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Abstract

This paper proposes a fault tolerant permission-
based k-mutual exclusion algorithm which does not
rely on timers, nor on failure detectors, neither does
it require extra messages for detecting node failures.
Fault tolerance is integrated in the algorithm itself and
it is provided if the underlying system guarantees the
Responsiveness Property (RP). Based on Raymond’s
algorithm [21], our algorithm exploits the REQUEST-
REPLY messages exchanged by processes to get access
to one of the k units of the shared resource in order
to dynamically detect failures and adapt the algorithm
to tolerate them.

1. Introduction

Distributed mutual exclusion problem involves Π
processes which communicate via message passing
and need to access a shared resource by executing
a segment of code called the critical section (CS).
Hence, only one process can be in the critical section
at any given time. The k-mutual exclusion problem
(k-mutex) is a generalization of the mutual exclusion
problem by considering k units of the shared resource.
It then allows at most k processes to access these units
simultaneously, i.e., one process per unit. Therefore, a
k-mutex algorithm must guarantee that at most k pro-
cesses can be in its critical section at any time (safety
property) and that every request for critical section
execution is eventually satisfied (liveness property).

Several k-mutex algorithms have been proposed in
the literature and they can be classified into two main
categories: permission-based [21], [20], [9] and token-
based [23], [13], [4]. The first one is based on the
principle that a node gets into critical section only
after having received permissions from all or a subset
of the other nodes of the system. In the second one,
the possession of the single token or one of the k

tokens gives a node the right to enter into the CS.
Although token-based algorithms usually present good
performance in respect to the number of messages,
they suffer from poor resiliency. On the other hand,
due to redundancy of messages, some permission-
based algorithms inherently tolerate failures or can be
adapted to tolerate them more easily.

We present in this paper a fault tolerant permission-
based k-mutex algorithm. The choice for a permission-
based is justified by the reason mentioned above.
Our algorithm is inspired by Raymond’s algorithm
[21], where a process that wants to access one of
the k units of the shared resource sends a request
to the other processes and thus waits for a sufficient
number of permissions (REPLY messages) that ensures
that no more than k − 1 of the other processes are
currently executing the critical section. The novelty
of our solution is that fault tolerance is integrated
in the algorithm and its messages. Unlike the ma-
jority of fault tolerant mutual exclusion algorithms
[15], [18], [7], our algorithm does not require extra
messages for broadcasting information about crashes,
neither does it require timers nor failure detectors for
checking the liveness of nodes. Information about node
failures is included in the messages of the algorithm
themselves. Furthermore, contrarily to some k-mutual
exclusion algorithms [21],[23] where the efficiency
of the algorithm drops at every failure because the
number of processes that can simultaneously execute
the CS decreases as well, our fault tolerance approach
guarantees that even if the algorithm might temporarily
degrade, its efficiency is reestablished (i.e., k processes
in the CS simultaneously), despite failures.

Basically, the idea of our approach is that, besides
information about the k-mutual exclusion algorithm
itself, each reply from pj to pi’s request includes
information about all nodes that do not reply to pj’s
own request, i.e., those nodes that might be faulty.
By gathering information received from these replies,



pi can detect which are the nodes that have crashed.
Our algorithm tolerates at most k − 1 node crashes.
However, detection of failures is only possible if the
underlying system satisfies a property, denoted the
Responsiveness Property (RP), which is based on
Mostefaoui et al.’s work [17]. In other words, our
approach relies on an additional assumption which
characterizes the synchronism of the system. The RP
property states that, for every process pk, since the
beginning of the algorithm execution, there is a set
of at least f + 1 processes such that each process
pj of this set has always got a reply from pk to
its request until pj possibly crashes. The RP then
guarantees that if pi waits for |Π| − f responses
to its broadcast request (where Π is the number of
initial nodes of the system and f maximum number
of crashes with 1 ≤ f < k) among the received
replies, there will be at least one from the f + 1
processes of the above set. Such a reply message will
contain information about pk liveness, if pk has not
crashed. Consequently, pk will not be suspected to be
faulty by pi. Otherwise, the information that pk does
not answer will eventually be included in all replies
received by pi, which will thus conclude that pk is
faulty. Interestingly, that without any additional failure
detection mechanism but just based on the information
included in the reply messages of the algorithm and the
RP , our fault tolerant k-mutex algorithm ensures (1)
that every crash is eventually detected by every correct
process and (2) no correct process is suspected. It is
worth pointing out that the conjunction of (1) and (2) is
respectively equivalent to the strong completeness and
perpetual strong accuracy assumptions of the perfect
failure detector P [6], which is sufficient to solve fault-
tolerant mutual exclusion problem [8].

