
Hierarchical composition of coordinated checkpoint

with pessimistic message logging

Ndeye Massata Ndiaye
#*1

, Pierre Sens
*2

, Ousmane Thiare
#3

#
Department of computer science, Gaston Berger University

BP. 234 Saint-Louis, Senegal
*
Regal Team, LIP6

4 Place Jussieu 75525 Paris Cedex 05, France
1
ndeye-massata.ndiaye@lip6.fr

2
Pierre.Sens@lip6.fr

3
ousmane.thiare@ugb.edu.sn

Abstract—Grid computing mutualizes more computing

resources working in a calculation or a common task. The

increase in the number of components in the system leads also

increases the number of fault. These failures result in a loss of

several cycles of running applications. It is therefore essential

to be able to tolerate faults so that the computation can

continue to execute and finish despite failures, all while

maintaining maximum performance. One advantage of

coordinated checkpoint is its capacity to have a very low

overhead as long as the execution stays fault free. On the

contrary, due to the fact that uncoordinated checkpoint

requires being complemented by a message log protocol, this

adds a significant penalty for all message transfers, even in

case of fault-free execution. With message log, these problems

do not arise simply because it processes checkpoint and restart

autonomously. These differences suggest that the best

approach depend on the fault frequency. In this paper, we

propose a hierarchical composition of algorithms: Chandy-

Lamport protocol and pessimistic message logging protocol.

We have implemented and compared the performance of these

protocols in grid computing using the Omnet++ simulator [3].

Keywords—Grid computing; coordinated checkpointing;

chandy-lamport; pessimistic message logging

I. INTRODUCTION

Currently, many applications require significant

computing power in order to run. Thus, some applications

need a high performance-computing environment that is able

to provide results within a specified period, while others

require the ability to use the available computing power.

Today, grids enable the scientific community access to

shared resources. The large number of federated resources by

the grid leads to an increase of the probability of failure.

Fault tolerance is an essential feature to ensure continuity of

service in these platforms grid. These must provide

mechanisms for detection and correction of errors in the

execution of court applications.

To meet this need, several fault tolerances have been

proposed in the literature. Our study is based on the

protocols based on rollback recovery classified into two

categories: checkpoint-based rollback recovery protocols and

message logging protocols. However, there is a direct

dependence between the characteristics of system, network

and applications on the one hand, and the performance of a

protocol on the other hand.

In [2], the performances of these protocols have

implemented and compare in clusters and grid using the

Omnet++ simulation [3].

We found that the protocols that require the recovery of

all processes in case of single failure are poorly suited to

systems with many processes [2]. The message logging

protocols are more suitable for large configuration with the

exception of some causal logging approach, which induces

communications to all processes during the recovery. Non-

blocking coordinated checkpoint are not sensitive to the rate

of communications [2].

We propose a hierarchical composition of the following

protocols: Chandy-Lamport protocol and pessimistic

message logging protocol. Section 2 describes the protocols

Chandy-Lamport and Pessimistic message logging used for

the hierarchical composition. The details of the hierarchical

composition are explained in section 3. The experimental

setup and results obtained by executing the protocol is

presented in Section 4. In section 5, we present the related

work and finally section 6 concludes.

II. CHANDY-LAMPORT AND PESSIMISTIC MESSAGE LOGGING

Fault tolerance in parallel applications is provided by two

categories of protocols: checkpointing protocols and

message logging protocols [1]. To ensure the reliability of

applications, the need to preserve the state of an application

to preserve complete the calculation in the case of system

failure is extremely important. Rollback recovery techniques

are a common form of this type of conservation state, and

have received much attention from the research community.

A process is modeled as a sequence of intervals state.

Each state interval starts with a non-deterministic events,

such as a user input or an incoming message, but is to run up

to the deterministic state interval is attained.

Checkpointing and rollback recovery techniques usually

assume a fail-stop model of defects. It is assumed that each

process has access to some sort of stable storage, which can

still be viewed after the process has failed. "Stable Storage"

can come in a variety of forms, depending on assumptions

made by the recovery protocol. It should not be a real disk. If

a system should tolerate a single failure, stable storage could

be set implemented using volatile memory of other processes

in the system. If failures are assumed to be transient, the

local hard drive of a host process can be used. If failures are

not transient, the local hard drive from a host cannot be used

because this record will not be accessible after a host failure.

