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Abstract—This paper summarizes the PhD thesis and the 10
associated publications on the optimization of network slice place-
ment in large-scale distributed infrastructures by focusing on
online heuristics and approaches based on Deep Reinforcement
Learning (DRL). First, we rely on Integer Linear Programming
(ILP) to propose a data model for on-Edge and on-network
slice placement. Second, we leverage an approach called Power
of Two Choices (P2C) to propose an online heuristic adapted
to support placement on large-scale distributed infrastructures
while incorporating Edge-specific constraints like latency. Finally,
we investigate the use of Machine Learning (ML) methods,
specifically DRL, to increase the scalability and automation
of network slice placement by considering a multi-objective
optimization approach to the problem. We will go through the
extensive evaluation work that provide encouraging results about
the advantages of the proposed approaches when used in realistic
network scenarios.

Index Terms—Network Functions Virtualization, Network
Slicing, Placement, Large-scale infrastructures, Optimization,
Heuristics, Automation, Deep Reinforcement Learning.

I. INTRODUCTION
A. Thesis Context and Motivations

Today, telecom operators are going through an accelerated
evolution of their technological scope with the appropriation
of different technologies and paradigms. First, we have the
Cloud, which has made it possible to move many applications
and data to centralized Data Centers (DC), thus enabling the
growth of a variety of services such as, for example, Over-
The-Top (OTT) services. Telecom operators are also moving
to the Cloud via Network Function Virtualization (NFV). NFV
is network cloudfication and will allow distributed deployment
of Virtualized Network Functions (VNFs) on a shared physical
infrastructure. Combined with network virtualization, NFV
has paved the way for Network Slicing, which allows the
interconnection of different virtual networks deployed within
a DC network. Network Slicing is included in the 5G speci-
fications foreseeing a high number of new connected devices,
new uses and an imperative for privacy and security. To cope
with these different new requirements, telecos have started to
deploy distributed DCs located at the Edge of the network.
Closer to the users, these DCs are used to host sensitive

data but also VNFs sensitive to latency. The core of my
PhD thesis lies at the intersection of three research topics:
Management and Orchestration; Distributed Infrastructures,
Edge/MEC, large scale networks; and Artificial Intelligence
(AI), Machine Learning (ML).

B. Major Challenges and Problem Statement

We have focused on the optimization of network slice
management and the challenge of ensuring optimized resource
utilization and compliance with application and service re-
quirements during the management of the life cycle of a
slice. More specifically, we study the Network Slice Placement
problem which can be formulated as an optimization problem
and has been largely studied in the literature [1].

Indeed, we define Network Slice Placement Requests
(NSPRs) that represent the resource and Quality-of-Service
(QoS) requirements of a slice arriving sequentially for place-
ment and the placement solution should decide on the optimal
selection of servers hosted by the Physical Substrate Network
(PSN) on which to deploy the slice’s VNFs and the paths to
direct traffic between these VNFs by mapping the associated
Virtual Links (VLs). Therefore, the main challenges are: i) to
accept as many placement requests as possible while meeting
the service needs in terms of QoS requirements (latency,
bandwidth), ii) consider the optimization of other criteria that
may affect the acceptance rate, such as resource consumption
(CPU, RAM) and network load.

We have considered challenging research questions that are
at the intersections of the three topics. Firstly, how can we
ensure QoS/QoE for Network Slice Users in a converged
network-Edge/MEC?. Secondly, what are the more accurate
optimization models and algorithms for slice placement in
large-scale networks?. Thirdly, how to build automated and
scalable algorithms to compute optimal placement decisions
that are robust to changes in network behaviour?.

C. Thesis Contributions

In the light of theses questions, we can summarize the thesis
into 3 main contributions as follows:



1) an ILP-based Solution that deals with on-Edge and on-
Network Slice Placement;

2) a Heuristic that relies on the principle of the Power
of Two Choices (P2C) for Large Scale Network Slice
Placement;

3) a Heuristically-assisted Deep Reinforcement Learning
algorithim to automate the multi-objective Network
Slice Placement.