One could argue that the fault tolerance provided by
our k-mutual exclusion algorithm does not work for
every kind of system. That is true, but if the system
presents the RP , fault tolerance is offered without
much overhead since it is inserted in the algorithm
itself. Examples of such systems will be discussed in
the article.

The paper is organized as follows. Section 2 de-
fines the computation model. Examples of systems
that satisfy RP are given in section 3. Our fault-
tolerant algorithm is described in Section 4. Simulation
performance results are present in Section 5 while
some related work is discussed in section 6. Finally,
Section 7 concludes the paper.

2. Computation model

We consider a distributed system consisting of a
finite set of nodes named Π = {p1, . . . , p|Π|}, where
|Π| > 1. The set of participants is known by all nodes.
There is one process per node. Hence, the words node
and process are interchangeable. Every pair of nodes
is assumed to be connected by means of a reliable
communication channel and processes communicate
by sending and receiving messages.

To simplify the presentation, we take the range T
of the clock’s tick to be the set of natural numbers.
Processes do not have access to T : it is introduced for
the convenience of the presentation.

The number of units of the resource is k. We assume
that k is known to every process. The duration of the
CS is bounded.

Nodes can fail by crashing only, and this crash is
permanent. A correct process is a process that does
not crash during a run, otherwise, it is faulty. Let f ,
which is known to every process, denote the maximum
number of processes that may crash in the system. We
consider that 1 ≤ f < k.

The underlying system must satisfy a property, that
we denoted Responsiveness Property (RP), on top of
which our fault tolerant k-mutual exclusion algorithm
runs. Such a property characterizes the synchronism
of the underlying system. In addition, a REQUEST-
REPLY mechanism, as proposed in [17], is necessary:
a process pi that broadcasts a request must wait for the
corresponding REPLY messages from |Π| − f nodes.

Let t ∈ T . We use the following notation:

• crashedt : the set of processes that have crashed
at or before t.

• not rec fromt
i: the set of processes from which

pi has not received a REPLY message to its last
request that terminated at or before t.

• rect
i: the set of processes pj that, at time t,

have received a REPLY message from pi to their
last request terminated at time t. Thus, rect

i =
{pj |pi 6∈ not rec fromt

j}.

Notice that we assume that pi is always included in
rect

i and is never included in not rec fromt
i.

Based on Mostefaoui et al. in [17], the Responsive-
ness Property, RP , is defined as follows:

RP def
= ∀pi : ∀t : (pi 6∈ crashedt) ⇒

(| ∩0≤u≤t (recu
i ∪ crashedu)| > f)

Intuitively, the RP property states that for each pro-
cess pi, from the beginning of the algorithm execution
and until pi possibly crashes, there is a set of processes
whose size is greater than f such that each process pj



of this set received a REPLY message from pi to each
of its request until pj possibly crashed.