In this case, storage-stable process has to be found at

distance from the host process.

A set of checkpoints is consistent if there are no orphan

messages between processes. An orphan message in a global

state is a message that was sent after a checkpoint belonging

to this global state and received before a checkpoint

belonging to this global state.

To recover from a process, the recovery procedure must

ensure that the internal state of the process is recovered in

line with the observed state of the system before failure. This

is accomplished by identifying the latest set of consistent

checkpoints and restore system to saved state in this set. This

set of checkpoints is called the recovery line.

In [1], a comparison of different protocols backup

checkpoint and logging was done. The results showed us that

the Chandy-Lamport algorithm executed in grids gives better

performance compared to other protocols backup

checkpoint. Similarly, the pessimistic message logging is

better suited to architectures grids especially since it does not

produce orphaned process. That is why we chose these two

protocols for conducting assessments of performance in

cluster mode and grid mode. We will give a brief description

of these protocols.

A. Non-blocking coordinated checkpoint protocol

The goal of fault tolerance is to allow the system to

continue to provide the service despite the occurrence of

faults. Depending on application requirements, a fault

tolerant system must be able to support a given number of

faults (which may be simultaneous), and different types of

faults.

A global state corresponds to the set of states of

individual processes and states participating communication

channels. A consistent global state is a condition that could

have occurred in the absence of faults during a correct

execution of a parallel application. This is not necessarily a

condition that occurred before the takeover. During a failure,

the protocols based checkpointing restore the global state of

the system from local checkpoints of each process forming

coherent global state called the most recent recovery line [4].

To form this recovery line, three strategies are possible

[1]: uncoordinated checkpointing, coordinated

checkpointing, or communication induced checkpointing. On

resumption, it is sufficient to restore all of the application

process from their respective checkpoint. For our study we

will use the protocols coordinated checkpoint. This

technique ensures that the set of checkpoints forms a

consistent global state and thus avoids the domino effect.

Furthermore, the recovery is very simple. Another advantage

of this technique is that the storage space needed to keep the

checkpoints is minimized since it is only necessary to keep

only one per process.

The main drawback of this strategy is that it involves

significant latency when saving the checkpoint, since it

requires a global coordination of all processes. Two

problems arise here, therefore, the loss of performance even

in the absence of faults, and management of scaling. Indeed,

over the number of processes increases, the latency may be

large, each process to wait until the end of the operation

before it can resume its normal execution.

This approach, used by the first implementations, can be

optimized. Also, to improve backup performance

coordinated, several techniques have been proposed:

 Checkpointing coordinated non-blocking [1]

 Checkpointing with clock synchronization [1]

 Coordinated checkpointing to synchronization

minimal [1]

The “distributed snapshot” algorithm of Chandy and

Lamport [5] is the most classical algorithm of non-blocking

coordinated checkpoint. It operates under the assumption of

channel FIFOS. It is made of coordinating processes to

ensure that all states of the processes form a consistent

global state. The protocol allows the state identifier

communication channels through "markers". During a

backup step, each process saves its local state and then

broadcasts a marker immediately on all communication

channels. Then, it saves all messages received on each

communication channel until it receives a marker. This set of

messages corresponding to the state of the communication

channel, which will then be saved on stable storage.

The advantage of the coordinated backup is that it is not

sensitive to the domino effect during recovery. Only the last

backup is necessary for a restart, which reduces the extra

cost of storage.

B. Pessimistic message-logging protocol

Message-logging protocols are popular when building

systems that can tolerate process crash failures [7]. These

protocols require that each process periodically record its

own local state and log the messages received right after.

When a crash occurs, a new process is created instead: the

new process is given the appropriate (recorded) local state

and the logged messages are issued in the order they were

originally received.

