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Abstract

Taking into account the intrinsic heterogeneity of communication latency of Grid environ-
ments, we propose in this article a composition approach that enables to build mutual exclusion
services for Grids. By using our approach, different intra and inter cluster token-based mutual
exclusion algorithms can be combined easily. Performance evaluation tests were conducted on
the French national grid testbed called Grid’5000, whose results show that our approach is ef-
fective and that the choice of the most suitable inter cluster algorithm depends on the behavior
of the application.
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1 Introduction

Computing grids federate geographically distributed computational resources in order to make
them cooperate and act a single massive computer. Such a platform is extremely interesting for
distributed and/or parallel applications that require a lot of computational power, data storage or
access to resources that are not available locally. A Grid is usually composed of a large number
of machines gathered into small groups called clusters. As such clusters are usually spread out
over different sites, cities or even countries, communication in a Grid environment is intrinsically
heterogeneous. Nodes within one cluster are linked by local networks (LAN) whereas clusters are
connected by wide area network (WAN) links. Therefore, Grids present a hierarchy of communica-
tion delays where the cost of sending a message between nodes of different clusters is much higher
than sending the same message between nodes within the same cluster.

As Grid resources can be shared, applications that run on top of a Grid usually require that
their processes get exclusive access to one or more of these shared resources by executing a segment
of code called the critical section (CS ). Thus, a Grid service that provides mutual exclusion is
extremely important for such applications. Mutual exclusion is in fact one of the basic blocks for
building distributed systems which ensures that exactly one process can execute the critical section
at any given time (safety property) and that all critical section requests will eventually be satisfied
(liveness property). It is worth also mentioning that the performance of a mutual exclusion service
can have a major impact on the overall performance of Grid applications.

Mutual exclusion algorithms can be divided into two families: permission-based (e.g. Lam-
port [8], Ricart-Agrawala [16], Maekawa [10]) and token-based (Suzuki-Kazami [21], Raymond [15],
Naimi-Tréhel [13], Martin [11]). The algorithms of the first family are based on the principle that
a node enters a critical section only after having received permission from all the other nodes (or
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a majority of them [10]). In the second group of algorithms, a system-wide unique token is shared
among all nodes, and its possession gives a node the exclusive right to execute a critical section.
Token-based algorithms present different solutions for the transmission and control of critical sec-
tion requests of processes. Each solution is usually expressed by a logical topology that defines the
paths followed by critical section request messages which might be completely different from the
physical network topology.

With regard to the number of nodes, token-based mutual exclusion algorithms present an av-
erage message traffic which is lower than that of permission-based ones. Thus, they are more
suitable for controlling concurrent access to shared resources of Grids whose number of nodes is
often very large. However, existing token-based algorithms still have intrinsic limits and do not
take into account the above-mentioned hierarchy of communication latencies. We propose in this
article a generic composition approach which enables the combination of any two token-based mu-
tual exclusion algorithms: one at intra-cluster level and a second one at inter-cluster. By using
our composition mechanism, we can provide effective mutual exclusion Grid services that take into
account communication latency heterogeneity and which can be easily deployed by just “plugging
in” token-based algorithms on each levels of the hierarchy. Furthermore, the extensive performance
evaluation tests that we have conducted on Grid’5000 1 show that the good choice for an inter-
cluster mutual exclusion algorithm depends on the application behavior, i.e., the frequency with
which the application processes request for the shared resource. In other words, the parallelism
degree of the application has an impact on the choice of inter-cluster algorithms. Using our compo-
sitional approach and relying on both the application behavior and our performance study results,
we can provide an efficient token-based mutual exclusion service dedicated to specific type of Grid
applications.

The remainder of this paper is organized as follows. In section 2, we describe our compositional
approach for mutual exclusion algorithms and an example of execution. Performance evaluation
results are presented in section 3. Related work is studied in section 4. The last section concludes
our work.

2 Composition approach to mutual exclusion algorithms

Similarly to a classical mutual exclusion algorithm, a mutual exclusion Grid service should offer two
operations: CS Request(), which allows a process to request exclusive access to a shared resource,
and CS Release() called by the same process when it wants to release the resource. However, in
order to be effective, such a service must tolerate heterogeneous network latencies. Our approach
does it by using a hierarchy of mutual exclusion algorithms: a per cluster token-based mutual
exclusion algorithm instance that controls critical section requests for processes within the same
cluster and another algorithm instance that controls inter-cluster requests for the token. The former
is called the intra algorithm while the latter is called the inter algorithm and their executions are
clearly separated. Furthermore, an intra algorithm instance of a cluster runs independently from
a second intra algorithm instance. Thus, a process obtains access to the shared resource and later
releases it by calling the above two operations which belong to the intra algorithm instance of its
cluster. Another important advantage of our approach is that the chosen algorithms of both layers
do not need to be modified. Hence, it is very simple to offer different implementations of a mutual
exclusion service by just assembling multiple mutual exclusion algorithms.

Without loss of generality, we will consider in the rest of this paper that there is just one
1Grid’5000 is an initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA,

CNRS and RENATER and other contributing partners (see https:// www.grid5000.fr)
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application which is composed of a set of processes. There is one process per node and we call it
an application process.

When an application process wants to access the shared resource, it calls the operation CS Request()
of the intra algorithm. Upon getting the intra token, the process executes the critical section. After
executing it, the process calls the operation CS Release() of the same intra algorithm to release it.
However, since one intra algorithm instance runs on each cluster, several processes could simulta-
neously access the critical section which would violate the safety property. In order to overcome
this problem, we have introduced a special node within each cluster, called the coordinator, which
ensures the safety property at a Grid wide level. The inter algorithm runs on top of the coordina-
tors and allows a coordinator to request access to the shared resource on behalf of an application
node within its respective cluster. Coordinators are in fact hybrid processes which participate in
both the inter algorithm with the other coordinators and the intra algorithm with their cluster’s
application processes. Nevertheless, even if the intra algorithm sees a coordinator as an application
process, the coordinator neither takes part in the application’s execution nor requests access to the
shared resource for itself.