3. Examples of systems that satisfy the RP
An example of a system that satisfies the RP would

be a set Π of processes fully-connected and organized
in a logical ring where pi can communicate to all the
nodes but among the replies received by pi+1 and pi−1

(pi’s neighbors) to their respective requests there is
always pi’s reply until pi possibly crashes. In order to
ensures that the RP always holds, the system should
tolerate at most two faults, which implies that f ≤
min(2, k−1). Such a system is feasible if, for instance,
both channels (pi−pi−1) and (pi−pi+1) are never the
slowest ones among all the channels connecting pi to
another process. Hence, if pi, pi+1 and pi−1 are not
crashed at time t then {pi−1, pi, pi+1} belong to rect

i.
Since a node pj waits for |Π|−f REPLY messages for
its request, if pi is not crashed at t, among the REPLY
messages received by pj there exists at least one from
those three processes. The message informs that pi has
not crashed (pi 6∈ not rec fromreplier).

A second example would be a system composed
of interconnections of clusters, such as a Grid, where
communication latencies between nodes of different
clusters are much higher than communication latencies
between nodes within the same cluster and where there
is at least one correct process in every cluster. The
number of faults must thus be bounded by the number
of nodes of the smallest cluster minus one and k: if
the |Π| nodes of a Grid are spread over c clusters and
the number of nodes in the smallest one is equal to
nci, then f ≤ min(nci − 1, k − 1). Such a value
ensures that pi will always receive at least one REPLY
message from every other cluster. Furthermore, due to
the difference of latencies, responses sent by pi as an
answer to the processes’ requests of its own cluster at
time t are always received by these processes among
their first ones. Therefore, if pj and pi do not belong
to the same cluster, a REPLY message received by pj

from a process that belong to pi’s cluster will contain
information about pi liveness.

4. Timer-free fault-tolerant k-mutex

In this section we present our permission-based k-
mutual exclusion algorithm that tolerates 1 ≤ f < k
failures when the underlying system satisfies the (RP).
Its pseudo-code is shown in Algorithm 1.

We consider that each process infinitely calls the
functions Request resource() to ask access to a unit
of the shared resource, i.e., to execute the critical

section (CS), and calls the Release resource() when it
releases the CS. Lamport’s logical clocks [12] is used
for controlling causality of events.

Process pi can issue two types of messages: (1)
REQUEST message which is timestamped by the pair
(Ci, i), i.e., the current value of pi’s logical clock and
its identification. Such a timestamp defines Lamport’s
total order for the requests: (Ci, i) < (Cj , j) ⇔ Ci <
Cj or (Ci = Cj and i < j). The message also
holds information about the set of faulty processes
pi is aware of; (2) REPLY message which contains
pi’s identification, a tag which denotes if pi gives its
permission (PERM) or not (NOPERM) to the requesting
process to execute the critical section, and the set of
processes not rec from that did not answer to the
last request of pi. In order to uniquely identify the pair
(REQUEST, set of REPLIES), each REPLY message also
includes the timestamp of the corresponding REQUEST
message. For the sake of simplicity such a timestamp
is not included in the pseudo-code of Algorithm 1.

The following local variables are handled by pi:

• statei: keeps one of the possible pi’s states with
respect to the critical section: requesting, CS,
not requesting.

• Ci: Lamport’s logical clock (counter).
• lasti : the value of the logical clock of pi when

it sent its last REQUEST message.
• have permi: a boolean vector that informs if

process pk has already given its permission to pi’s
current request or not.

• crashedi: the set of processes that pi currently
knows to have crashed.

• not rec fromi: the set of processes from which
pi has not received a REPLY message to its last
request.

• new not rec fromi: an auxiliary variable used
to construct not rec fromi.

• Xi: the set of the not rec from sets re-
ceived by pi. Each element of Xi is a tuple
〈j, not rec fromj〉.

• pendingi: the set of processes to which pi sent a
REPLY message with a NOPERM tag.

