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Abstract

Distributed R-trees (DR-trees) are appealing in-
frastructures for implementing range queries, content
based filtering or k-NN structures since they inherit
the features of R-trees such as logarithmic height,
bounded number of neighbors and balanced shape.
However, they are crash-sensitivite since each single
crash can potentially break the tree structure con-
nectivity. In this article, we present a fault tolerant
approach which exploits replication of non leaf nodes
ensuring the tree connectivity in presence of crashes.
Our contribution is twofold. First, we enhance the
connectivity without modifying the R-tree structure.
Second, via extensive simulations we prove that our
approach drastically reduces the cost of both message
traffic and stabilization time when compared to the
original approach proposed in [3] where all nodes
of a disconnected subtree are reinserted. Finally, our
approach can be easily extended to other crash-
sensitive structures.

I. Introduction

Tree-based structures have been extensively used
in computer science since its early days: in
graph theory, to represent hierarchical structures, to
store/cache/index data or to connect physically or
virtually entities of a network. The nice property of
trees is that their recursive definition of trees can
often be used to prove properties much easily than
with other structures. Moreover, many common and
useful algorithms dealing with graphs are related to

their diameters and the use of height-balanced trees
ensures logarithmic properties.

R-trees [5] are a class of trees with nice fea-
tures: they are height-balanced and support multi-
dimensional spatial filters. That is, they can handle
objects with a polyspace rectangle representation (e.g.
two dimensional queries, transactions that span on
several objects). DR-trees are the P2P distributed
extension of classical R-tree structure. They have
been introduced in [3] in order to construct peer-
to-peer overlays optimized for selective and efficient
dissemination of information. They have been ex-
ploited recently in publish/subscribe systems [3],
[2], [8]. The system subscribers, distributed over the
P2P network, organize themselves in a virtual DR-
tree based on the semantic relation between their
subscriptions.

However, DR-trees are highly sensitive to crash
faults. Indeed, each single crash potentially breaks
the connectivity of the whole structure. The crash
of one or more nodes may lead to loss of data and
references and thus the disconnection of its subtrees in
the DR-tree. In [3], in case of node failures, the DR-
tree is restored by explicitly increasing the upward
connectivity of nodes. When a peer detects a crash,
it broadcasts a message to its descendants that will
exploit upward links pointing to a still connected
part of the structure to reinsert themselves in the
DR-tree. This approach is very costly in terms of
messages and stabilization time. Furthermore, it may
modify the R-tree structure. Our approach exploits the
semantic organization of the R-trees. More precisely,
the R-tree structure supports leaf deletion without
any extra cost however non leaf nodes deletion may
completely damage the structure. This is also true for
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the extended DR-tree. If a peer holding only a leaf
crashes, this leaf can be deleted without altering the
R-tree structure. On the other hand, if a peer holding
one or more internal nodes of the R-tree crashes those
nodes have to be restored. Therefore, in our approach,
each non leaf node is just replicated on each other
peer that holds one of its children. Such a replication
ensures that the restoration of a noden concerns only
the peers that keep a replica ofn. We prove via
simulations that this strategy significantly outperforms
the original DR-trees [3] in terms of message traffic
and stabilization time.

Note that the replication mechanism we propose
in this paper can be applied to other crash-sensitive
logical structures such as other tree structures or rings.

The rest of the paper is organized as follows. Sec-
tion II comments on the related work while section III
presents the R-tree and DR-tree concepts. In section
IV, we introduce the replication technique further
used to restore the DR-tree connectivity. Sections V
and VI respectively evaluate the replication cost and
the impact of multiple crashes on the modified DR-
trees. Finally, the last section concludes the work and
discusses some future work.

II. Related work

Distributed R-trees were introduced in [3]. The
original paper discusses some strategies to make
the structure fault tolerant. Each node stores ”some
knowledge” materialized as virtual links to its ances-
tors (starting with its grand-father up to the root).
Such upward links can be obtained by sporadically
walking toward the root or by randomly piggy back-
ing nodes information during routing. When a peer
detects a crash, it broadcasts a message to its descen-
dants that will reinsert themselves in the valid part
of the structure. To this end, each peer contacts the
root to reinsert itself. For instance, in Figure 1, if
p7 fails, p8 will contact p1 (the peer root) to reinsert
n11 andp9 will contactp1 to reinsertn12. The closer
from the root the crash occurs, the more expensive is
the structure restoration. WithN peers, in the worst
case, this algorithm requireslogm(N) N/2 to restore
the system; up toN/2 peers have to be reinserted
and each reinsertion generates in averagelogm(N)
messages. Moreover, in such case there is a risk that
the traffic generated by reinsertions overloads other
peers.