The coordinator also uses the CS Request() and the CS Release() operations offered by the inter
algorithm. However, a coordinator being in critical section for the inter algorithm instance means
that one of the application processes of its cluster can access the resource. It is considered to be in
the critical section by the other coordinators.

Each intra algorithm instance controls an intra token while the inter algorithm instances controls
an inter token. For every shared resource, there is one intra token per cluster but a single inter
token for the whole system of which only the coordinators are aware. Therefore, holding the intra
token of its cluster is sufficient and necessary for an application process to enter the CS since the
local intra algorithm instance ensures that no other local application node of the cluster has the
intra token. Besides, considering the hierarchical composition of algorithms, our solution must also
guarantee that no other application process of the other clusters are also in the critical section by
holding the intra token of their own instance (per cluster safety property). In other words, the
safety property of the inter algorithm must ensure that at any time only one cluster has the right
of letting one of its application processes to execute the CS. This property can be asserted by the
possession of the inter token by a coordinator.
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(a) Classical mutual exclusion
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Figure 1: Mutual exclusion automatas

2.1 Coordinator Processes

The guiding principle of our approach is represented by the automata of figure 1.(b), which describes
the behavior of a coordinator process. In a classical mutual exclusion algorithm, a process can
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be in one of the three following states: requesting the critical section (REQ), not requesting it
(NO REQ), or in the critical section (CS), as shown in Figure 1.(a). A coordinator process can
also find itself in one of these three states likewise the classical mutual exclusion, but with regard to
both algorithms. Therefore, in the automata of Figure 1.(b), Intra and Inter refer to the coordinator
state related to the intra algorithm instance and inter algorithm instance respectively. Moreover,
a coordinator has additional states with respect to the global state of the composition, which can
be one of the following: OUT , IN , WAIT FOR OUT , WAIT FOR IN .

If the coordinator is in the OUT state, no local application process of its cluster has requested
the CS. Thus, it holds the intra token (Intra = CS) but it does not hold the inter token (Inter
= NO REQ). When an application process wants to enter the critical section, it sends a request
to the processes of its cluster by calling the CS Request() operation of the intra algorithm. The
coordinator of the cluster, which is the current holder of the intra token, will also receive such a
request. Upon receiving it, the coordinator holder changes its global state to WAIT FOR IN .
However, a coordinator can only grant the intra token to a requesting application process of its
cluster if it holds the inter token too. To this end, it calls the CS Request() operation of the
inter algorithm in order to request the inter token. Therefore, when the coordinator finds itself
in the WAIT FOR IN global state, there are one or more pending intra algorithm requests, the
coordinator still holds the local intra token (Intra = CS) but it is waiting for the inter token delivery
(Inter = REQ).

The coordinator state changes to the IN global state when it receives the inter token. It then
grants the intra token to the requesting application process by calling the CS Release() operation
of the intra algorithm. Thus, the coordinator holds the inter token (Inter = CS) but has given the
intra algorithm token (Intra = NO REQ) to one of the application processes of its cluster.

A coordinator which holds the inter token must also treat inter token requests received from
the other coordinators. However, it can only grant the inter token if it also holds its local intra
token. Holding this token ensures that there is no application process within its cluster in the
critical section. When another coordinator requests the inter token, but the current holder of it
does not keep both tokens, the latter sends a request to its intra algorithm asking for the intra
token. Its global state triggers to WAIT FOR OUT coordinator, i.e., the coordinator still holds
the inter token (Inter = CS) but it is waiting for the intra token (Intra = REQ) in order to be able
to satisfy the inter algorithm pending requests. Upon obtaining the intra token, the coordinator
can grant the inter token to the requesting coordinator by calling the CS Release() operation of the
inter algorithm. It returns to the OUT state where it holds the intra token (Intra = CS) but not
the inter token (Inter = NO REQ).

It is worth remarking that only one coordinator can be either in the IN or in the WAIT FOR OUT

global state at any given time. All the other nodes are either in the OUT or in the WAIT FOR IN

global state.
Figure 2 shows the algorithm of the coordinator corresponding to the automata which we have

just described. The mutexState variable corresponds to both the Inter and Intra states of the
automata and the variable state refers to the global state of the automata. Notice that the body
of CS Request (line 20) and CS Release (line 25) functions depends on the chosen token-based
algorithm, i.e., how the token is requested and granted respectively. The pendingRequest( ) is a
trap callback function inserted in the code of both intra and inter mutual exclusion algorithms
which indicates if there are token requests of the respective level waiting to be satisfied.
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Coordinator Algorithm ()1

intra.CS Request()2

/* Holds intra-token CS */3

while TRUE do4

if ¬ intra.PendingRequest() then5

state ← OUT6

Wait for intra.PendingRequest()7

state ← WAIT FOR IN8

inter.CS Request()9

/* Holds inter-token. CS */10

intra.CS Release()11

if ¬ inter.PendingRequest() then12

state ← IN13

Wait for inter.PendingRequest()14

state ← WAIT FOR OUT15

intra.CS Request()16

/* Holds intra-token CS */17

inter.CS Release()18

CS Request ()19

...20

mutexState ← REQ21

Wait for Token22

mutexState ← CS23

CS Release ()24

...25

mutexState ← NO REQ26

pendingRequest ()27
28

return

{
TRUE if ∃ pending request
FALSE otherwise

Figure 2: Coordinator algorithm

2.2 Example of Execution

Figure 3 shows an execution of our hierarchical mutual exclusion approach. It consists of a Grid
composed of four three-node clusters. Each cluster i comprises two application nodes, Ai and Bi,
as well as the coordinator Ci. We consider a token-based mutual exclusion algorithm based on
broadcast of requests, such as Suzuki and Kasami’s [21] algorithms, for both the intra and inter
algorithms. In Suzuki and Kasami’s algorithm, a node that wants to execute a critical section
broadcasts a request to all the participants of the algorithm (CS Request ()). Upon receiving the
token, the node can execute the critical section. When it leaves the CS (CS Release()), it grants
the token to the first node from which it had received a request.