When a process pi wants to access a unit of the
shared resource (Request resource()), it sets its state
to requesting and sends a REQUEST message to all
processes except those which pi knows to be faulty
(lines 12-13). Notice that there is no false suspicion,
i.e., if pi considers that pj has crashed, then it really
did. Each of those processes, if they are not faulty, will
reply to pi. However, pi does not need to wait for a
permission from all of them to enter the CS. When
it has received a sufficient number of permissions



1: statei ← not requesting . Initialization
2: Ci ← 0
3: crashedi ← ∅
4: not rec fromi ← ∅
5: Xi ← ∅
6: pendingi ← ∅

Request resource(): . Node wishes to enter CS
7: statei ← requesting
8: new not rec fromi ← Π \ {i}
9: Xi ← {〈i, not rec fromi〉}

10: lasti ← Ci + 1
11: have permi[ ] ← false
12: for all j 6= i : j 6∈ crashedi do
13: send REQUEST (i, lasti, crashedi) to j

14: wait until (Count perm(have permi) ≥ |Π−crashedi|−
k)

15: statei ← CS

Release resource(): . Node exits the CS
16: for all (j 6= i : j ∈ (pendingi \ crashedi)) do
17: send REPLY (i, PERM, not rec fromi) to j

18: pendingi ← ∅
19: statei ← not requesting

20: upon receive REQUEST (j, Cj , crashedj) do
21: Ci ← max(Ci, Cj) + 1
22: for all k ∈ crashedj \ crashedi do
23: if have permi[k] then
24: have permi[k] = false

25: crashedi ← crashedi ∪ crashedj

26: if (statei = CS) or (statei = requesting and
(lasti, i) < (Cj , j)) then

27: send REPLY (i, NOPERM, not rec fromi) to j
28: pendingi ← pendingi ∪ {j}
29: else
30: send REPLY (i, PERM, not rec fromi) to j

31: upon receive REPLY (j, ack, not rec fromj) do
32: new not rec fromi ← new not rec fromi \ {j}
33: Update(Xi, 〈j, not rec fromj〉)
34: if |new not rec fromi| ≤ f then
35: not rec fromi ← new not rec fromi

36: crashedi ← crashedi ∪ (
⋂
〈−,ls〉∈Xi

〈−, ls〉)
37: if (statei = requesting) and (ack = PERM) and (j /∈

crashedi) then
38: have permi[j] = true

Algorithm 1: Fault-tolerant k-mutex algorithm

such as to be sure that no more than (k − 1) of
the other correct processes are executing the CS, pi

can start executing it too. More explicitly, pi just
needs to wait for |Π− crashedi|−k permissions. The
call to Count perm(have permi) returns the current
number of permissions received by pi (line 14). Thus,
upon receiving the necessary number of permissions,
pi knows that it can access a unit of the resource and it
then changes its state to CS (line 15). Note that while
waiting for the permissions, the value of |Π−crashedi|
dynamically decreases if pi detects a new failure of one
or more processes. A second remark is that pi includes
in its REQUEST message the information it currently

knows about crashed processes which allows the other
processes, specially those that do not request the CS
very often, to update their knowledge about failures.

Process pi exits the CS by calling the function Re-
lease resource(): it sends a permission to all processes
to whom pi sent a reply with a NOPERM tag in it and
which it supposes not to be faulty (lines 16-19). It then
sets its state to not requesting.

Upon reception of a REQUEST message from pj ,
node pi updates its logical clock Ci. It also verifies if
in pj’s REPLY message there exists information about
the crash of a node pk which sent its permission earlier.
In this case, pi must not consider pk’s permission
(lines 23- 24). It then updates its crashedi set with
the information about crashed nodes carried in pj’s
message (line 25) and sends back a permission (REPLY
message tagged with PERM) only if it is not in the
CS or if its current request does not have priority
over pj’s one according to the total order defined
by Lamport (line 30). Otherwise, it sends a REPLY
message to pj tagged with NOPERM (line 27) and
should remember that when it releases the CS, it must
give its permission to pj (line 28). In both cases, it
includes its not rec fromi set in the REPLY message.