BATON [6] and VBI [7] are two frameworks based
on balanced binary trees. Virtual nodes are divided
in two categories: leaf nodes and non leaf nodes.
Basically, the former are used for storage while the
latter are used for routing. A structural property of
AVL ensures that there are roughly as much leaves as
internal nodes: every physical node holds one leaf and
one internal node. Furthermore, each node in the tree
maintains links to its parent, children, adjacent nodes
and selected nodes which are nodes at the same level.
The latter are chosen during node insertion and are
mainly used to balance routing load. At the same time,
the left-right links also provide fault tolerance since
they can be used as shortcuts to reconstruct missing
parent-child links.

In P-GRID [1] each peer stores a part of the overall
tree. Every peer’s position is determined by its path,
i.e., the binary bit string representing the subset of
the tree’s overall information for which the peer is
responsible. For fault-tolerance, multiple peers can
be responsible for the same path. A sampling-based
method is used to detect imbalance and dynamically
adapt replication.

Caron et al. [4] propose a fault tolerance protocol
that reconnects subtrees after crashes in order to
have again a connected graph and then reorder the
nodes to build a consistant tree. In other words, the
protocol consists of a recovery phase followed by a
reorganization phase. Our approach is different since
we do not need a reorganization phase which results
in gain of performance.

III. Background

In this section we recall some generic definitions
and the main characteristics of the DR-trees [3] over-
lay.

A. Distributed R-trees

R-trees [5] are height-balanced tree handling ob-
jects whose representation can be circumscribed in a
poly-space rectangle. A R-tree is characterized by the
following structural properties:

• The root has from 2 toM children
• Every internal node has fromm to M children

(m ≤ M/2)
• All leaves are at the same level
Distributed R-trees [3] (DR-trees) extend the R-

tree index structures where peers are self-organized in
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a balanced virtual tree overlay based on semantic rela-
tions. The structure preserves the R-trees index struc-
ture features: bounded degree per node and search
time logarithmic in the size of the network. Moreover,
the proposed overlay copes with the dynamism of the
system.

Physical machines connected to the system will
be further referred asp-nodes(shortcut for physical
nodes). A DR-tree is a virtual structure distributed
over a set of p-nodes. In the following, terms related
to DR-tree will be prefixed with “v-”. Thus, DR-
trees nodes will be calledv-nodes(shortcut for virtual
nodes). The root of the DR-tree is called thev-root
while the leaves of the DR-tree are calledv-leaves.
Except the v-root, each v-noden has a v-father (v-
father(n)), and, if it is not a v-leaf, some v-children
(v-children(n)). These nodes are denotedv-neighbors
of n.

The physical interaction graph defined by the map-
ping of a DR-tree top − nodes of the system is a
communication graph where there is ap−edge (p, q),
p 6= q, in the physical interaction graph if: there is a
v-edge(s, t) in the DR-tree,p is the p-node holding
v-nodes, andq is the p-node holding v-nodet.
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Fig. 1: A distribution of a given DR-tree and its
corresponding physical interaction graph

Figure 1 shows a representation of a DR-tree
composed of v-nodes{n0, . . . , n12} mapped on p-
nodes{p1, . . . , p9}. Dashed boxes represent nodes
distribution. There is a p-edge(p1, p5) in the interac-
tion graph because there is a v-edge(n0, n6) in the
DR-tree,p1 is the p-node holding v-noden0, andp5
is the p-node holding v-noden6.

The key points in the construction of a DR-Tree
are the join/leave procedures. When a p-node joins the
system, it creates a v-leaf. Then the p-node contacts
another p-node to insert its v-leaf in the existing DR-
tree. During this insertion, some v-nodes may split
and then Algorithm 1 is executed.