As we can observe in Figure 3(a), at the beginning of the execution, node A1 keeps the intra
token of cluster 1 and the coordinator C1 keeps the inter token. The intra tokens of clusters 2, 3,
and 4 are held by their respective coordinators C2, C3, and C4.

Suppose that node B3, which is in the OUT state, wants to execute the CS. It then calls the
CS Request (see Figure 3(b)). Thus, a request is broadcast to all the nodes of its own cluster. Upon
receiving the request, the coordinator C3 calls the CS Request () of the inter algorithm since it does
not hold the inter token which broadcasts a request to all coordinators. However, only the holder
of the inter token, the coordinator C1, will forward such a request to the application nodes of its
cluster by calling the CS Request () operation of its intra algorithm. The global state of C3 and C1

change to WAIT FOR IN and WAIT FOR OUT respectively. We can already observe at this
point the advantage of our hierarchical approach in terms of number of messages when compared
to the original algorithm. The hierarchy structure of our approach has limited the number of inter
cluster request messages to three. Furthermore, the request was not forwarded to the nodes of
clusters 2 and 4, which is coherent with the automata: since coordinators C2 and C4 are both in
the OUT state, no application node of these clusters finds itself in critical section and it is worthless
to send them the request.
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Figure 3: Example of execution

Before node B3 gets the intra token, suppose that node B2 calls the CS Request() operation
(figure 3(c)). A request message will be sent to all nodes of its cluster. Upon reception of this
request, C2 will broadcast it to all coordinators. However, the request will not be broadcast inside
those clusters where there is no node executing the critical, i.e., clusters C3 and C4, and neither
inside cluster C1 since it is already in the WAIT FOR OUT global state.

Finally, suppose that a second application node of cluster 3, A3, also decides to call the
CS Request () operation. We observe in Figure 3(d) that the request will not be broadcast at
the inter level of our composition approach. This happens because the coordinator C3 is in the
WAIT FOR IN global state which means that it has sent a previous inter request that has not
been satisfied yet. Therefore, our composition approach naturally aggregates requests inside the
same cluster which reduces the number of inter cluster messages.

Three critical section requests are now pending in the system: requests from B3, B2, and A3.
In a classical fair token-based mutual exclusion, the requests would be satisfied in the order of their
receptions, i.e., first B3’s request, then B2’s request, and finally A3’s request. However, such an
order forces the token to cross the clusters (figure 3(e)): from cluster 1 to cluster 3 when A1 grants
the token to B3, from cluster 3 to cluster 2 when B3 grants the token to B2, and back to cluster 3
when B2 grants the token to A3. The round trip time for the token’s travel between cluster 2 and 3
considerably increases the time for a process to get access to the critical section. Contrarily to the
delay of a token request which can be overlapped by the duration of a critical section execution,
no process can execute a critical section during a token transfer. Hence, reducing the delay of a
token transfer has a direct impact on the overall performance of the algorithm since the time during
which a node waits for the token will decrease as well.

In our composition approach, see Figure 3(f), the hierarchy of algorithms may naturally reorder
the requests, giving priority to local requests over remote ones. When node A1 ends the critical
section, it calls CS Release() and grants the intra token to C1 which in its turn sends the inter token
to C3 by calling the CS Release() of the inter algorithm. The coordinator C3 then grants the intra

6



token of cluster 3 to node B3 (CS Release() of the intra algorithm) and changes its global state
from WAIT FOR IN to IN . But at the same time, C3 knows that there is a pending request from
C2, as explained above. Therefore, by calling the CS Request() operation of the intra algorithm, C3

broadcasts a request to all nodes of its cluster 3 in order to get the intra token. C3 then triggers to
WAIT FOR OUT global state. Notice that when node B3 concludes the execution of the critical
section, there are two pending requests: one from A3 and another from C3. By keeping the order
of reception of requests, B3 grants the intra token to A3 since it received A3’s requests before C3’s
request. This means that without changing the original intra algorithm, the request of A3 will
be satisfied before the request of B2 thus avoiding the mentioned round trip travel time of the
inter token between clusters 2 and 3. Upon ending the execution of the critical section, A3 grants
the intra token to C3, since requests are satisfied in order and C3’s is the next one. Having the
intra token, C3 can grant the inter token to C2 by calling the CS Release() operation of the inter
algorithm. Such a token will allow the nodes of cluster 2 to execute the critical section, i.e., B2 in
this example.

3 Performance Evaluation

This section presents some performance evaluation results conducted on the French large-scale
Grid’5000 [4]. Some preliminary results have been presented in [20] and [19].

Our performance tests aim at comparing the efficiency of some mutual exclusion algorithm
compositions considering applications with different degrees of parallelism. The basic algorithms
that we have chosen are Martin’s [11], Naimi-Trehel’s [13], and Suzuki-Kasami’s [21] which
are well-known token-based algorithms found in the literature. They are briefly described below.

3.1 The chosen token-based algorithms

Martin’s, Naimi-Trehel’s, and Suzuki-Kasami’s respectively consider a ring, a tree, and a
complete logical connection graph for forwarding critical section requests. As they present dis-
tinct solutions for both transmitting requests and controlling the algorithm’s liveness, they present
different message complexity with regard to the number of nodes.

3.1.1 Martin’s algorithm

Martin’s algorithm considers that nodes are organized in a logical ring. Requests for the token
move along one direction while the token on the opposite direction.

When node i, which does not hold the token, wants to enter the critical section it asks for the
token by sending a request message to its successor j in the ring. If j does not keep the token it
forwards the request to its successor. The request will travel along the ring till it reaches the site
k which keeps the token. On receiving the request, if k is not in critical section itself, it sends the
token to its predecessor. Each node between k and i will do the same. Therefore, the token will
eventually reach i, which then can enter the critical section. Notice that before the token reaches
i, nodes between i and k might have requested the token too. Thus, when k forwards the token
on behalf of i all pending requests of nodes between k and i will be satisfied when they receive the
token.

If the number of nodes between i and k is x, 0 ≤ x < N − 1, the total number of messages
exchanged per critical section invocation is 2∗ (x+1): (x+1) messages for the request plus (x+1)
messages for the token. In average, such a number is equal to 2 ∗ (N/2) = N messages.