When pi receives a REPLY message from pj , it
excludes pj from its new not rec from and up-
dates its Xi set with the not rec from sent by
pj (lines 32-33). Remark that a single node may
reply twice to the same request of pi: upon defer-
ring the request (NOPERM) and then when releas-
ing the critical section (PERM). Thus, for a given
request, Update(Xi, 〈j, not rec fromj〉) either in-
cludes 〈j, not rec fromj〉 in Xi if the latter does
not have not rec fromj or replaces the previous one,
otherwise. As at most f processes can crash and the
channels are reliable, when process pi receives at least
(|Π|−f ) REPLY messages, it can update its information
about faulty processes, i.e., those processes that belong
to all not rec from sets received by pi at time t (line
36).

Finally, in lines 37-38, if pi is waiting to execute the
CS, the received REPLY message contains a permission
(PERM), and pi has not detected the crash of pj , pi

considers the reply of pj as a permission.

4.1. Sketch of Proof

Due to the lack of space, we are going to present just
the arguments and the outline of the proof of Algorithm
1. The complete proof can be be found in [3].

Theorem 1: Eventually, every process that crashes
is permanently suspected of failure by every correct
process (strong completeness property) and no process



is suspected before it crashes (perpetual strong accu-
racy property) when the underlying system satisfies the
Responsiveness property (RP)..

Proof: Let consider the correct process pi and the
the faulty one pf .
Strong completeness: We must prove that pf is even-
tually and permanently included in crashedi. Just after
its crash, pf will stop sending REPLY messages. Since
processes execute their Request resource() procedure
periodically, there exists then a time t when pf is in-
cluded in not rec from sets (line 35) of all processes
that has not crashed till t. Thus, after t, pi will detect
the failure of pf either when gathering the REPLY
messages to its request issued after t (line 36) or upon
the reception of a request from pj (line 13) which
detected the crash of pf by executing line 36 before pi.
Once pf is included in a crashedi, it is never removed
from it.
Perpetual strong accuracy: We must prove that pi

is never included in the crashedj set of pj . This
follows directly from the RP and the REQUEST-REPLY
mechanism: among the |Π| − f first REPLY messages
received by pj there is always at least one process that
does not include pi in its respective not rec from
set. Consequently, when line 36 is executed by pj , pi

will never be included in crashedi.
Theorem 2: Algorithm 1 solves the fault tolerant k-

mutual exclusion and tolerates f < k failures when
the underlying system satisfies the Responsiveness
property (RP).

Proof: We must prove that Algorithm 1 ensures
the safety and the liveness properties.
Safety: At most k nodes are in the critical section
at a given time. The proof is by contradiction. Let
assume that at time t there exists k + 1 processes
p1, p2, . . . , pk+1 in the critical section. Such pro-
cesses are not crashed at time t, i.e., they are not
in crashedk+1 at time t (perpetual strong accuracy
property, Theorem 1).

To enter the critical section, node pk+1 received at
most |Π − crashedk+1| − (k + 1) permissions from
processes other than p1, p2, . . . , pk+1. If a permission
is received from a node included in crashedk+1 due
to the detection of its crash (strong completeness
property, Theorem 1), such a permission is not consid-
ered (line 24) by pk+1. Hence, amongst the k nodes
p1, p2, . . . , pk, at least one of them sent a REPLY
message to pk+1.

Let (Ci, i) be the (logical clock, identity) pair in-
cluded in the REQUEST message of pi, and (Cp1 , p1) <
. . . < (Cpk

, pk) < (Cpk+1 , pk+1) be the to-
tal ordered sequence used by the k + 1 nodes
p1, p2, . . . , pk+1 to gain access to the critical section.

Let px(x ≤ k) be a process that replied to the message
REQUEST(pk+1,Cpk+1 ,crashedk+1). Upon reception
of it, if px was either in CS or in the requesting state
with (Cx, px), it would not reply to pk+1; if px was in
not requesting state, or either in requesting or CS
state but with (L, px) such that (L, px) ≤ (Cx, px),
the logical clock of px would become ≥ Cpk+1 (line
21). Consequently, px could not be in the CS at time t
with (Cpx

, px) < (Cpk+1,pk+1). Hence, it is impossible
that a node px, x ≤ k replied to the request of
pk+1. Process pk+1 thus could not have gathered the
(|Π − crashedi| − k) permissions necessary to enter
the critical section.

