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Abstract—Grid computing mutualizes more computing 

resources working in a calculation or a common task. The 

increase in the number of components in the system leads also 

increases the number of fault. These failures result in a loss of 

several cycles of running applications. It is therefore essential 

to be able to tolerate faults so that the computation can 

continue to execute and finish despite failures, all while 

maintaining maximum performance. One advantage of 

coordinated checkpoint is its capacity to have a very low 

overhead as long as the execution stays fault free. On the 

contrary, due to the fact that uncoordinated checkpoint 

requires being complemented by a message log protocol, this 

adds a significant penalty for all message transfers, even in 

case of fault-free execution. With message log, these problems 

do not arise simply because it processes checkpoint and restart 

autonomously. These differences suggest that the best 

approach depend on the fault frequency. In this paper, we 

propose a hierarchical composition of algorithms: Chandy-

Lamport protocol and pessimistic message logging protocol. 

We have implemented and compared the performance of these 

protocols in grid computing using the Omnet++ simulator [3]. 
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I. INTRODUCTION 

Currently, many applications require significant 

computing power in order to run. Thus, some applications 

need a high performance-computing environment that is able 

to provide results within a specified period, while others 

require the ability to use the available computing power. 

Today, grids enable the scientific community access to 

shared resources. The large number of federated resources by 

the grid leads to an increase of the probability of failure. 

Fault tolerance is an essential feature to ensure continuity of 

service in these platforms grid. These must provide 

mechanisms for detection and correction of errors in the 

execution of court applications. 

To meet this need, several fault tolerances have been 

proposed in the literature. Our study is based on the 

protocols based on rollback recovery classified into two 

categories: checkpoint-based rollback recovery protocols and 

message logging protocols. However, there is a direct 

dependence between the characteristics of system, network 

and applications on the one hand, and the performance of a 

protocol on the other hand. 

In [2], the performances of these protocols have 

implemented and compare in clusters and grid using the 

Omnet++ simulation [3]. 

We found that the protocols that require the recovery of 

all processes in case of single failure are poorly suited to 

systems with many processes [2]. The message logging 

protocols are more suitable for large configuration with the 

exception of some causal logging approach, which induces 

communications to all processes during the recovery. Non-

blocking coordinated checkpoint are not sensitive to the rate 

of communications [2]. 

We propose a hierarchical composition of the following 

protocols: Chandy-Lamport protocol and pessimistic 

message logging protocol. Section 2 describes the protocols 

Chandy-Lamport and Pessimistic message logging used for 

the hierarchical composition. The details of the hierarchical 

composition are explained in section 3. The experimental 

setup and results obtained by executing the protocol is 

presented in Section 4. In section 5, we present the related 

work and finally section 6 concludes. 

II. CHANDY-LAMPORT AND PESSIMISTIC MESSAGE LOGGING 

Fault tolerance in parallel applications is provided by two 

categories of protocols: checkpointing protocols and 

message logging protocols [1]. To ensure the reliability of 

applications, the need to preserve the state of an application 

to preserve complete the calculation in the case of system 

failure is extremely important. Rollback recovery techniques 

are a common form of this type of conservation state, and 

have received much attention from the research community. 

A process is modeled as a sequence of intervals state. 

Each state interval starts with a non-deterministic events, 

such as a user input or an incoming message, but is to run up 

to the deterministic state interval is attained. 



Checkpointing and rollback recovery techniques usually 

assume a fail-stop model of defects. It is assumed that each 

process has access to some sort of stable storage, which can 

still be viewed after the process has failed. "Stable Storage" 

can come in a variety of forms, depending on assumptions 

made by the recovery protocol. It should not be a real disk. If 

a system should tolerate a single failure, stable storage could 

be set implemented using volatile memory of other processes 

in the system. If failures are assumed to be transient, the 

local hard drive of a host process can be used. If failures are 

not transient, the local hard drive from a host cannot be used 

because this record will not be accessible after a host failure. 

In this case, storage-stable process has to be found at 

distance from the host process. 