Considering T as the average message delay, a request message delay Treq and the token granting
delay Ttoken are both equal to (x + 1) ∗ T (N ∗ T in the average case).
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Notice that for optimization reasons, upon receiving a request from its predecessor, a node that
is also requesting the token does not need to forward the request of the predecessor. It just keeps
the information that after satisfying its own request, it must send the token to its predecessor.

3.1.2 Naimi-Tréhel’s algorithm

Naimi-Tréhel’s algorithm establishes that nodes are organized in a logical tree and that a node
always sends a token request to its father on the tree. It thus keeps two data-structures:

• A logical dynamic tree structure such that the root of the tree is always the last node which
will get the token among the current requesting ones. Hence, requesting nodes form a logical
tree of probable token owners that point to the root. Initially, the root is the token holder,
elected among all nodes. This tree is called the last tree, since each node keeps a local variable
called last that points to the last probable owner of the token.

• A distributed queue which keeps critical section (CS) requests that have not been satisfied
yet. This queue is called the next queue, since each node i keeps a local variable called next
that points to the next node to whom the token will be granted after i leaves the critical
section.

When a node i wants to enter the critical section, it sends a request to its last. Node i then
sets its last variable to itself and waits for the token. Node i becomes the new root of the tree.

Upon receiving i’s token request message, node j can take one of the following actions: (1) j

is not the root of the tree. It forwards the request to its last; (2) j is the root of the tree. If j

holds the token but it is not in critical section, it directly sends the token back to i. In opposition,
if j either holds the token but is in the critical section or is waiting itself for the token, j sets its
variable next to i. In both case, node j updates its last variable to i. Notice that the last tree is
modified dynamically. At the end of the critical section, j sends the token to its next.

Tree-based algorithms result in an average number of messages per CS equal to O(log(N)) with
regard to the number of nodes. A request message delay Treq takes in average O(log(N)) ∗T while
the token granting delay Ttoken takes T .

3.1.3 Suzuki-Kasami’s algorithm

In the Suzuki-Kazami’s algorithm, when a node i, which does not hold the token, attempts to
enter the critical section, it diffuses a request message to the other N − 1 nodes. Such a message
contains the identifier i of the node and a sequence number x which indicates the xth critical section
invocation of i. As in the previous token-based algorithms, when node i receives the token, it enters
the critical section.

Each node i keeps an array RNi of size N where it stores the largest token invocation (sequence
number) of each node of which it is aware. Whenever i receives a request from j, it updates RNi[j]
with the sequence number of the request.

The token message includes a queue Q of nodes whose requests are pending and an array LN

of size N which keeps the sequence number of the most recent satisfied request from each node.
When node i exits the critical section, it updates LNi[i] with its current RNi[i] in order to indicate
that its request has been satisfied. Then, it appends to Q all nodes not yet in Q for which it knows
that their requests have not been satisfied yet. If Q is not empty, the first node j is removed from
Q and the token is sent to j.

The algorithm requires N message exchanges for each mutual exclusion invocation. Both the
request message delay Treq and token granting delay Ttoken are equal to T .
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3.2 Experiment Parameters

The mutual exclusion algorithms as well as the coordinator are written in C using UDP sockets.
An application process that runs on a single node executes 100 critical sections. Each of them lasts
10ms, which is the same order of magnitude as a data packet hop time between two clusters. Every
experiment was executed 10 times and the presented results represent the average value.

An application behavior is characterized by:

- α: time taken by a node to execute the critical section;
- β: mean time interval between the release of the CS by a process and its next request.
- ρ: the ratio β/α, which expresses the frequency with which the critical section is requested.

We have developed several applications having low, intermediate, and high degrees of paral-
lelism.

Considering N as the total number of application processes (180 in our experiment), the three
degrees of parallelism can be expressed respectively by :

- Low Parallelism: ρ ≤ N : An application where the majority of application processes
request the critical section. Thus, almost all coordinators wait for the inter token in the inter
algorithm. In other words, almost all clusters have one or more application processes in the
requesting state.

- Intermediate parallelism: N < ρ ≤ 3N : A parallel application where some sites compete
to get the CS. Only some coordinators are in the requesting state with respect to the inter
algorithm on the whole Grid i.e., just some clusters have one or more application that request
the CS.

- High Parallelism: 3N ≤ ρ: A highly parallel application where concurrent requests to
the CS are rare. The whole number of requesting application processes is small and usually
distributed over the Grid. Hence, only one or a few clusters have one or more application
processes in the requesting state with regard to the inter algorithm.

The performance of a mutual exclusion algorithm is usually measured by the number of messages
exchanged per critical section and the delay for getting access to the shared resource i.e., the time
interval between the moment a node requests the CS and the moment it gets it. The latter, which
we called the obtaining time in this paper, comprises the delay for transmitting a token request
Treq plus the delay for granting the token Ttoken. However, if the time for waiting for the current
pending requests TpendCS is higher than Treq, the obtaining time is equal to TpendCS plus Ttoken.
Thus, the three metrics that we considered are: the obtaining time i.e., the number of sent
messages, and the standard deviation of the obtaining time.

For the sake of simplicity, we call the Naimi-Tréhel and Suzuki-Kasami algorithms respec-
tively Naimi’s and Suszuki’s and for all figures of this section we have adopted the notation “Intra
algorithm-Inter Algorithm” to denote a two level algorithm composition. For instance, “Naimi-
Martin” denotes a composition where Naimi-Tréhel’s algorithm is used as the intra algorithm of
every cluster and Martin’s algorithm as the inter algorithm.

3.3 Performance Results : Composition Study

In this section we present evaluation performance results by composing the three algorithms de-
scribed in section 3.1 with different application behaviors.

The evaluation performance experiments were conducted on Grid’5000, a French large-scale
grid experimental testbed. It comprises 17 clusters located in 9 different cities all over France.
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Whichever the cluster, every node has a Bi-Opteron CPU and 2GB of RAM. Clusters are connected
by dedicated 10Gb/s bandwidth links.