Liveness: If a correct process pi requests the critical,
then eventually it gets it, i.e., if pi is in the requesting
state then at some time later it executes line 15
(statei ← CS). In Algorithm 1, there is only one
wait clause (line 14) that can block the execution of a
requesting process pi. To enter the CS, pi must gather
(|Π− crashedi| − k) permissions.

The sequence of pairs (logical clock, identity) of the
pending REQUEST messages defines a total order. Let
pl be the correct process in the requesting state which
has the highest priority over all the other processes
that are in this same state. Let also assume that all
processes that are not crashed have already received
the REQUEST message from pl and that there are x
(x ≤ k) processes in the CS when pl is blocked at
the wait clause. Hence, all processes which neither
crashed nor are in CS will send a REPLY message
to pl (line 30). Let nb perm be the number of per-
missions received by pl from these processes. Since
there are no false failure suspicions (Theorem 1), if
nb perm ≥ (|Π − crashedl| − k), pl can enter the
CS; otherwise, it must wait for the right number of
permissions before entering the CS. As f < k, the
number of missing permissions, miss perm is at most
equal to x (in the worst case, k− 1 crashes took place
and they have not been detected by pl yet, i.e., pl has
currently received |Π| − x − k permissions; since pl

needs |Π− crashedl| − k permissions, crashedl = ∅
and miss perm = x). However, miss perm will
decrease either at each reception of a REPLY message
sent by one of the x processes upon releasing its CS
(line 17) or at each new detection of a node failure by
pl (lines 36 and 25). Since there were x processes in
CS, and failures are eventually detected (Theorem 1),
eventually miss perm = 0. Process pl then enter the
critical section.



5. Performance Evaluation

This section describes a set of performance evalua-
tion results which compare Raymond’s algorithm to
our fault tolerant one. Even if the former does not
explicitly consider failure of nodes, the fact that it
does not need to wait for a permission from all the
participants implicitly renders it resilient to failures
to some extent: a crashed node can be considered as
a node that did not give its permission. It tolerates
up to k − 1 faults, but the number of processes that
can simultaneously execute the CS decreases by one
at each crash.

Environment and Parameters: The experiments were
conducted on a dedicated machine with a 2.66Hz CPU
and 2GB of RAM, running Linux. The algorithms were
implemented in Python 2.6, a dynamic object-oriented
programming language that supports multi-threads. We
simulated a Grid platform composed of 10 clusters of
10 nodes where latencies between nodes of different
clusters are higher than between nodes of the same
cluster. The number of units of the shared resource
was fixed to 10, i.e., k = 10 and f = 9. Crashes are
inserted after 100 sec. Each experiment was executed
10 times.

The degree of parallelism of an application is char-
acterized by ρ = β/α, where α is the time taken by a
node to execute the critical section and β is the time
interval between the release of the CS by a node and a
new request by this same node. Notice that the higher
the value of ρ, the higher the degree of parallelism
of the application, i.e., an application whose ρ is high
does not ask for a unit of the shared resource very
frequently.

In the evaluation of the algorithms, the following
metrics were considered:
• CS bandwidth: the average number of critical

section completed per unit of time;
• efficiency: the number of processes currently ex-

ecuting a critical section;
• waiting queue: the average number of processes

waiting for a unit of the shared resource;
• obtaining time: the time between the instant a

node requests a unit of the shared resource and
the instant it gets it;

The presented results are average value. For a given
experiment, all nodes have the same value of ρ. To
study different values of ρ we fixed α while β varied.

Performance in absence of failures: In order to
validate the behavior of our simulator and evaluate the
overhead that our fault tolerant extension introduces
into the original Raymond’s algorithm, we measured

the CS bandwidth and the size of the waiting queue
when there are no crashes and ρ varies from 1 to 16,
as shown in Figure 1.