Algorithm 1 void onSplit(n:VNode)

1: if n.isV Root() then
2: newV Root = n.createV Node()
3: n.v − father = newV Root
4: end if
5: m = selectChildIn(n.v− children)
6: newV Node = m.createV Node()
7: n.v − children, newV Node.v − children =

divide(n.v − children)
8: newV Node.v − father = n.v − father

Distribution invariants: The following two prop-
erties are invariant in the implementation of DR-tree
proposed in [3]:

• Inv1: each p-node holds exactly one v-leaf
• Inv2: if p-nodep holds v-noden, eithern is a

v-leaf or p holds exactly one v-children ofn

We denote thetop andbottom v-node of a p-node the
v-node which is at the top and bottom of the chain of
v-nodes kept by the p-node respectively. The above
invariants ensure that the communication graph is a
tree:

• The p-root is the p-node holding the v-root
• A p-nodep is the p-father of the p-nodeq (p-

father(q)) if p holds the v-father of the v-node
at the top of the chain of v-nodes held byq

For instance in Figure 1a,p-father(p5) = p-father(p7)
= p1. The above distribution invariants also guarantee
that p-nodes have a bounded number of p-neighbors.
In a system withN p-nodes and a DR-tree with
degreem : M , the DR-tree height islogm(N); the
p-root holds logm(N) v-nodes. Since each v-node
has up toM v-neighbors, the p-root may have up
to M logm(N) p-neighbors.

IV. Fault tolerance

As explained in the Related Work section, in the
classical DR-tree implementation [3], when a p-node
fails all its subtrees are reinserted in the non-faulty
structure (p-node by p-node) in order to guarantee
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the DR-tree invariants. We propose a novel strategy
which both ensure fault-tolerance and preserves the
DR-tree structure and its invariants by exploiting the
non leaf v-nodes replication.

The pattern for v-nodes replication is:

• the p-root holds no replica;
• each p-node holds a replica of the v-father of its

top v-node.

Therefore, each non leaf v-node is replicated on each
p-node holding one of its v-children. For a DR-tree
of degreem : M (m ≥ 2), the v-root is replicated
on 1 to M-1 p-nodes while each internal v-node is
replicated on m-1 to M-1 p-nodes.

In Figure 1a, the DR-tree has four non leaf
v-nodes;n0, n1, n6 and n9. The following table
shows on which p-nodes they are replicated:

internal v-node replicated on p-nodes

n0 p5, p7
n1 p2, p3, p4
n6 p6
n9 p8, p9

Therefore, the restoration of a given v-noden
concerns only those p-nodes holding a replica ofn,
i.e, the m − 1 to M − 1 p-nodes which hold v-
children of n. Moreover, the distribution invariants
ensure that withN p-nodes, no p-nodes holds more
than⌊logm(N)⌋ v-nodes. For instance, in Figure 1a,
if p1 fails, the internal v-nodesn0 andn1 have to be
restored. The former concernsp5 and p7 while the
latter concernsp2, p3, andp4.

Upon the detection of the failure of a p-nodep,
every p-node holding the leftmost replica of each
v-node, previously held byp, restores the v-node.
For instance, in Figure 1a, ifp1 crashes,n0 will be
restored byp5 while n1 will be restored byp2, the
p-nodes that keep the leftmost replica ofn0 andn1
respectively. Note that the physical interaction graph
changes with restoration but the DR-Tree structure
is kept unchanged. Moreover, it is not necessary to
reorganize the nodes after the restoration phase which
makes the strategy effective in terms of message and
duration.

V. DR-tree restoration cost

This section investigates the cost of replication.
Then it compares the cost of system reparation facing
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Fig. 2: R-tree split of v-noden

a single crash using replication and the classical
reinsertion strategy, proposed in [3].

A. Replication cost

Replicas are created at join operations and modi-
fied both at join and split operations. When a v-node
is modified its holder should notify the p-nodes which
hold its replicas.

In the sequel, we consider a DR-tree ofN v-nodes
with degreem : M . We also assume that the cost of
updating one replica is one message.

Figure 2 illustrates what happens in the DR-tree
when a v-noden splits. Basicallyn creates a new v-
noden′ and delegates half of its children ton′. n′ is
added to the children ofn’s v-father, i.e.f ’s children.
In its turn, if f gets more thanM children, it splits
according to the same algorithm.

In order to evaluate the cost of replica updates,
it is also necessary to calculate how many v-nodes
are modified during a split operation. Figure 2 shows
that when a v-noden splits, its father, half of its
children andn itself are modified. Therefore, since
a node splits when it has exactlyM v-children, each
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split modifiesm + 2 v-nodes. Letcosts be the cost
of updating replicas during a split. Since, in this case,
each v-node hasM − 1 replicas and that each update
costs one message, we have:

costs = (m+ 2)(M − 1)

A p-node joining the system may trigger between
0 and ⌊logm(N)⌋ splits. Its v-leaf is added to the
v-children of another v-node that we denote in the
sequel thejoined v-node. The latter has:

• betweenm andM v-children;
• ⌈logm(N)− 1⌉ v-ancestors;
• betweenm− 1 andM − 1 replicas.