Our experiments used 9 of the 17 clusters, each one with 20 nodes, located in a different city.
Figure 4 presents the average latency between the clusters.

PPPPPPPPfrom
to

Orsay Grenoble Lyon Rennes Lille Nancy Toulouse Sophia Bordeaux

Orsay 0.034 15.039 9.128 8.881 4.489 95.282 15.556 20.239 7.900
Grenoble 14.976 0.066 3.293 15.269 12.954 13.246 10.582 9.904 16.288

Lyon 9.136 3.309 0.026 12.672 10.377 10.634 7.956 7.289 10.078
Rennes 8.913 15.258 12.617 0.059 11.269 11.654 19.911 19.224 8.114
Lille 10.000 10.001 10.001 10.001 0.001 10.001 20.000 20.001 10.001

Nancy 5.657 13.279 10.623 11.679 9.228 0.032 98.398 17.215 12.827
Toulouse 15.547 10.586 7.934 19.888 19.102 17.886 0.043 14.540 3.131
Sophia 20.332 9.889 7.254 19.215 16.811 17.238 14.529 0.051 10.629

Bordeaux 7.925 16.338 10.043 8.129 10.845 12.795 3.150 10.640 0.045

Figure 4: Grid’5000 RTT Latencies (average ms)

The abscissae of the curves always represent the ρ parameter (degree of parallelism). Hence,
when analyzing the curves the reader must keep in mind that when ρ increases, the number of
processes that concurrently request the critical section decreases.

As we observed that the inter algorithm has a much stronger influence in the overall performance
than the intra algorithm, the experiments of sections 3.3.1 and 3.3.2 have been performed by fixing
the latter to Naimi’s algorithm. Therefore, the variation of application processes obtaining time
and number of inter cluster sent messages is only due to the inter algorithm. The latter comprises
the number of messages for delivering inter token requests plus the number of messages for granting
the inter token.

The impact of the intra algorithm choice on the overall performance of our composition approach
as well as the advantages of choosing Naimi’s for the intra algorithm are explained in section 3.3.4.

3.3.1 Obtaining time of application processes

We consider the following notations:

- T : average message delay for transmitting a message between two coordinators;
- Treq : average message delay for transmitting an inter token request message from a coordi-

nator to the coordinator that will grant it the token.
- Ttoken : average message delay for granting the token between the current coordinator token

holder and the requesting coordinator;
- TpendCS : average delay for satisfying all the current pending inter token requests before

satisfying the studied inter token request.
In terms of obtaining time, a first remark is that for all curves the obtaining latency decreases

with the decreasing of concurency, i.e., the reduction of the waiting queue size. The clustering of
intra token requests has also an advantageous impact on the obtaining time when compared to the
original algorithm, as we can observe in figure 5.(a). Such a benefit depends on ρ .

In highly parallel applications where there is almost no concurrency among accesses to the
shared resource (ρ ≥ 3N), the obtaining time of a coordinator comprises the request message
delay Treq plus the token message delay Ttoken. However, in applications with high concurrency for
accessing a shared resource, as in low parallel applications (ρ ≤ N), a coordinator must wait for all
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Figure 5: Composition evaluation

the other pending CS requests to be satisfied before getting the token. This delay, which we called
TpendCS , is usually higher than the one for sending the request Treq and completely overlaps Treq.
Therefore, the obtaining time of a coordinator consists of TpendCS plus the token message delay
Ttoken. This explains why the obtaining time tends to be higher when ρ ≤ N , since in this case
there are always many application processes in the requesting state, and quite short when ρ ≥ 3N ,
since the number of waiting coordinators for the token is small. Such a behavior can be observed
in figure 5.(a).

Low parallel application: We did not observe any significant difference with respect to the
average obtaining time of all three algorithms of figure 5.(a) for ρ ≤ N . As explained above, in
this case, the obtaining time of a coordinator is equal to TpendCS plus Ttoken. TpendCS is the same
for all three inter algorithms while Ttoken is reduced to T in the case of Naimi’s (a send to the
next node) and Suzuki’s (a send to the first node of Q) algorithms. In Martin’s algorithm, the
current token holder grants the token to its predecessor in the ring. However, as this node has a
very high probability of having requested the token too, the token granting delay also takes one
message (Ttoken = T ), as in the other two algorithms.

As concurrency among accesses to the shared resource is quite high in low parallel applications,
the obtaining time does not vary much. Such a behavior will be explained in section 3.3.3, where
the standard deviation of the obtaining time is discussed.

Intermediate parallel application: A first remark is that Naimi-Naimi’s obtaining time is
comparable to Naimi-Suzuki’s (cf. figure 5.(a) for N < ρ ≤ 3N) whereas Naimi-Martin’s is slightly
higher. This is explained by the fact that when using Martin’s as the inter algorithm, there are
some coordinators waiting for the inter token which implies that their Treq can still be covered up
by their TpendCS . Thus, similarly to low parallel applications, the main factor for the obtaining time
is Ttoken. Suzuki’s and Naimi’s inter algorithm invariably need only one message, whose delay is T

while Martin’s needs more than one message in average. For Martin’s, the smaller is the number
of pending requests, the lower is the probability that a second coordinator has also requested the
token and the higher is the probability that Ttoken increases. Therefore, Martin’s algorithm is not
suitable as the inter algorithm for this type of application.