We can observe in Figure 1(a) that for both algo-
rithms, the CS bandwidth remains constant (around 5)
for ρ smaller than 9. This happens because, even if
the waiting queue decreases when ρ increases (Fig-
ure 1(b)), whenever a unit of the shared resource
is released, there always exists a requesting process
waiting for it. However, for ρ greater than 9, the CS
bandwidth starts going down since the waiting queue is
almost empty and processes requests are less frequent.
Another important remark is that our fault tolerant
extension behaves like the original algorithm and does
not add a significant overhead in the CS bandwidth, nor
in the size of the waiting queue, even if our algorithm
sends on average between 3 and 42% more messages
per CS than Raymond’s one. Considering such figures,
it is interesting to notice that in our solution a process
which is in critical section or in the waiting queue
sends two REPLY messages to requesting processes:
one with NOPERM tag since it has more priority and
one with PERM tag when it releases the CS. Thus,
the number of extra REPLY messages of our algorithm
is around 42% when ρ = 1 but it decreases with ρ
since the waiting queue decreases as well (Figure 1(c)).
On the other hand, when the queue is empty, at most
k−1 processes, which defer to give their permission to
a requesting process will send two REPLY messages to
this process. Therefore, the overhead of extra message
drops (around 3%) as shown in the same figure.

CS bandwidth and waiting queue: Figure 2 shows
the same experiments than Figure 1 but when 9 crashes
are inserted. In the case of Raymond’s algorithm, the
CS bandwidth logically drops for any ρ compared to
executions without crashes due to the loss of efficiency
after each crash. This metric does not fall when ρ
increases because the lower frequency of requests is
balanced by the increased size of the waiting queue
as seen in figure 2(b). For our algorithm the drop in
CS bandwidth is less important thanks to the failure
detection mechanism which permits to recover the full
efficiency of the algorithm. The small raise observed
between ρ = 1 and ρ = 9 is the consequence of the
rapid decline of the waiting queue on the same interval.
From ρ = 9 onwards, the CS bandwidth decreases
rapidly since the average size of the waiting queue
is stable and does not compensate anymore the lower
frequency of requests.

Efficiency: Aiming at evaluating the efficiency of both
algorithms, we have measured in Figure 3 the number
of resource’s units that are simultaneously in use (left
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Figure 1: CS bandwidth, waiting queue and message overhead vs ρ in absence failure
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Figure 2: CS bandwidth, and waiting queue vs ρ in presence of failures
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Figure 3: Efficiency and waiting queue vs time

side of both curves) for ρ = 5. We added in the same
graph the waiting queue (right side of the curves). Each
triangle represents a crash (up to 9 in our experiments).

We can note in Figure 3(a) that Raymond’s effi-
ciency degrades after each crash. Some time after all
crashes take place, only one process can be in the
critical section at a given time, i.e., the efficiency of
the algorithm drops to 1 and never recovers. After a
crash, the number of processes in CS does not decrease
immediately since some processes were already in the
critical section when the crash happened. Notice also
that the waiting queue grows up with the drop of the
algorithm’s efficiency. When the efficiency is equal to
1, all correct processes except one wait for a unit
of the shared resource. On the other hand, in our
algorithm (Figure 3(b)), after the 9 crashes occurred
the number of shared resource units simultaneously in

use is reestablished to 9, i.e. 9 processes can be in
the CS simultaneously again. The gradual decreasing
and increasing behavior of the curves is due to the
fact that processes take some time to detect failures:
upon each crash and before it is detected, the efficiency
drops by one and thus the number of processes in the
waiting queue increases; otherwise, when the crashes
start being detected, the efficiency starts increasing and
consequently the number of processes in the waiting
queue decreases.