In the following calculation we will define an
upper bound on the number of updates considering
that each v-node hasM − 1 replicas.

A v-node may havem to M v-children and thus
hasM − m + 1 possible numbers of v-children. It
splits only when it has exactlyM v-children. The
probabilityp for a v-node to split is:

p =
1

M −m+ 1

The probability for a p-node to triggerk splits is the
probability pk that the joined v-node and itsk − 1
first v-ancestors have exactlyM v-children while its
k-th ancestor does not split. Hence:

pk = pk(1− p)

Let costr be the average cost of replicas updates when
a p-node joins a DR-tree. We have:

costr = p0(M − 1)
︸ ︷︷ ︸

no split

+

⌊logm(N)⌋
∑

k=1

(pk k costs)

︸ ︷︷ ︸

some splits

The first term corresponds to the case where no splits
are triggered, i.e.,M−1 replicas of the joined v-node
are to be updated. The second term corresponds to the
other cases.

We could have distinguished the case where the v-
root splits. Its splitting probability is different since it
hasM − 1 possible v-children. However, form > 2,
this probability is smaller thanp so we just give an
upper bound in order to simplify the calculation.

B. Performance evaluation

In the following, we respectively denotereinser-
tion policyandreplication policythe approach which

uses DR-Tree insertion operations and the one that
we propose, which uses internal v-nodes. The first
one was introduced in [3] and is described in section
II.

In order to compare the two policies, we used an ad
hoc discret simulator. We ran 1,000,000 simulations.
Each one built a DR-tree of degree2 : 4 that was
distributed over 1000 p-nodes. For each DR-tree, the
crash of one non leaf p-node was generated. We then
measured the cost of system restoration in terms of
number of messages and stabilization time in both the
reinsertion and replication policies.
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1) Stabilization time:In Figure 3, simulations are
ordered by stabilization time. Y-axis indicates the time
required to stabilize the system from a non leaf p-node
crash.

The reinsertion mechanism stabilizes the system
in a number of cycles which is proportional to the
height of the interaction graph. It is also related to the
level of the crashed p-node in the interaction graph.
Indeed, the stabilization time is the time of the longest
reinsertion, that is, it is proportional tologm(N).

On the other hand, with the replication policy,
the stabilization time is constant and independent
of the faulty p-node: v-nodes restoration are done
concurrently and, once the crash is detected, only one
cycle is required to restore them.

2) The message cost of the restoration phase:In
figure 4, simulations are ordered by the number of
messages. Y-axis indicates the number of messages
required to stabilize the system from a non leaf p-
node crash. We observe that the costs are of different
magnitude.

With the reinsertion policy, the number of message
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Fig. 4: Number of messages to restore DR-tree

distribution is very skewed which results in a high
standard deviation. The closer to the p-root the faulty
p-node is, the more expansive DR-tree restoration is.
The best case is when the crashed p-node has only
p-leaves as p-children. Then the cost is proportional
to the height of the communication graph (logm(N)).
The worst case is when the faulty p-node is close to
the p-root. Up to half of p-nodes have to be reinserted,
leading to a cost in number of messages proportional
to logm(N) N/m.

However, with the replication strategy, the best
case cost ism − 1 messages because only replicas
of the joined v-nodehave to be updated. The worst
case cost is when a p-node holdinglogm(N) v-nodes
crashes. ThenM replicas of each v-node has to be
updated, leading to a cost in the number of messages
proportionnal tologm(N) M .

VI. Impact of multiple crashes on the DR-
tree connectivity

The previous section focuses on the system tol-
erance of a single crash. We now investigate by
extensive calculations what happens when multiple
crashes occur simultaneously. In the same way that
we distinguish p-nodes from v-nodes, we distinguish
also crashes from losses. The former are related to
p-nodes while losses are related to v-nodes.