This paper is a digest of the PhD thesis dissertation [2].
Sections II, III and IV present the 10 thesis publications struc-
tured into three major proposals. In Section V, we highlight
the main conclusions of the work and give some perspectives.
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Fig. 1: Network Slice Placement Request (NSPR) model

II. ENABLING ON-EDGE AND ON-NETWORK SLICE
PLACEMENT: AN ILP-BASED SOLUTION

We describe in this section the first contribution along with
the main identified gaps it tackled and its evaluation results.

A. Related Work Analysis: Main Identified Gaps

In spite of the numerous papers about placement in virtual
networks, most of them frequently ignore the geographic
dimension of placement decision (some exceptions are [3]-
[6]). Existing studies often do not take into account neither
the user’s location when solving the problem nor user location
implications, especially in the E2E latency calculation. These
aspects are fundamental to enable on-Edge and on-Network
slice placement and we specifically address this challenge.

B. Contribution Overview

This contribution gathers three main proposals as follows:

1) Propose an E2E latency model that integrates the user
location as an end-point of the Network Slice, and
improves scalability by exploiting the possibility of
grouping NSUs instead of considering them individually
(unlike [5]) ;

2) Deal with complex Network Slice topologies, going
beyond the currently studied Service Functions Chaining
(SFC) (generalizing [6] and [5] hypotheses);

3) Set no restrictions on the placement location of two VNF
of the same Network Slice (generalizing [4] hypothesis).

The proposed model is formalized mathematically using ILP
and implemented in a latency-aware Network Slice Placement

solution described in [7]. We assess the performance of the
model to understand its pertinence and scalability in [8].

1) NSPR modeling: As illustrated by Fig. 1, the NSPR
represents the view of the requirements of VNFs and VLs of
the slices to place. Each placement request is associated with
a specific group of network slice users. Fig. 1 also shows that
multiple NSPR topologies are considering from SFC to more
complex graph topologies. Another feature of our model is
the E2E chain which corresponds to VNF sequences or VNF
paths through which the traffic can pass.For each E2E Chain,
we define a request in terms of E2E delay which corresponds
to delays from the UAP associated with this placement request
to the last VNF in the chain.

2) PSN modeling: As depicted in Fig. 2, the The PSN
is composed by the infrastructure resources needed to support
the VNF deployment and interconnection by VLs. The PSN is
divided in 3 parts. First, the virtualized infrastructure with the
DC:s offering IT resources to run the VNFs. And we consider 3
types of DCs: Central Cloud Platforms (CCPs) as national DCs
with big resource capacities, Core DCs (CDCs) as regional
DCs with medium resource capacities, and Edge DCs (EDCs)
as local DCs with small resources capacities. The second part
of the PSN is the the Acess Network representing the user
access points that can be a cellular antenna or a Wifi AP
used by end-users to access the slices. And finally we have
the Transport Network with the routers and transmission links
needed to interconnect the different DCs and the user access
points.
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Fig. 2: Physical Substrate Network (PSN) model.

C. Experiments and Evaluation results

The proposed ILP model was implemented using Julia
language and solved using the default branch and bound
algorithm of CPLEX. In order to understand the level of
violations that can be obtained when user location is not



considered, we compare the proposed location-based model
with a location-agnostic model widely used in the state-of-the-
art, that considers E2E latency but does not take user location
into account [9]. Fig. 3(a) presents the evolution of the average
E2E latency requirement violation according to the number of
nodes on the PSN. In contrast to our formulation that always
respects E2E latency requirements, a growing average E2E
latency requirement violation is observed when we do not take
into account user location.