Highly parallel application: In the case of applications with high degree of parallelism, CS
requests from application processes are quite sparse. As explained above, in such applications, the
obtaining time of a coordinator comprises the requesting message delay Treq plus the inter token
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message delay Ttoken. As the application does not present much concurrency, Ttoken is equal to T

to both Naimi’s and Suzuki’s algorithms while for Martin’s it is equal to N/2 ∗ T .
In terms of Treq, the most effective inter algorithm is Suzuki’s, since a CS requesting is performed

by a single message sent in parallel to each coordinator, taking just T . As Naimi’s uses a tree to
route requests, the average delay for a request travel is log(N) ∗T between coordinator nodes. The
less suitable algorithm is Martin’s. Since the number of requesting coordinator tends to zero, a
CS request tends to travel along the ring an average of N/2 successive hops, which implies a Treq

of N/2 ∗ T . Hence, the impact of Treq in the obtaining time of the three algorithms explains why
Suzuki’s presents the lowest obtaining time and Martin’s the highest one as observed in figure 5.(a)
for ρ ≥ 3N ,

We can summarize our study about the obtaining time by the table of figure 3.3.1.

hhhhhhhhhhhhhhhComposition
Parallelism

Low Intermediate High

Naimi-Suzuki TpendCS + T TpendCS + T T + T
Naimi-Martin TpendCS + T TpendCS + K ∗ T (N/2) ∗ T + (N/2) ∗ T
Naimi-Naimi TpendCS + T TpendCS + T log(N) ∗ T + T

Figure 6: Average token obtaining time per composition

3.3.2 Number of inter-cluster sent messages

In figure 5.(b), we can see that, independently of ρ, the original Naimi-Tréhel always presents the
same number of inter cluster sent messages (O(log(N))). This constant behavior can be explained
since the routing of both a CS request and a token granting message from a node does not depend
on its location. A message is arbitrarily routed through nodes which are within the same cluster
or belong to different clusters. On the other hand, when a compositional approach is used, inter
cluster messages are managed by coordinators which gather token request messages from application
processes into just one inter token request. Hence, the number of inter cluster sent messages
decreases when compared to the original algorithm, as we can observe in the same figure for all
three algorithm compositions. Nevertheless, when applying our composition approach, the number
of inter cluster sent messages is not constant but increases with ρ.

When ρ is small, there is a lot of concurrent CS requests from application processes of the same
cluster which result in a single inter token request by the coordinator of the cluster in question.
In this particular case, we should emphasize the advantage of using the Naimi-Naimi’s algorithm
composition compared to the original one. But when concurrency for the CS decreases, the gath-
ering of intra CS requests by a coordinator decreases as well which implies in more inter cluster
requests.

In the case of Suzuki’s and Naimi’s inter algorithms, the number of sent messages per inter token
request of a coordinator consists of one message for the grant of the inter token and respectively N

messages andO(log(N)) messages for inter token request. Hence, in terms of number of inter cluster
sent messages, Naimi’s is more efficient than Suzuki’s, which can be observed in the curves Naimi-
Naimi and Naimi-Suzuki of figure 5.(b). However, in the case of Martin’s algorithm, that number
depends on ρ. For low parallel applications (ρ ≤ N), the probability of having all coordinators
requesting the inter token at a given time is high. Therefore, the grant of the inter token takes just
one message as well as a coordinator request since a second coordinator which is in a requesting state
does not forward a request, as explained in 3.1.1. When the parallelism of the application increases,
the number of inter-cluster sent messages per inter token request increases as well. This growth can
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be explained since the probability that some coordinator requests the inter token decreases. Thus,
the number of hops of a request message increases proportionally, which generates more messages.
In a highly parallel application, a token request in Martin’s generates N/2 messages and the grant
of the token generates N/2 messages. By comparing Naimi-Martin and Naimi-Naimi curves of
figure 5.(b), we can observe that for highly parallel applications (ρ ≥ 3N), the number of inter
cluster messages sent by Martin’s is slightly higher than Naimi’s.

The number of inter cluster messages can be summarized by the table of Figure 3.3.2.

hhhhhhhhhhhhhhhComposition
Parallelism

Low Intermediate High

Naimi-Suzuki N + 1 N + 1 N + 1
Naimi-Martin 2 2 < K < N (N/2) + (N/2)
Naimi-Naimi log(N) + 1 log(N) + 1 log(N) + 1

Figure 7: Average number of Inter Cluster message per composition
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Figure 8: Obtaining time standard deviation

In order to analyse more precisely the variation of the obtaining time, its standard deviation
σ has been measured, as shown in figure 8.(a). A first remark when observing this figure is that
σ is in fact quite significant for all ρ values compared to the average CS time. This is due to the
communication heterogeneity of the Grid platform: inter cluster latencies are much higher than
intra cluster ones and the former are not uniform with regard to two different clusters, as described
in figure 4.

To measure the importance of σ and to evaluate the side effects of the average obtaining time
variations, we choose to study the relative deviation time σr = (σ/x̄), which is the ratio of the
standard deviation σ to the average obtaining time x̄ - see figure 8.(b). The original Naimi’s
algorithm relative deviation σr is always smaller than that of any composition of algorithms. This
happens because in the case of Naimi’s, the path covered by the token is independent of the actual
token position. However, in our approach, a request can have one of the following two delays: a
very short one when the token is already in the cluster of the requesting node, and a long one when
the token is not in the same cluster.
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All curves of the figure 8.(b) have the same form: a significant growth for the lower values
of ρ and then a stabilizing phase. This growth of σr can be explained by two phenomena : the
overlapping of the requesting trip time (Treq) by the process time of the requesting queue and the
sequential ordering due to the extreme number of requests (for ρ = N/2).

With respect to the difference between the compositions curves, we can note that they are
equivalent for lower values of ρ. For the intermediate parallel degree (N < ρ ≤ 3N), Naimi-Martin’s
has the worst absolute standard deviation due to its logical ring structure while Naimi-Suzuki’s
and Naimi-Naimi’s present a better absolute standard deviation. However, Naimi-Suzuki exhibits a
better relative standard deviation. For ρ > 3N , Naimi-Suzuki has the smallest σ as show in figure
8.(a).

3.3.4 Intra algorithm choice
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Figure 9: Intra Algorithm

We have carried out several experiments aiming at choosing the best intra algorithm with respect
to the behavior of the applications. In order not to load Figure 9, we just show the curves when
the inter algorithm is fixed to Naimi’s. Experiments with the other two algorithms have presented
the same behavior.

In terms of the number of intra cluster messages, all algorithms have an acceptable local over-
head. One could argue that since Suzuki’s algorithm sends a much higher number of request
messages per critical section than the other two algorithms, it might be not chosen as the intra
algorithm. However, as nodes within a cluster are linked by a LAN, a multicast primitive could be
used to diffuse the request which will significantly reduce the number of sent messages.

