the behaviour of the 2W-FD with four well

known failure detectors. Namely, the ones introduced in

section III. In this experiment we intend to show that the

2W-FD presents the best detection time to accuracy ratio

in unstable network scenarios. Chen and 2W FD share a

common tuning parameter, the safety margin α, which we

use in our experiments to get the different values of detection

time. The tuning parameter for the accrual failure detectors

were the thresholds Φ and Ed. Unlike the other failure

detectors, Bertier’s has no tuning parameter. For this reason,

its behaviour is plotted as a single point on the figures. The

parameters of the algorithms were configured as follow: for

Chen FD, the parameters are set the same as in [4], [7],

[11], [12], [10]: α ∈ [0, 1000]; For ϕ FD, the parameters

are set the same as in [7], [11], [12], [10]: Φ ∈ [0.5, 16];
Ed ∈ [10−4, 10] for ED FD, as in [12]. Window sizes were

set to:

• 2W-FD: n1=1,000 and n2=1. These values were chosen

as the algorithm presents the best tradeoff in terms of

big window size and processing capacity required under

such configuration.

• Chen FD: we plot two different configurations for this

FD. First, n=1 because it was proven to work better

as its window size decreases [11], as we also observed

in experiments we performed but not present in this

work, and n=1,000, as it is the commonly used value

in related work experiments [7], [11], [12], [10]. This

is the first work to include Chen FD with n=1 in its

evaluation.

• ϕ and the ED failure detectors: n=1,000. These failure

detectors benefit from using large window sizes [7],

[12]. Furthermore, we have conducted experiments that

show that for window sizes beyond 1,000 samples,

the performance improvement of these algorithms is

negligible (this fact was also observed by their authors

[7], [12]) . Finally, this is the window size its authors

used in the experiments described in their articles.

• Bertier FD: n=1,000, as that is the value their au-

thors use in experiments presented in their article [1].

Furthermore, it is the common value used in related

work [7], [11], [12], [10], and Bertier FD does not

significantly vary its performance when varying its

window size [11].

WAN results.: Figure 5(a) shows the results on mistake

rate RM vs. detection time TD in the WAN scenario. RM

is represented on the vertical axes, expressed in logarithmic

scale, and TD in the horizontal axes. Figure 5(b) shows the

results on query accuracy probability PA. vs. detection time

TD in the same scenario.
The results indicate that all algorithms follow the same

tendency. Our algorithm seems to outperform the others in
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Figure 5: Comparison of different algorithms in a WAN

scenario

the WAN scenario, mainly in the aggressive range (TD <
0.5s). It presents the lowest mistake rate (an improvement

of up to 35%) and the best query accuracy probability for

most measured detection times.

Note that in both graphs, the curve of the accrual failure

detector with normal distribution (ϕ) does not appear as it is

stopped early. This is due to the rounding error preventing

the curves to the very conservative case. This fact that was

also observed in related work [12]. Chen FD, with a window

size of 1,000, is not present in the curves as its performance

is worst (outside the bounds of the image).

LAN results.: Figures 6(a) and 6(b) show the results

on mistake rate RM and query accuracy probability PA vs.

detection time TD in the LAN scenario. In this scenario, as

the sample is very stable, the curve for the ED FD is also

stopped early. In terms of RM , the ED-FD and Chen with

n=1 present the best performance. Nevertheless, the 2W-FD
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Figure 6: Comparison of different algorithms in a LAN

scenario

performs really close to them. The fact that we use for our

computation of EAs, the maximum of the estimation of two

windows, incurs in an increased TD. In this scenario, where

networks conditions are very stable, there is no benefit of

using two windows. The results on PA show that Chen with

n=1 presents the best results in this scenario, and the 2W-FD

behaves similarly.

Experiment’s conclusions: From this experiment, we

conclude that the 2W-FD presents the best performance in

scenarios which present unstable network conditions (as the

WAN trace), when compared to the most relevant existing

algorithms for failure detection. Unfortunately, we were not

able to generate traces in a LAN scenario that present unsta-

ble conditions. Remember, from section V-B1, that it is still

possible to obtain significantly better results in the unstable

case by using n1=10,000 (remember the results shown in

Figure 3(a) and the fact that accrual algorithms do not

significantly increase their performance with bigger window
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sizes [7], [12]). Since enlarging window sizes increases the

processing and memory capacity that the algorithm requires,

the decision of increasing the size of n1 is left to the user

depending on her particular needs and configuration.

In scenarios where network conditions are expected to be

stable, we recommend using Chen with n=1. This algorithm

requires less processing capacity than the others (the φ FD

reduces performance as its window size decreases [7] and

the ED FD performs similarly for small and big window

sizes [12]), and presents the best results in stable scenarios.

We believe it is really important to stress the fact that, to

our knowledge, no previous work has evaluated Chen FD

with n=1, even when it has been previously observed that

Chen FD improves its performance as n decreases. We find

this fact strange and to be a side contribution of our work,

as it presents the best performance in stable scenarios and

equal to the state of the art at a very low cost in terms of

processing and memory capacity.

VI. CONCLUSIONS

Failure detection plays a very important role in depend-

able distributed systems. In this work, we introduced the

Two Windows Failure Detector (2W-FD), an algorithm able

to react to sudden network changes. By using two sliding

windows of different sizes to store information about recent

heartbeat history, the 2W-FD makes estimations on expected

arrival times of future messages and decides on the failure

suspicion of the monitored process.

The experiments we performed in both WAN and LAN

scenarios indicate that our failure detector presents a better

QoS in terms of false detections when comparing to existing

FD algorithms in networks with unstable conditions. On

stable networks, the Chen FD with the smallest window size

slightly outperforms 2W-FD.
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