Fig. 3(b) presents the evolution of the average of the
E2E latency requirement violations according to the number
of VNFs of the NSPRs. We also observe that the average
violation decreases while the number of VNFs in the NSPRs
increases. This happens because the more VNFs we have
in the NSPRs, less the NSPRs are spread in the PSN, this
reduces the E2E latency requirements violations. In fact, the
CPU and RAM requirements of each VNF decrease when
the number of VNFs per request increases. Hence, the tested
models concentrate more VNFs inside the same machines to
prevent from using link resources.
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III. OPTIMIZING LARGE SCALE NETWORK SLICE
PLACEMENT: A HEURISTIC USING P2C

We describe in this section the second contribution along
with the main identified gaps it tackles and its evaluation
results.

A. Related Work Analysis: Main Identified Gaps

Numerous papers about placement in virtual networks use
heuristic-based approaches to solve associated optimization
problems (some examples are [10]-[14]). However, most of
them do not jointly address the large-scale network aspect
and the Edge-specific constraints and thus the direct impact
on QoS metrics (notably, E2E latency).

B. Contribution Overview

This contribution gathers two main proposals:

1) An original method of placing network slices through
a heuristic based on the P2C algorithm [15] which is
adapted to large-scale network scenarios and integrate
both Edge-specific constraints related to user location
and strict E2E latency requirements;

2) A policy for selecting servers for VNF placement that
offloads Edge DCs (EDC) and improves Network Slice
acceptance ratio.

We implemented the heuristic inside an Network Slice
Placement solution described in [16] and compare it to ILP-
based placement algorithms in [17].

This heuristic is based on the P2C principle [15], which
states in the present context that considering two possible
DCs chosen “randomly” instead of only one brings exponential
improvement of the solution quality. It is a greedy algorithm
such that for each VNF b € V:

1) Randomly select 2 candidate servers s, s2 € S,

2) Evaluate the resource consumption when placing b in s,
and s and place b on the best server;

3) Map the VLs (a,b) € E associated to b.

C. Experiments and Evaluation results

We have used Julia language to implemented two version of
the proposed heuristic with two different policies for selecting
candidate servers for placement P2C1 and P2C 2 for policies 1
and 2 respectively (see [17] for a complete description of the
proposed candidate server selection policies). We compared
them with to versions of the ILP introduced in Section II, ILP1
and ILP2 maximizing resource utilization and acceptance of
slices respectively.

1) Average execution time evaluation: The average execu-
tion times in function of the number of servers in the PSN
is given in Fig. 4. Starting from a PSN with 126 servers as
described in [17], we generated new PSN settings by doubling
the number of servers in each DC. The evaluation results
confirmed our expectations showing that the average execution
time grows much faster for the ILPs than for the heuristics.
In the scenario with 16128 nodes the execution times are 9.8
and 12.5 seconds for the ILPs 1 and 2 respectively and 2.17
and 1.96 seconds for P2C 1 and 2 respectively.
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Fig. 4: Average execution time evaluation.

2) Average final blocking ratio evaluation: We evaluated
the final blocking rates for different simulation scenarios, i.e.,
the percentage of NSPRs rejected along a given simulation
duration in relation to the load submitted to the network, which
can be calculated from the parameters of arrival and exit rates
of the slices and the capacities and requirements in terms of
resources. We have evaluated moderate loads up to overload
phenomena. Fig. 5 present results for URLLC simulation



scenario. Fig. 5(a) shows that the P2C2 heuristic has the best
blocking rate. This happens because load balancing is essential
in this scenario to avoid overloading the Edge DCs and this
heuristic achieve better load balancing by actively offloading
the Edge DCs. This behavior of the heuristic can be observed
in Fig. 5(b). P2C 2, concentrates the load on the Cloud and
Core DCs to offload the Edge DCs.
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Fig. 5: Evaluation results for URLLC simulation scenario

IV. AUTOMATING MULTI-OBJECTIVE NETWORK SLICE
PLACEMENT USING A HEURISTICALLY-ASSISTED DRL

We describe in this section the third contribution along with
the main identified gaps it tackled and its evaluation results.