In the sequel,̃p is true if the p-nodep is alive, false
if p has crashed. LetV be the binary vector storing
the states of p-nodes. For exemple on figure 1:

V = (p̃1, p̃2, p̃3, p̃4, p̃5, p̃6, p̃7, p̃8, p̃9)

We consider a system withN peers (and thusN
v-leaves). LetN ′ be the number of internal v-nodes.
Let Ω be the set of possibleV andΩk be the set of
V related tok losses.k may vary from 0 when no v-
node is lost toN ′+1 when the v-root and all internal
v-nodes are lost. Thus:

Ω =

N ′+1⊔

i=0

Ωi

A. Configuring the System

We virtually order the bits ofV . The p-root does
not hold any replica. Its state is represented in the first
bit of the vector. As each other p-node holds exactly
one replica, we can virtually order remainingV bits
according to held replicas: v-nodes are firstly ordered
by a prefix walk of the DR-Tree and then, for a given
v-node, its replicas are ordered from left to right. For
exemple on Figure 1:

V = (p̃1, p̃5, p̃7
︸ ︷︷ ︸

n0

, p̃2, p̃3, p̃4
︸ ︷︷ ︸

n1

, p̃6
︸︷︷︸

n6

, p̃8, p̃9
︸ ︷︷ ︸

n9

)

We argue that for a complete DR-tree,V has a
structure that simplifies the calculations. Indeed, for
a complete DR-Tree of degreed we have:

V = (v1, v2, . . . , vd
︸ ︷︷ ︸

root replicas
︸ ︷︷ ︸

root

, vd+1, . . . , v2d
︸ ︷︷ ︸

, . . . , vN−d−1, . . . , vN
︸ ︷︷ ︸

︸ ︷︷ ︸

d−1 bits subvectors

)

For a given degreem : M and a given number of
peersN , numerous different DR-tree can be built. It
is worth pointing that they are not all complete. How-
ever, some relevant configurations can be modeled
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Fig. 5: Revealant DR-tree configurations

based on complete DR-trees. LetT h
d be the complete

DR-tree of degreed and heighth.
Both DR-trees of Figure 5.(a) and Figure 5.(b)

have the same number of v-leaves. They illustrate
extreme case configurations obtained with the highest
and lowest bounds on v-nodes degrees (see the Rtree
definition). The “slender” tree (Figure 5.(a)) has the
maximum number of internal v-nodes where each
one has the minimum number of children. The v-
root has two children and all other internal v-nodes
havem children. Remark that the v-root’s children
are complete subtrees of degreem. Therefore:

Vs = (v1, v2
︸ ︷︷ ︸

root

, v3, . . . , vm−2
︸ ︷︷ ︸

, . . . , vN−m+1, . . . , vN
︸ ︷︷ ︸

︸ ︷︷ ︸

m−1 bits subvectors

)

The “thick” tree (Figure 5.(b)) has the minimum
number of internal v-nodes where each one has the
maximum number of children. The DR-tree is a
complete tree of degreeM . Therefore:

Vt = (v1, . . . , vM
︸ ︷︷ ︸

root

, vM+1, . . . , v2M
︸ ︷︷ ︸

, . . . , vN−M+1, . . . , vN
︸ ︷︷ ︸

︸ ︷︷ ︸

M−1 bits subvectors

)

In both casesV is composed of two distinct parts:
its first bits are related to the v-root while the rest
is composed of constant size subvectors related to
internal v-nodes.

We should point out that the greater the number
of internal v-nodes a DR-tree contains, the fewer the
number of replicas it has.

B. Distribution of losses

Our goal is to calculate cardinals ofΩi to deter-
mine the probability of a given number of losses.
In terms of fault tolerance, the slender configuration

is the most stressing one: the tree has the greatest
number of internal v-nodes but the smallest number
of replicas of each internal v-node. Hence, internal
v-nodes are more likely to be lost. On the other hand,
the thick configuration is the least stressing one: the
minimum number of internal v-nodes which keep the
greatest number of replicas. Thus, by studying these
two configurations, we aim at determining both the
lower and the upper bounds oncard(Ωi).

In a configuration withl losses, two cases must be
considered:

• Case1: either v-root is lost and exactlyl − 1
internal v-nodes are lost;

• Case2: or v-root is safe and exactlyl internal
v-nodes are lost.

Let m : M be the degree of the DR-Tree. We give an
upper bound to the number of losses by considering
that an internal v-node is lost if all p-nodes holding
its replicas are crashed.

