
An Unreliable Failure Detector for Unknown
and Mobile Networks

Pierre Sens1, Luciana Arantes1, Mathieu Bouillaguet1, Véronique Simon1

, and Fab́ıola Greve2

1 LIP6, Université Pierre et Marie Curie, INRIA, CNRS, France
{pierre.sens,luciana.arantes,mathieu.bouillaguet,veronique.simon}@lip6.fr

2 DCC - Computer Science Department / Federal University of Bahia, Brazil
fabiola@dcc.ufba.br

Abstract. This paper presents an asynchronous implementation of a
failure detector for unknown and mobile networks. Our approach does
not rely on timers. Neither the composition nor the number of nodes in
the system are known. Our algorithm can implement failure detectors
of class ♦S when behavioral properties and connectivity conditions are
satisfied by the underlying system.

1 Introduction

Unreliable failure detector, namely FD, is a fundamental service, able to help
in the development of fault-tolerant distributed systems. FD can informally be
seen as a per process oracle, which periodically provides a list of processes sus-
pected of having crashed. In this paper, we are interested in the class of FD
denoted ♦S [1]. They ensure that (i) eventually each crashed process is sus-
pected by every correct process (strong completeness), and (ii) there is a time
after which some correct processes are never suspected (eventual weak accuracy).

We propose a new asynchronous FD algorithm for dynamic systems of mobile
and unknown networks. It does not rely on timers to detect failures and no
knowledge about the system composition nor its cardinality are required. The
basic principle of our FD is the flooding of failure suspicion information over the
network. Initially, each node only knows itself. Then, it periodically exchanges
a query-response [2] pair of messages with its neighbors. Based only on the
reception of these messages and on the partial knowledge about its neighborhood,
a node is able to suspect other processes or revoke a suspicion in the system.
A proof that our implementation provides a FD of class ♦S is available at the
research report [3].

2 Model and Behavioral properties

Model. We consider a dynamic distributed system composed of a finite set Π
of n > 1 mobile nodes, Π = {p1, . . . , pn}. Each process knows its own identity
and it knows only a subset of processes in Π. It does not know n. There is one
process per node which communicates with its 1-hop neighbors by sending and
receiving messages via a packet radio network. There are no assumptions on
the relative speed of processes or on message transfer delays, thus the system



2 An Unreliable Failure Detector for Unknown and Mobile Networks

is asynchronous. A process can fail by crashing. Communications between 1-
hop neighbors are considered to be reliable. Nodes are mobile and they can
keep continuously moving and pausing. A faulty node will eventually crash.
Nonetheless, we assume that there are no network partitions in the system in
spite of node failures and mobility. We also assume that each node has at least
d neighbors and that d is known to every process. Let fi denote the maximum
number of processes that may crash in the neighborhood of any process. We
assume that the local parameter fi is known to every process pi and fi + 1 < d.

Behavioral properties. Let us now define some behavioral properties that the
system should satisfy in order to ensure that our algorithm implements a FD of
class ♦S. In order to implement any type of FD with an unknown membership,
processes should interact with some others to be known. According to [4], if there
is some process in the system such that the rest of processes have no knowledge
whatsoever of its identity, there is no algorithm that implements a FD with weak
completeness. Thus, the following membership property, namely MP, should be
ensured by all nodes in the system. This property states that, to be part of the
membership of the system, a process pm (either correct or not) should interact
at least once with other processes in its neighborhood by broadcasting a query
message when it joins the network. Moreover, this query should be received and
kept in the state of at least one correct process in the system, beyond the process
pm itself.

Let pm be a mobile node. Notice that a node can keep continuously moving
and pausing, or eventually it crashes. Nonetheless, we consider that, infinitively
often, pm should stay within its target range destination for a sufficient period
of time in order to be able to update its state with recent information regarding
failure suspicions and mistakes. Hence, in order to capture this notion of “suffi-
cient time of connection within its target range”, the following mobility property,
namely MobiP, has been defined. This property should be satisfied by all mo-
bile nodes. Thus, MobiP for pm at time t ensures that, after reaching a target
destination, there will be a time t at which process pm should have received
query messages from at least one correct process, beyond itself. Since query
messages carry the state of suspicions and mistakes in the membership, this
property ensures that process pm will update its state with recent informations.

Let us define another important property in order to implement a ♦S FD.
It is the responsiveness property, namely RP, which denotes the ability of a
node to reply to a query among the first nodes. This property should hold for
at least one correct node. The RP(pi) property states that after a finite time
u, the set of responses received by any neighbor of pi to its last query always
includes a response from pi. Moreover, as node can move, the RP(pi) also states
that neighbors of pi eventually stop moving outside pi’s transmission range. RP
property should hold for at least one correct stationary node. It imposes that
eventually there is some “stabilizing” region where the neighborhood of some
correct “fast” node pi does not change.

Properties MP and RP may seem strong, but in practice they should just
hold during the time the application needs the strong completeness and eventual



An Unreliable Failure Detector for Unknown and Mobile Networks 3

weak accuracy properties of FD of class ♦S, as for instance, the time to execute
a consensus algorithm.