A. Related Work Analysis: Main Identified Gaps

From an operational perspective, heuristic approaches are
more suitable than ILP as they yield faster placement results.
The drawback of heuristic approaches is that they give sub-
optimal solutions. To address this issue, ML offer a corpus
of methods, such as DRL, which are able to overcome the
convergence issues of ILP while being more accurate than
heuristics. DRL has recently been used in the context of
Network Slice Placement [18]-[20].
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Fig. 6: Proposed framework for the learning algorithms.

However, from a practical point of view, ensuring that a
DRL agent converges to an optimal policy is still a challenge.
A first important drawback is that DRL agents act as self-
controlled black boxes. In addition, there are a large number
of hyper-parameters to fine-tune in order to ensure an adequate
equilibrium between exploring solutions and exploiting the
knowledge acquired via training. While there are techniques
to improve the efficiency of the solution exploration process
(e.g., e-greedy, entropy regularization), their use may also lead
to situations of instability, where the algorithm may diverge
from the optimal point.

Another issue with DRL is its use in non-stationary en-
vironments. As a matter of fact, when the environment is
continually changing the rules, the algorithm has trouble in
using the acquired knowledge to find optimal solutions. The
usage of the DRL algorithm in a online fashion can then
become impractical. Most of the existing works applying
DRL to placement in virtual networks assume a stationary
environment, i.e., with static network load. However, traffic
conditions in networks are basically non-stationary with daily
and weekly variations and subject to drastic changes (e.g.,
traffic storm due to an unpredictable event).

To overcome this unsuitable behaviour of DRL agents,
based on the concept of Heuristically Accelerated Reinforce-
ment Learning [21], we introduce the concept of HA-DRL
and we apply it in a fully online learning scenario with time-
varying network loads to show how this strategy can accelerate
and stabilize the convergence of DRL techniques when applied
to the Network Slice Placement.

B. Contribution Overview

This contribution gathers three main proposals:

1) Combines Graph Convolutional Network (GCN)—to
automatically extract PSN related features—and Ad-
vantage Actor Critic algorithm—for optimal policy
learning—to solve multi-objective Network Slice Place-
ment optimization problem;

2) Provides a network load model to network slice infras-
tructure conditions with time-varying network loads;

3) Reinforces the DRL learning process by using the P2C
based heuristic we propose in [17] to control the DRL
convergence.

We implemented the proposed algorithms inside an Network
Slice Placement solution described in [22] and evaluated them
in three different network load scenarios: static, in which
the network load is represented by a constant function (see
[23], [24]); cycle-stationary, in which the network load is
represented by a cycle-stationary function (see [25]); and non-
stationary, in which the network load is represented by a stair-
stepped function (see [26]). Figure 6 represents the structure
of the proposed HA-DRL framework. It is an extension of
the Asynchronous Advantage Actor Critic (A3C) algorithm.
We consider two non-controlled DRL algorithms, DRL, which
observes only PSN and NSPR state and eDRL which also ob-
serve the netork load state to learn the network load variations.
Both algorithms uses two Deep Neural Networks (DNNs) to



learn the optimal policy 7 and the optimal state-value ugf
function called Actor and Critic Networks, respectively. We
propose to modify the Actor Network by adding a Heuristic
Function layer that enhances the exploration process and
accelerates the convergence of the algorithm by influencing
the policy choice of actions. This layer benefits from external
information provided by the heuristic introduced in Section III,
referred as HEU. A detailed description of the two heuristically
assisted algorithms, HA-DRL and HA-eDRL, derived from
DRL and eDRL algorithms, can be found in [23], [25].

C. Experiments & Evaluation results

The proposed solution has been implemented in Python
language, using the Pytorch library for the ML components.
We simulated online learning scenarios using the same PSN
configurations of the previous contributions except that we do
not consider the latency aspect as we focused rather on the
resource usage and network load aspects.