A set of checkpoints is consistent if there are no orphan 

messages between processes. An orphan message in a global 

state is a message that was sent after a checkpoint belonging 

to this global state and received before a checkpoint 

belonging to this global state.  

To recover from a process, the recovery procedure must 

ensure that the internal state of the process is recovered in 

line with the observed state of the system before failure. This 

is accomplished by identifying the latest set of consistent 

checkpoints and restore system to saved state in this set. This 

set of checkpoints is called the recovery line. 

In [1], a comparison of different protocols backup 

checkpoint and logging was done. The results showed us that 

the Chandy-Lamport algorithm executed in grids gives better 

performance compared to other protocols backup 

checkpoint. Similarly, the pessimistic message logging is 

better suited to architectures grids especially since it does not 

produce orphaned process. That is why we chose these two 

protocols for conducting assessments of performance in 

cluster mode and grid mode. We will give a brief description 

of these protocols. 

A. Non-blocking coordinated checkpoint protocol 

The goal of fault tolerance is to allow the system to 

continue to provide the service despite the occurrence of 

faults. Depending on application requirements, a fault 

tolerant system must be able to support a given number of 

faults (which may be simultaneous), and different types of 

faults. 

A global state corresponds to the set of states of 

individual processes and states participating communication 

channels. A consistent global state is a condition that could 

have occurred in the absence of faults during a correct 

execution of a parallel application. This is not necessarily a 

condition that occurred before the takeover. During a failure, 

the protocols based checkpointing restore the global state of 

the system from local checkpoints of each process forming 

coherent global state called the most recent recovery line [4]. 

To form this recovery line, three strategies are possible 

[1]: uncoordinated checkpointing, coordinated 

checkpointing, or communication induced checkpointing. On 

resumption, it is sufficient to restore all of the application 

process from their respective checkpoint. For our study we 

will use the protocols coordinated checkpoint. This 

technique ensures that the set of checkpoints forms a 

consistent global state and thus avoids the domino effect. 

Furthermore, the recovery is very simple. Another advantage 

of this technique is that the storage space needed to keep the 

checkpoints is minimized since it is only necessary to keep 

only one per process. 

The main drawback of this strategy is that it involves 

significant latency when saving the checkpoint, since it 

requires a global coordination of all processes. Two 

problems arise here, therefore, the loss of performance even 

in the absence of faults, and management of scaling. Indeed, 

over the number of processes increases, the latency may be 

large, each process to wait until the end of the operation 

before it can resume its normal execution. 

This approach, used by the first implementations, can be 

optimized. Also, to improve backup performance 

coordinated, several techniques have been proposed: 

 Checkpointing coordinated non-blocking [1] 

 Checkpointing with clock synchronization [1] 

 Coordinated checkpointing to synchronization 

minimal [1] 

The “distributed snapshot” algorithm of Chandy and 

Lamport [5] is the most classical algorithm of non-blocking 

coordinated checkpoint. It operates under the assumption of 

channel FIFOS. It is made of coordinating processes to 

ensure that all states of the processes form a consistent 

global state. The protocol allows the state identifier 

communication channels through "markers". During a 

backup step, each process saves its local state and then 

broadcasts a marker immediately on all communication 

channels. Then, it saves all messages received on each 

communication channel until it receives a marker. This set of 

messages corresponding to the state of the communication 

channel, which will then be saved on stable storage. 

The advantage of the coordinated backup is that it is not 

sensitive to the domino effect during recovery. Only the last 

backup is necessary for a restart, which reduces the extra 

cost of storage. 

 

B. Pessimistic message-logging protocol  

Message-logging protocols are popular when building 

systems that can tolerate process crash failures [7]. These 

protocols require that each process periodically record its 

own local state and log the messages received right after. 

When a crash occurs, a new process is created instead: the 

new process is given the appropriate (recorded) local state 

and the logged messages are issued in the order they were 

originally received. 