3 Implementation of a Failure Detector of Class ♦S

The following algorithm describes our protocol for implementing a FD of class
♦S when the underlying system satisfies MP and MobiP for all participating
nodes and the RP for at least one correct node. We use the following notations:
– suspi: denotes the current set of processes suspected of being faulty by pi.

Each element of this set is a tuple of the form 〈id, ct〉, where id is the identifier
of the suspected node and ct is the tag associated to this information.

– misti: denotes the set of nodes which were previously suspected of being
faulty but such suspicions are currently considered to be a mistake. Similar
to the suspi set, the misti is composed of tuples of the form 〈id, ct〉.

– rec fromi: denotes the set of nodes from which pi has received responses to
its last query message.

– knowni: denotes the current knowledge of pi about its neighborhood. knowni

is then the set of processes from which pi has received a query message.
– Add(set, 〈id, ct〉): is a function that includes 〈id, ct〉 in set. If an 〈id,−〉 al-

ready exists in set, it is replaced by 〈id, ct〉.
The algorithm is composed of two tasks. Task T1 is made up of an infinite

loop. At each round, a query message is sent to all nodes of pi’s range neigh-
borhood (line 5). Node pi waits for at least d − fi responses, which includes
pi’s own response (line 6). Then, pi detects new suspicions (lines 7-12). It starts
suspecting each node pj , not previously suspect, which it knows (pj ∈ knowni),
but from which it does not receive a response to its last query. If a previous
mistake information related to this new suspected node exists in the mistake
set misti, it is removed from it (line 10) and the suspicion information is then
included in suspi with a tag which is greater than the previous mistake tag
(line 9). If pj is not in the mist set (i.e., it is the first time pj is suspected), pi

suspected information is tagged with 0 (line 12).
Task T2 allows a node to handle the reception of a query message. A query

message contains the information about suspected nodes and mistakes kept by
the sending node. However, based on the tag associated to each piece of infor-
mation, the receiving node only takes into account the ones that are more recent
than those it already knows. The two loops of task T2 respectively handle the
information received about suspected nodes (lines 18–24) and about mistaken
nodes (lines 25–30). Thus, for each node px included in the suspected (respec-
tively, mistake) set of the query message, pi includes the node px in its suspi

(respectively, misti) set only if the following condition is satisfied: pi received a
more recent information about px status (failed or mistaken) than the ones it
has in its suspi and misti sets. Furthermore, in the first loop of task T2, a new
mistake is detected if the receiving node pi is included in the suspected set of
the query message (line 20) with a greater tag. At the end of the task (line 31),
pi sends to the querying node a response message.

When a node pm moves to another destination, pm will start suspecting the
nodes of its old destination since they are in its knownm set.



4 An Unreliable Failure Detector for Unknown and Mobile Networks

1 init:

2 suspi ← ∅; misti ← ∅ ; knowni ← ∅
3 Task T1:

4 Repeat forever

5 broadcast query(suspi, misti)

6 wait until response received from at least (d− fi) processes

7 For all pj ∈ knowni \ rec fromi | 〈pj ,−〉 6∈ suspi do

8 If 〈pj , ct〉 ∈ misti

9 Add(suspi, 〈pj , ct + 1〉)
10 misti = misti \ {〈pj ,−〉}
11 Else

12 Add(suspi, 〈pj , 0〉)
13 End repeat

14

15 Task T2:

16 Upon reception of query (suspj,mistj) from pj do

17 knowni ← knowni ∪ {pj}
18 For all 〈px, ctx〉 ∈ suspj do

19 If 〈px,−〉 6∈ suspi ∪misti or (〈px, ct〉 ∈ suspi ∪misti and ct < ctx)

20 If px = pi

21 Add(misti, 〈pi, ctx + 1〉)
22 Else

23 Add(suspi, 〈px, ctx〉)
24 misti = misti \ {〈px,−〉}
25 For all 〈px, ctx〉 ∈ mistj do

26 If 〈px,−〉 6∈ suspi ∪misti or (〈px, ct〉 ∈ suspi ∪misti and ct < ctx)

27 Add(misti, 〈px, ctx〉)
28 suspi = suspi \ {〈px,−〉}
29 If (px 6= pj)

30 knowni = knowni \ {px}
31 send response to pj

Lines 29–30 allow the updating of the known sets of both the node pm and
of those nodes that belong to the original destination of pm. For each mistake
〈px, ctx〉 received from a node pj such that node pi keeps an old information
about px, pi verifies whether px is the sending node pj . If they are different, px

should belong to a remote destination. Thus, process px is removed from the
local set knowni.

References
1. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.

JACM 43(2) (March 1996) 225–267
2. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure

detectors. In: DSN. (June 2003)
3. Sens, P., Arantes, L., Bouillaguet, M., Greve, F.: Asynchronous implementation

of failure detectors with partial connectivity and unknown participants. Research
Report 6088, INRIA (01 2007)

4. Fernández, A., Jiménez, E., Arévalo, S.: Minimal system conditions to implement
unreliable failure detectors. In: PRDC, IEEE Computer Society (2006) 63–72