Concerning the obtaining time (figure 9.(a)), all algorithms present almost the same curve,
independently of ρ with a slight advantage for Suzuki-Naimi. Still, the latter has a weaker regularity
(figure 9.(b)) than Naimi-Naimi. This difference is due to the lack of fairness of Suzuki’s algorithm
when appending nodes to the token queue Q since it does not consider the arrival time of the
requests.

Therefore, the regularity and performance of Naimi’s algorithm justify choosing it as the intra
algorithm in the experiments of the previous sections.
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3.4 Performance Results: The Impact of the Grid Architecture

We are interested now in studying the influence of the Grid architecture in the performance of both
the mutual exclusion algorithms and our composition approach. To this end, the number of nodes
of the Grid was fixed to 120 but the number of clusters varied: 2, 3, 4, 6, 8, 12, 20, 30, 40, 60, and
120. However, since the number of clusters of Grid’5000 is limited to 17, the current experiments
were conducted on a dedicated cluster of twenty-four machines Bi-Xeon 2.8 Ghz with 2GB of
RAM where a Grid environment with 120 virtual nodes was emulated. For those configurations
where the number of virtual clusters is greater than the number of available machines, nodes of the
same virtual cluster run on the same machine. This approach prevents side effects of intra cluster
communication.

The network latencies between clusters were emulated by using DUMMYNET [17]. DUM-
MYNET is a flexible tool which emulates bandwidth limitations, delays, and packet losses. Based
on addresses and ports of both destination and source nodes, DUMMYNET intercepts packets,
passing them through one or more queues and pipes, which simulate different message transmission
configurations. Hence, for emulating several virtual clusters, every message exchanged between two
virtual clusters goes through a dedicated machine, a P4 machine 3Ghz, which runs DUMMYNET.
The mean of Intra cluster communication latency is equal to 0.5ms while inter cluster latency is
equal to 20ms.

All the machines are connected by a 140 Gbits/s Ethernet switch. Notice that in order to
validate our emulation platform, some of the tests described in the previous sections on top of
GRID’5000 were conducted on it. Results were very close.

We have fixed the composition to Naimi-Naimi. Our choice can be explained based on the results
of the previous sections since such a composition presents the best obtaining time for applications
with low and intermediate parallelism and a reasonable one for applications with a high parallelism.
Furthermore, its low complexity in terms of number of messages helps us to evaluate the particular
case where each cluster is composed of one machine per cluster. For such a study, we have considered
applications with different degrees of parallelism.

Figures 10(a) and 10(d) correspond to a low degree parallel application (ρ = N/2); Figures
10(b) and 10(e) correspond to a medium degree parallel application (ρ = 2N); Figures 10(c) and
10(f) correspond to a high degree parallel application (ρ = 5N). For each experiment, we have
measured the obtaining time (Figures 10(a), 10(b), and 10(c)) and the number of inter cluster
messages (Figures 10(d), 10(e), and 10(f)) for both the original Naimi-Tréhel algorithm and the
Naimi-Naimi composition.

3.5 Impact of the number of clusters on the algorithm without composition

We start by studying the impact of the number of clusters of the Grid on both the obtaining
time and the number of inter cluster messages in the original Naimi-Tréhel algorithm. We can
observe in Figure 10, that the curves related to Naimi-Tréhel algorithm have a quite similar form.
Independently of ρ, all these curves present a hyperbolic form: a significant growth when the
number of clusters varies from 2 to 12. This growth then strongly flattens, becoming almost null,
when the number of clusters is greater than 40.

In order to better explain the form of such curves, we have decided to theoretically study
the frequency with which a mutual exclusion algorithm sends an inter cluster message, i.e., the
probability P that the destination node of a message does not belong to the same cluster of the
sender of the message. To this end, we consider a Grid architecture composed of N nodes uniformly
distributed over c clusters. Without loss of generality, we also suppose that a node can send a
message to itself. This assumption models two successive accesses to the critical section by the
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Figure 10: Impact of the number of clusters

same node. We then get the following probability P :

P =
N − N

c

N
= 1− 1

c

This equation is totally in accordance with the form of the curves of Figure 10 for Naimi-
Tréhel algorithm. It also shows that such a probability does not depend on the number of nodes
N whenever they are uniformly distributed over the Grid. A last important conclusion from this
equation is that the clustering effect due to the communication latency heterogeneity of a Grid
has a negligible impact on the algorithm. One could always argue that such a heterogeneity might
change the order of priority of the requests in such a way that request from closer nodes would be
satisfied before distant ones. However, in the above equation, any node can be chosen among N

with the same probability, i.e., independently of the topology of the Grid. In addition, if theoretical
curves were produced from the equation, they would be similar to the ones of Figure 10. Thus,
we can deduce that the assumption of equiprobability is reasonable and that the impact of the
clustering effect on Naimi-Tréhel’s algorithm is not significant.

Let’s come back to the curves in order to now study the impact of the number of clusters in
function of the application behavior. The results of Figures 10(a), 10(b), and 10(c) confirm those
studied in section 3.3.1 on top of Grid’5000, i.e., the degree of parallelism of an application has an
impact on the obtaining time. However, since the forms of the curves are quite similar, this impact
does not depend on the architecture of the Grid. Furthermore, the curves of Figures 10(d), 10(e),
and 10(f) show that the parallelism degree of an application has no influence in the number of inter
cluster messages even if we observe a small reduction of this number for low parallel applications.

3.6 Impact of the number of clusters on the composition approach

We are going now to study the impact of the Grid architecture on our composition approach.
Similarly to what we have observed in the previous section for the original algorithm of Naimi-
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Figure 11: Mean deviation between the composition approach and the original algorithm

Tréhel, the number of clusters has an influence in the obtaining time as well as in the number
of inter cluster messages which increase with the number of clusters. However, if we exclude the
configuration with one node per cluster where there is in fact no hierarchy of communication at all,
our approach always presents a smaller obtaining time and number of inter cluster messages when
compared to the original Naimi-Tréhel algorithm. Notice that the benefit of using our composition
approach is considerable even for a Grid composed of 60 two-node clusters.