1) Worst case:Slender configuration (Vs)
The v-root is lost if the two first bits ofV are false,

i.e., both the v-root holder and the p-node holding
v-root replica are crashed. An internal v-node loss
corresponds to a subvector where all bits are false.
Let f(n, d, l) be the number of configurations of
n internal v-nodes with a replication degreed and
exactly l losses:

f(n, d, l) =

(
n

l

)

(2d − 1)n−l

Let N ′
s be the number of internal v-nodes of the

slender configuration forN peers:

N ′
s = 2

a∑

i=0

mi

Since in a slender configuration, the replication degree
is m− 1, we have:

card(Ωl) ≥ card(Ω′
l)

︸ ︷︷ ︸

Case1

+ card(Ω′′
l )

︸ ︷︷ ︸

Case2

card(Ω′
l) = f(N ′

s,m− 1, l− 1)

card(Ω′′
l ) = 3f(N ′

s,m− 1, l)

2) Best case:Thick configuration (Vt)
The v-root is lost if theM first bits ofV are false,

i.e., both the v-root holder and p-nodes holding v-root
replicas are crashed. Similarly to the previous case, an



8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  20  40  60  80  100  120  140  160  180

pr
ob

ab
ili

ty

# of lost v-node

Slender
Thick

Fig. 6: Loss quantity versus probability for a given
512 p-nodes system with degree4 : 8

internal v-node loss corresponds to a subvector whose
bits are all false. LetN ′

t be the number of internal v-
nodes of the thick configuration forN peers. Thus:

N ′
t =

b∑

i=1

M i

Since in a thick configuration, the replication degree
is M − 1, we have:

card(Ωl) ≤ card(Ω′
l)

︸ ︷︷ ︸

Case1

+ card(Ω′′
l )

︸ ︷︷ ︸

Case2

card(Ω′
l) = f(N ′

t ,M − 1, l− 1)

card(Ω′′
l ) =

M−1∑

i=0

(
M

i

)

f(N ′
t ,M − 1, l)

Figure 6 shows the probability of a given number
of losses for a 512 p-nodes system with degree4 : 8.
X-axis is the number of lost v-nodes. Y-axis is the
probability of a given number of losses. Loss distribu-
tions are gaussian. With the increase of the degree of
replication the Gaussian becomes sharper and the loss
number becomes lower. This figure gives statistics
assuming that every crash distribution is equiprobable.
In a slender configuration, one has 10% of chances
to loose 20 v-nodes. In a thick configuration, one has
more than 55% of chances to loose 1 or fewer v-
nodes.

C. From crashes to losses

A given number of crashes may cause different
numbers of losses. In fact, the latter depends on

the distribution of crashes. Basically, in a slender
configuration, if both the holder of the v-root and the
holder of its replica crash then the v-root is lost. But
for any degree withm > 2 it is clear that two crashes
cannot cause the loss of an internal v-node.

We will determine now the distribution of the
number of losses for a given number of crashes. Let
Ωl|k be the set of configurations withl losses andk
crashes. Our aim is to propose a formula that gives
the cardinal of such sets. This will be further used to
investigate the DR-tree structure “reaction” in relation
to a given number of crashes.

Let g(n, d, k) be the number of configurations of
n internal v-nodes with a replication degreed with k
crashes and no loss.

g(n, d, k) =







n = 1 ∧ k ≥ d : 0

n = 1 ∧ k < d :
(
d
k

)

n > 1 :
∑k

i=0 g(
n
2 , d, i)g(n− n

2 , d, k − i)

The latter can be used in the definition ofh(n, d, k, l),
i.e., the number of configurations withn internal v-
nodes, a replication degreed, k crashes andl losses.

h(n, d, k, l) =

{

l < 0 : 0

l ≥ 0 :
(
n
l

)
g(n− l, d, k − ld)

The first case is distinguished by anticipating the use
of this function to calculatecard(Ωl|k).

1) Worst case:Slender configuration

card(Ωl|k) ≥ card(Ω′
l|k)

︸ ︷︷ ︸

Case1

+ card(Ω′′
l |k)

︸ ︷︷ ︸

Case2

card(Ω′
l|k) = h(n,m− 1, k − 2, l− 1)

card(Ω′′
l |k) = 2h(n,m− 1, k − 1, l) + h(n,m− 1, k, l)

In Case1 the v-root is lost, i.e., both its holder and
replica’s holder are crashed. InCase2 the first term
corresponds to situations where the v-root holder nor
its replica’s holder are crashed while the second one
corresponds to the situation where neither its holder
nor replica’s holder are crashed.