The principle of fault tolerance through logging is to 

safeguard the history of the application. Logging protocols 

by using both local backup of the process status and event 

logging deterministic to allow resumption of the operation. It 

is then possible to resume the process execution failed (and 

only faulty processes) from their last backup by replaying the 

nondeterministic events saved. The pessimistic message 

logging protocol assumes (pessimistic) that a failure may 



occur immediately after a nondeterministic event. The 

principle of this protocol is not to allow a process to depend 

on a non-deterministic event. Specifically, if we consider 

that non-deterministic events are only receiving messages, 

this protocol requires processes to save all messages received 

before issuing a message to another process. The backups 

should be performed synchronously. The state of each 

process in a pessimistic logging system is always 

recoverable and this property leads to the following 

advantages [1]: 

 A process can commit output to the outside world 

without running a special protocol. 

 Recovery is simplified because the effects for a 

failure are confined only to the processes that fail. 

 Functioning processes continue to operate and never 

become orphans. 

 Processes restart from their most recent checkpoint 

upon a failure, therefore limiting the extent of 

execution that has to be replayed. 

 There is no need to run a complex garbage collection 

protocol 

In [2], the authors show that during the failure free 

execution, protocol overhead of nonblocking coordinated 

checkpoint (Chandy-Lamport algorithm) is less compared to 

other approaches because the phase synchronization is 

limited to the cluster and the second concerns only the 

leaders of each cluster. Recovery is simplified because the 

system is rolled back only to the most recent checkpoint. In 

the grid approach, the additional cost of recovery decreases 

slightly. In pessimistic approach, the number of rollbacks is 

minimal since only faulty processes need to be rolled back. 

 

III. HIERARCHICAL COMPOSITION 

We propose to make a composition using the hierarchical 

algorithm Chandy-Lamport and pessimistic logging. Indeed, 

the pessimistic message logging be applied within each 

cluster and between clusters the nonblocking coordinated 

checkpoint protocol will be used. 

Figure 2 shows a simplified view of the grid architecture 

used by our algorithm. It is composed of a set of clusters 

connected by a WAN- type network. The cluster consists of 

multiple nodes connected by a broadband network. In each 

cluster, there is one leader connected to all other nodes of its 

cluster. All leaders are connected together (Fig.1). The leader 

assumes the role of intermediary in the inter-cluster 

communications. 

Within each cluster, the messages are saved using the 

pessimistic message logging protocol. Indeed, when a 

process sends a message, it saves it in its volatile memory. 

Similarly, the identifier of the receiving process and the issue 

date of the message are saved. After receiving the message, 

the receiving process sends an acknowledgment to the 

transmitter, which will store the message on stable storage. 

All the sending processes save all messages that flow into 

the grid before interacting with other processes, which 

prevents orphan messages. 

The backup takes place in four phases [2]: 

 Initialization: an initiator sends a checkpoint-request 

to its leader, 

 Coordination of leaders: the leader transfers the 

checkpoint request to the other leaders 

 Local checkpointing:  Each leader initiates a 

checkpoint inside its cluster 

 Termination: When local checkpoint is over, each 

leader sends an acknowledgement to the initial 

leader. 

The recovery follows the same rules as the backup: 

coordination phase of the leaders, and a phase of recovery 

limited to the cluster. 

 

Fig. 2: Hierarchical checkpointing for grids 

IV. PERFORMANCE EVALUATION 

To evaluate our hierarchical algorithm, we did experiments 

on both types of application: 

 “Token-application”: at the beginning of the execution 

of the application, a node sends a message initiator. 

Upon receipt of the message, it is in turn sent to another 

process and so on, until the end of the application at run. 

As the grid is organized as a cluster (group of nodes), 

each message passes through its leader before being 

routed to its final destination. 

 An application for broadcasting messages (represented 

as “Broadcast-Application” in the figures): all 30s, a 

message is broadcast to all nodes of the grid until the 

end of the execution of the application. Initially, the 

message is sent to all leaders of clusters, and then they 

distribute them within their clusters. 

The experiments were conducted in two phases. The 

characteristics of defect-free protocols are studied in the first 

phase. Finally, in the second phase, the same sets of 

experiments were made with fault injection. 

We have implemented our algorithm and application in the 

Omnet++ simulator [3]. 