The principle of fault tolerance through logging is to

safeguard the history of the application. Logging protocols

by using both local backup of the process status and event

logging deterministic to allow resumption of the operation. It

is then possible to resume the process execution failed (and

only faulty processes) from their last backup by replaying the

nondeterministic events saved. The pessimistic message

logging protocol assumes (pessimistic) that a failure may

occur immediately after a nondeterministic event. The

principle of this protocol is not to allow a process to depend

on a non-deterministic event. Specifically, if we consider

that non-deterministic events are only receiving messages,

this protocol requires processes to save all messages received

before issuing a message to another process. The backups

should be performed synchronously. The state of each

process in a pessimistic logging system is always

recoverable and this property leads to the following

advantages [1]:

 A process can commit output to the outside world

without running a special protocol.

 Recovery is simplified because the effects for a

failure are confined only to the processes that fail.

 Functioning processes continue to operate and never

become orphans.

 Processes restart from their most recent checkpoint

upon a failure, therefore limiting the extent of

execution that has to be replayed.

 There is no need to run a complex garbage collection

protocol

In [2], the authors show that during the failure free

execution, protocol overhead of nonblocking coordinated

checkpoint (Chandy-Lamport algorithm) is less compared to

other approaches because the phase synchronization is

limited to the cluster and the second concerns only the

leaders of each cluster. Recovery is simplified because the

system is rolled back only to the most recent checkpoint. In

the grid approach, the additional cost of recovery decreases

slightly. In pessimistic approach, the number of rollbacks is

minimal since only faulty processes need to be rolled back.

III. HIERARCHICAL COMPOSITION

We propose to make a composition using the hierarchical

algorithm Chandy-Lamport and pessimistic logging. Indeed,

the pessimistic message logging be applied within each

cluster and between clusters the nonblocking coordinated

checkpoint protocol will be used.

Figure 2 shows a simplified view of the grid architecture

used by our algorithm. It is composed of a set of clusters

connected by a WAN- type network. The cluster consists of

multiple nodes connected by a broadband network. In each

cluster, there is one leader connected to all other nodes of its

cluster. All leaders are connected together (Fig.1). The leader

assumes the role of intermediary in the inter-cluster

communications.

Within each cluster, the messages are saved using the

pessimistic message logging protocol. Indeed, when a

process sends a message, it saves it in its volatile memory.

Similarly, the identifier of the receiving process and the issue

date of the message are saved. After receiving the message,

the receiving process sends an acknowledgment to the

transmitter, which will store the message on stable storage.

All the sending processes save all messages that flow into

the grid before interacting with other processes, which

prevents orphan messages.

The backup takes place in four phases [2]:

 Initialization: an initiator sends a checkpoint-request

to its leader,

 Coordination of leaders: the leader transfers the

checkpoint request to the other leaders

 Local checkpointing: Each leader initiates a

checkpoint inside its cluster

 Termination: When local checkpoint is over, each

leader sends an acknowledgement to the initial

leader.

The recovery follows the same rules as the backup:

coordination phase of the leaders, and a phase of recovery

limited to the cluster.

Fig. 2: Hierarchical checkpointing for grids

IV. PERFORMANCE EVALUATION

To evaluate our hierarchical algorithm, we did experiments

on both types of application:

 “Token-application”: at the beginning of the execution

of the application, a node sends a message initiator.

Upon receipt of the message, it is in turn sent to another

process and so on, until the end of the application at run.

As the grid is organized as a cluster (group of nodes),

each message passes through its leader before being

routed to its final destination.

 An application for broadcasting messages (represented

as “Broadcast-Application” in the figures): all 30s, a

message is broadcast to all nodes of the grid until the

end of the execution of the application. Initially, the

message is sent to all leaders of clusters, and then they

distribute them within their clusters.

The experiments were conducted in two phases. The

characteristics of defect-free protocols are studied in the first

phase. Finally, in the second phase, the same sets of

experiments were made with fault injection.

We have implemented our algorithm and application in the

Omnet++ simulator [3].

A. Failure free performance

To measure the impact of logging messages on the response

time of applications, we varied the size of messages. The

figure 2 (Fig.2) shows the curves of changes in application

response time using the following protocol: the hierarchical

composition of Chandy-Lamport [5] algorithm with

pessimistic message logging [6] (represented as “CLPML”

in the figures) and the non-blocking coordinated checkpoint

protocol only [2] (“CL” in the figures). Obviously, the

“Token-Application”, being highly communicative, has a

response time higher than the application to broadcast

messages. We note that the response time increases gradually

as the message size increases. This is due to the data added

to messages during the backup of the latter by their issuers.