Obtaining time: Figure 4 shows the obtaining time
of a process for the two algorithms when ρ = 5. In
absence of crashes, the obtaining time of a process
is around 8s for both of them. When crashes take
place, their respective obtaining time increases since
their efficiency declines as just described in Figure 3,
i.e., a processes must wait longer in order to get a



unit of the shared resource because less processes can
execute the CS simultaneously. Nevertheless, in the
case of our algorithm, the obtaining time decreases
when failures start being detected by processes and
it gets back to its initial value when the efficiency
of the algorithm is fully re-established at time 350s.
Contrarily to our algorithm, after the 9 crashes, the
obtaining time of processes in Raymond’s algorithm
starts growing and stabilize around 180s. Such a high
value will never decrease and can be explained since
the efficiency of the algorithm dropped down to 1:
before having the right to execute the critical section
a process will need to wait for the CS execution of
all processes currently in their critical section and all
processes in the waiting queue, which accounts for a
little less than 90 processes in this case and the duration
of critical section is 2s.
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Figure 4: Comparison of obtaining time for ρ = 5

6. Related Work

Several authors have proposed fault-tolerant exten-
sions both to token-based [19],[15],[7] and permission-
based 1-mutual exclusion algorithms [1],[5]. The latter
usually use a quorum approach.

Like Raymond’s [21] algorithm, Srimani and Reddy
[23] k-mutex algorithm inherently support failures. It
is based on Suzuki and Kasami’s algorithm [24] and
controls k tokens. Even if the algorithm does not ex-
plicitly consider failure of nodes, the fact that it keeps
k tokens implicitly renders it fault tolerant to some
extent. However, each crash reduces the efficiency of
the algorithm.

In [2], we propose an extension to Raymond’s algo-
rithm in order to both tolerate up to N−1 node crashes
and avoid the degradation of the algorithm efficiency
in the presence of failure. To this end, we have made
use of the information provided by unreliable failure
detectors of class T [8] since it is the weakest one
to solve the fault-tolerant 1-mutual exclusion problem.
However, the drawback of our solution is the overhead
in terms of number of messages that the failure detector
T incurs.

The majority of fault-tolerant permission-based k-
mutual exclusion found in the literature use quo-
rums [9],[10],[11],[14]. They exploit the k-coteries
approach. Informally, a k-coterie is a set of node
quorums, such that any (k+1) quorums contain a pair
of quorums intersecting each other. A process can
enter a critical section whenever it receives permission
from every process in its quorum. The availability of a
coterie it is closely related to the degree of reliability
that the algorithm supports. Although these algorithms
are resilient to node failures, the drawback of such
approach is the complexity of constructing the coteries
themselves.

Reddy et al. present in [22] a k-mutex algorithm for
Chord P2P system where a dynamic logical tree control
global requests by distributing them to the k units of
the resources. There are then k distributed queues for
gathering pending requests to the corresponding unit.
Without giving much details, the authors argue that
fault tolerance can be provided if successors nodes in
the logical ring of Chord can act as a replica for the
node.

Two other k-mutex algorithms, [25] and [16], offer
fault tolerance but for wireless ad-hoc networks. The
authors in [25] propose a token-base algorithm which
dynamically adapts to the changing topology of ad-hoc
networks. Mellier et al. address in [16] the problem of
at most k exclusive accesses to a channel by nodes that
compete to broadcast on it. However, neither of the
algorithms tolerate node failures, but just link failures.

7. Conclusion

Based on Raymond’s algorithm, this paper has pre-
sented a f -fault tolerant k-mutual exclusion algorithm
where 1 ≤ f < k, provided that the underlying
system satisfies the Responsiveness Property. We have
proposed a new approach for detecting and tolerating
failures which is integrated in the k-mutex algorithm
itself and thus renders the solution not expensive.

Furthermore, even if the performance can temporar-
ily degrade just after a crash, the efficiency of the algo-
rithm is dynamically restored as soon as the remaining
processes detect the failure, which does not happen
with the original Raymond’s algorithm. Performance
experiments on a simulated Grid platform that satisfies
the RP have shown the efficiency and benefits of our
approach in comparison to the former.
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