A. Failure free performance 

To measure the impact of logging messages on the response 

time of applications, we varied the size of messages. The 

figure 2 (Fig.2) shows the curves of changes in application 

response time using the following protocol: the hierarchical 

composition of Chandy-Lamport [5] algorithm with 

pessimistic message logging [6] (represented as “CLPML” 

in the figures) and the non-blocking coordinated checkpoint 

protocol only [2] (“CL” in the figures). Obviously, the 

“Token-Application”, being highly communicative, has a 

response time higher than the application to broadcast 

messages. We note that the response time increases gradually 

as the message size increases. This is due to the data added 

to messages during the backup of the latter by their issuers. 

By cons, response time exhibits only slight variation by 

adding message logging to Chandy-Lamport protocol. In 

summary, the pessimistic logging used in the composition of 

our hierarchical algorithm has a very low impact on the 

response time of the application. 

 

Fig. 2:  Failure free performance, Checkpoint interval=180s, Execution 

time=900s 

B. Recovery time with fault injection 

The following figure shows the variation in response 

time of the “Token-Application” during recovery 

applications. Applying the Chandy-Lamport algorithm, all 

processes are restored from the most recent checkpoint. To 

finalize the calculation of the overall state of the grid, 

messages sent after the last point are replayed. To measure 

the impact of messages on application performance, we 

injected faults on a scale of 1 to 10. 

We find that even the number of replayed messages is 

high; it has a very low impact on response time. Indeed, 

thanks to the pessimistic message logging, the messages sent 

are stored at the sending process before interacting with the 

system. So the process does not regenerate these messages, 

they will simply re-emit by the process. 

 

Fig. 3 Response time of Token-Application, checkpoint interval=180s, 

execution time=900s,numbers of fault=10 

V. RELATED WORK 

Many protocols with a combination between checkpointing 

and rollback-recovery have been proposed. Bhatia et al. [8] 

suggest a hierarchical causal logging protocol that addresses 

the scalability problems of causal logging. The protocol 

uses a network of proxies that cached recovery information 

while routing application. Indeed, the traditional causal 

logging algorithms are used successfully in small-scale 

systems. They are known to provide a low overhead during 

failure-free executions sending no extra messages. But they 

are not scalable since each application process needs to 

maintain a data structure, which grows with the number of 

processes in the system. Authors have reduced the data 

structure by an exponential amount. They have proposed a 

hierarchical approach using a set of proxies spread on the 

network that act as a distributed cache. This approach highly 

reduces the amount of information piggybacked on each 

message. However, the use of proxies decreases the 

performance of recovery since the recovery information is 

spread on the proxies. 

In [9], authors present an uncoordinated checkpointing 

protocol for send-deterministic [10] HPC applications. This 

protocol just requires logging a small subset of application 

messages to avoid the domino effect. Furthermore, like in 

message logging protocols, it does not require all processes 

to rollback in case of failure. Since there is no domino effect, 

a simple and efficient garbage collection can be done. 

Finally, by allowing checkpoint scheduling, this protocol 

appears to be some good way to address the problem of burst 

accesses to the I/O system. 

VI. CONCLUSION 

In this paper, we propose a hierarchical composition of 

algorithms: Chandy-Lamport protocol and pessimistic 

message logging protocol. We have implemented and 

compared the performance of the algorithm Chandy-Lamport 

only and hierarchical combination of pessimistic logging 



protocols and Chandy-Lamport, using the simulator OMNeT 

+ + [3]. 

We found that the highly interconnected applications 

like, "Token-application" have a high response time. But the 

use of pessimistic message logging protocol has an 

insignificant impact on performance when running 

applications. Indeed, the protocols that require the recovery 

of all processes in case of single failure are poorly suited to 

systems with many processes. The message logging 

protocols are more suitable for large configuration with the 

exception of some causal logging approach, which induces 

communications to all processes during the recovery. Non-

blocking coordinated checkpoint are not sensitive to the rate 

of communications. The hierarchical composition of the 

Chandy-Lamport algorithm and pessimistic message logging 

protocol is a good alternative to fault tolerance in 

computational grids. 
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