2) Best case:Thick configuration
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card(Ωl|k) ≤ card(Ω′
l|k)

︸ ︷︷ ︸

Case1

+ card(Ω′′
l |k)

︸ ︷︷ ︸

Case2

card(Ω′
l|k) = h(n,M − 1, k −M, l − 1)

card(Ω′′
l |k) =

M−1∑

i=0

(
M

i

)

h(n,M − 1, k − i, l)

In Case1, the v-root is lost if both its holder
and replicas holders are crashed. InCase2, the v-
root is not lost and we can distribute up toM − 1
crashes in the subvector ofV related to the v-root.
The subvectors concerning internal v-nodes contains
thus the remaining crashes and all losses.
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Fig. 7: Number of losses versus probability for dif-
ferent crash rates

Figure 7 shows the probability of a given number
of losses for a system with 512 p-nodes, a degree

of 4 : 8, and different crash rates. The X-axis and
Y-axis represent the number of lost v-nodes and the
probability of a given number of losses respectively.

The slender configuration shows that the loss
distribution is gaussian. With 30% of simultaneous
crashes, there is 20% of chance of loosing 6 v-nodes.
With 10% of simultaneous crashes, there is 85% of
chance of loosing 1 or fewer v-node.

The thick configuration shows that increasing the
replication degree drastically reduces the quantity of
losses. The replication degree is almostlog(N); even
with 30% simultaneous crashes, there exist more than
95% of chances of loosing 1 or fewer v-nodes.

D. Probability of no loss

A particular case of the previous calculations con-
cerns the number of configurations with no loss.
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Fig. 8: No loss probability for a 512 p-nodes system
with degree4 : 8

Figure 8 shows the probability of no loss versus
the number of crashes for both the slender and thick
configurations of a 512 p-nodes system with a degree
4 : 8. X-axis and Y-axis respectively indicates the
number of simultaneous crashes and the probability of
no loss for a given number of simultaneous crashes.
It illustrates how this probability decreases when the
number of crashes increases. The curves are shifted
basically because the replication degree of the thick
configuration is twice greater than in the slender
configuration.

On one hand, it is theoretically interesting to have
an idea of DR-tree structure’s behavior facing an
arbitrary number of crashes. On the other hand, in
practice, we are often interested in configurations
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where the probability of no loss is ”close” to one.
Moreover, we usually want to specify bounds on the
number of simultaneous crashes. Basically, it is an-
other way of parametrising faults. Figure 9 illustrates
such a case. The X-axis shows the number of simul-
taneous crashes while the Y-axis is the probability of
no loss for a given number of simultaneous crashes.
We have considered that up to 10% of p-nodes can
crash simultaneously. With the slender configuration,
there are more than 80% of chances to have no loss.
With the thick configuration, this same probability is
99.999%. Notice that since this probability is close to
100% the curve does not appear clearly on the figure.
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Fig. 9: No loss probability versus bounded simulta-
neous number of crashes

VII. Conclusion and Future Work

This article has presented another advantage of the
distinction between the DR-tree logical structure and
the interaction graph [2], [8]. In other words, introduc-
ing replication at interaction graph does not impact
the DR-tree structure and thus enforces separation
of concerns: routing is addressed at DR-tree level
while fault tolerance is addressed at interaction graph
level. Evaluation results show that, in presence of
crashes, our approach preserves DR-tree connectivity
and structure much more efficiently than the fault
tolerance mechanism proposed in [3] and that the for-
mer outperforms the latter in terms of message traffic
(logm(N) instead ofN logm(N)) and stabilizing time
(proportional toM instead oflogm(N)).

It is worth pointing out that we have studied
the most stressing configuration for replication. In

fact, we have determined lower bounds. However,
they are underestimated since we have considered the
maximum number of losses (an internal v-node is
lost if all p-nodes holding its replicas are crashed). It
would be interesting to avoid such an approximation
theoretically or at least evaluate it.

Our work is based on calculations overV , the
binary vector of bits representing the global system
state. The replication scheme exploits logical proxim-
ity. Furthermore, as mentioned in [8], the concept of
distribution is easily extendable to different classes of
graphs. Therefore, we intend to apply our approach to
other distributed tree structures, graphs, or even rings,
whose connectivity is also crash-sensitive.
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