1) Static network load scenario evaluation results: Fig. 7
presents evaluation results for the static network load scenario.
In this evaluation we considered the DRL algorithm, the HEU
algorithm and 4 versions of the HA-DRL algorithm, with 4
values for the [ parameter that controls the influence of the
heuristic on the placement policy. Fig. 7(a) shows that all the
algorithms end up having a similar performance after a certain
number of training phases when the considered network load p
is low (p = 0.5). On the other hand, when the network load in-
creases, we observe a more marked difference in performance
between the algorithms. Fig. 7(a) shows that when p = 0.9
HA-DRL algorithm with 5 = 2 has a better performance than
the other algorithms—including HEU— with a much faster
convergence time than other DRL algorithms.
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Fig. 7: Evaluation results for static network load scenario.

2) Cycle-stationary network load scenario evaluation re-
sults: Fig. 8 presents evaluation results for the cycle-stationary
network load scenario. In this scenario, in addition to the DRL
and HA-DRL algorithms, we also evaluated the eDRL and
HA-eDRL algorithms which observe the network load state to

try to learn the variations. Fig. 8 shows that with this short
training time of 3 simulated days only the HA-DRL and HA-
eDRL algorithms with 3 = 2 are able to converge. The other
algorithms will actually need a much longer training time to
learn in this cyclo-stationary network load scenario [25].

3) Non-stationary network load scenario evaluation results:
The last step was therefore the evaluation on the non-stationary
network load scenario, with unpredictable load variations. We
considered here only the DRL and HA-DRL algorithms since
the traffic breaks are not predictable and the network load
state is not observable. Fig. 9 shows one of the evaluated
network load disruption scenarios where we consider a jump
in the network load from 40% to 100% at the training phase
108 marked here by the blue line. We can observe that
only the HA-DRL algorithm with 8 = 2 has an almost
optimal performance before the load disruption due to its
fast convergence. Also, the load disruption affects all the
algorithms, but the only one to succeed in maintaining a good
performance is the HA-DRL with 5 = 2 due to the fact that it
had been able to obtain a first convergence before the break.
We could extend this analysis by also indicating that due to its
fast convergence, HA-DRL with 5 = 2 is able to relearn faster
on new network load conditions, which is very important in
dynamic load scenarios.
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V. CONCLUSIONS & PERSPECTIVES

This paper summarizes the PhD dissertation and the as-
sociated 10 publications where key challenges for Network
Slice Placement optimization in large scale networks have
been studied. The first thesis contribution introduces ILP and
offline optimization for slice placement considering an E2E



latency model which takes into account user location and
complex slice placement request topologies. Evaluation results
showed that taking user location into account was essential
to ensure strict E2E latency requirements and that we need
more scalable solutions to support larger scales. The second
thesis contribution was a heuristic for the optimization of slice
placement in large-scale based on the P2C algorithm. We
proposed an online optimization approach adapted to large-
scale scenarios while integrating Edge-specific constraints
(i.e., strict E2E latency and user location). Evaluations showed
that the approach achieves good solutions in a short execution
time and that the server selection policies proposed to improve
load balancing which leads to a higher slice acceptance ratio.
The third thesis contribution is an HA-DRL approach to
optimize and automate placement, an online, multi-objective
optimization approach that was proven scalable after several
simulations considering three network load scenarios: static,
cycle-stationary, and non-stationary. The study conducted in
this part of the thesis has shown the limitations of DRL
approaches for our problem due to a long convergence time.
The HA-DRL approaches that we have proposed present a fast
convergence and a higher robustness even in dynamic load
scenarios and are thus adapted to real network scales.

As perspectives, we emphasize two points. First, to extend
the proposed approaches to networks with heterogeneous
technological domains within the PSN such as the RAN and
devices. Second, move from a centralized DRL to a distributed
multi-agent DRL for a greater scalability and to minimize the
amount of transmitted monitoring traffic.
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