Since the topology of the Grid has not the same impact on our composition approach as on
the original plain algorithm, it would be interesting to study the mean deviation between our
composition approach’s curves and the original algorithm’s curves for both the obtaining time and
the number of inter cluster messages. Thus, based on the curves of Figure 10, Figure 11 shows such
mean deviations.

We can remark in Figure 11 that the gain of our composition approach increases when the
number of clusters varies from 2 to 12. This is in accordance with the curves of Figures 10 where
both the obtaining time and the number of inter cluster messages increase fast for the original
algorithm but smoothly for our composition approach. Such a different behavior explains why the
maximum mean deviation between the two curves is reached with 12 clusters. Beyond this threshold
value, the clustering effect does not have an influence on the obtaining time neither on the number
of inter cluster messages since in our composition approach the curves progressively increase and
Naimi-Tréhel’s curves remain linear. Thus, the respective mean deviations inversely decrease till it
becomes null for the configuration where each node represents a cluster (120 clusters).

We would like to theoretically evaluate the above threshold in a Grid composed of N nodes
uniformly divided into c clusters. Hence, similarly to what we do in section 3.5 for Naimi-Tréhel
algorithm, we need to calculate the probability P that a node sends an inter cluster message for
our own composition approach considering a aforementioned Grid. Without loss of generality, we
consider the case where the cluster locality is maximum, i.e., every time a coordinator of a cluster
gets the inter token, all the N/c nodes of this cluster executes a critical section. So, the probability
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P is equal to the probability of executing the last of the N/c critical section executions:

P =
1
N
c

=
c

N

Therefore, the mean deviation E(c) between our composition approach and the original algo-
rithm in function of the number of clusters c is equal to :

E(c) = 1− 1
c
− c

N

and the mentioned threshold cthreshold is equal to:

E′(c) =
1
c2
− 1

N

E′(c) = 0 ⇒ cthreshold =
√

N

Such an equation shows that the maximum benefit when using our composition approach is
reached for a Grid architecture composed of

√
N nodes. This result can be verified by the curves of

Figure 11 since
√

120 = 10.95. Consequently, for ρ = N/2, the maximum mean deviation is reached
between 8 and 12 clusters. It is also worth remarking that for low parallel applications (ρ = 5N),
the Grid architecture corresponding to the peak benefit shifts to a 6 clusters Grid. Lastly, we can
observe on the curves of Figure 10 that our approach becomes less effective when the degree of
parallelism increases: it does not present a linear behavior anymore when the number of clusters
increases contrarly to low parallel applications.

4 Related work

Several studies have propose to adapt existing mutual exclusion algorithms to a hierarchical scheme.
In Mueller [12], the author presents an extension to Naimi-Tréhel’s algorithm, introducing the
concept of priority in it. A token request is associated with a priority and the algorithm first
satisfies the requests with higher priority. Bertier et al. [3] adopt a similar strategy based on the
Naimi-Tréhel’s algorithm which treats intra-cluster requests before inter-cluster ones.

Some approaches have adapted the mutual exclusion mechanism of a DSM system to the latency
hierarchy of an interconnection of clusters. In [1] or [2], the authors propose a solution based on a
centralized token-based mutual exclusion protocol.

Several authors have propose hierarchical approaches for combining different mutual exclusion
algorithms. Housni et al. [7] and Chang et al. [5]’s mutual exclusion algorithms gather nodes
into groups. Both articles basically consider hybrid approaches where the algorithm for intra-group
requests is different from the inter-group one. In Housni et al. [7], sites with the same priority are
gathered at the same group. Raymond’s tree-based token algorithm [15] is used inside a group,
while Ricart-Agrawala [16] diffusion-based algorithm is used between groups. Chang et al.’s [5]
hybrid algorithm applies diffusion-based algorithms at both levels: Singhal’s algorithm [18] locally,
and Maekawa’s algorithm [10] between groups. The former uses a dynamic information structure
while the latter is based on a voting approach. Similarly, Omara et al. [14]’s solution is a hybrid
of Maekawa’s algorithm and Singhal’s modified algorithm which provides fairness. In Madhuram
et al. [9], the authors also present a two level algorithm where the centralized approach is used at
lower level and Ricard-Agrawala at the higher level. Erciyes [6] proposes an approach close to ours
based on a ring of clusters. Each node in the ring represents a cluster of nodes. The author then
adapts Ricart-Agrawal to this architecture.
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Our work is close to these hybrid algorithms when gathering machines into groups (clusters
in our case) which has in influence in the conception of the algorithm. However, such algorithms
do not consider differences in communication latency as the main reason for grouping machines.
Furthermore, our approach is more generic as it tries to chose the good combination of algorithms
according to the application’s behavior comparing different mutual exclusion algorithm composi-
tions on top of Grid.

5 Conclusions

In this paper, we have proposed a new approach for composing mutual exclusion algorithms in order
to offer mutual exclusion service for Grid environments where application processes are spread over
several clusters interconnected by long distance links. Such a composition is totally transparent
to the application and any classical token-based algorithm can be chosen as both inter and intra
algorithms. Our two-level approach is scalable and can be easily extended to multiple levels of
algorithm hierarchy which render it extremely suitable for large-scale systems.

Performance evaluation results from experiments conducted on both the real French wide Grid
Grid’5000 and an emulation platform show that the degree of parallelism of an application has an
impact on the choice of the inter algorithm. Such a choice depends on the logical topology that the
algorithm takes into account for forwarding the token request. To this end, Martin’s, Naimi-Tréhel’s
and Suzuki-Kasami’s algorithms which respectively consider a ring, a tree and a complete graph
topology, where used as the inter algorithm in our tests. When the system is stressed (the rate of
CS request is high and there are requests in all clusters), a ring topology is the most effective; when
the CS rate is lower (ie., the application exhibits a higher degree of parallelism) both the tree and
the complete graph configurations are more efficient since they reduce the number of hops of CS
request messages. Such results prove that our approach provides a framework for easily choosing
the best two algorithms combination for composing mutual exclusion services.
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