By cons, response time exhibits only slight variation by

adding message logging to Chandy-Lamport protocol. In

summary, the pessimistic logging used in the composition of

our hierarchical algorithm has a very low impact on the

response time of the application.

Fig. 2: Failure free performance, Checkpoint interval=180s, Execution

time=900s

B. Recovery time with fault injection

The following figure shows the variation in response

time of the “Token-Application” during recovery

applications. Applying the Chandy-Lamport algorithm, all

processes are restored from the most recent checkpoint. To

finalize the calculation of the overall state of the grid,

messages sent after the last point are replayed. To measure

the impact of messages on application performance, we

injected faults on a scale of 1 to 10.

We find that even the number of replayed messages is

high; it has a very low impact on response time. Indeed,

thanks to the pessimistic message logging, the messages sent

are stored at the sending process before interacting with the

system. So the process does not regenerate these messages,

they will simply re-emit by the process.

Fig. 3 Response time of Token-Application, checkpoint interval=180s,

execution time=900s,numbers of fault=10

V. RELATED WORK

Many protocols with a combination between checkpointing

and rollback-recovery have been proposed. Bhatia et al. [8]

suggest a hierarchical causal logging protocol that addresses

the scalability problems of causal logging. The protocol

uses a network of proxies that cached recovery information

while routing application. Indeed, the traditional causal

logging algorithms are used successfully in small-scale

systems. They are known to provide a low overhead during

failure-free executions sending no extra messages. But they

are not scalable since each application process needs to

maintain a data structure, which grows with the number of

processes in the system. Authors have reduced the data

structure by an exponential amount. They have proposed a

hierarchical approach using a set of proxies spread on the

network that act as a distributed cache. This approach highly

reduces the amount of information piggybacked on each

message. However, the use of proxies decreases the

performance of recovery since the recovery information is

spread on the proxies.

In [9], authors present an uncoordinated checkpointing

protocol for send-deterministic [10] HPC applications. This

protocol just requires logging a small subset of application

messages to avoid the domino effect. Furthermore, like in

message logging protocols, it does not require all processes

to rollback in case of failure. Since there is no domino effect,

a simple and efficient garbage collection can be done.

Finally, by allowing checkpoint scheduling, this protocol

appears to be some good way to address the problem of burst

accesses to the I/O system.

VI. CONCLUSION

In this paper, we propose a hierarchical composition of

algorithms: Chandy-Lamport protocol and pessimistic

message logging protocol. We have implemented and

compared the performance of the algorithm Chandy-Lamport

only and hierarchical combination of pessimistic logging

protocols and Chandy-Lamport, using the simulator OMNeT

+ + [3].

We found that the highly interconnected applications

like, "Token-application" have a high response time. But the

use of pessimistic message logging protocol has an

insignificant impact on performance when running

applications. Indeed, the protocols that require the recovery

of all processes in case of single failure are poorly suited to

systems with many processes. The message logging

protocols are more suitable for large configuration with the

exception of some causal logging approach, which induces

communications to all processes during the recovery. Non-

blocking coordinated checkpoint are not sensitive to the rate

of communications. The hierarchical composition of the

Chandy-Lamport algorithm and pessimistic message logging

protocol is a good alternative to fault tolerance in

computational grids.

REFERENCES

[1] Elnozahy, E.N., Alvisi, L., Wang, Y.M. & Johnson, D. B.

(2002). A Survey of Rollback-Recovery Protocols in

Message-Passing Systems. ACM Computing Surveys, vol.

34, no. 3 pp. 375–408.

[2] Ndiaye, N.M, Sens, P. & Thiare, O. (2012). Performance

comparison of hierarchical check- point protocols grid.

Advances in Intelligent and Soft Computing, 2012, Volume

151/2012, 339-346, DOI: 10.1007/978-3-642-28765-7-40

[3] http://www.omnetpp.org

[4] Elnozahy, E.N., Johnson, D.B. & Zwaenepoel, W. (1992).

The performance of consistent checkpointing. In Symposium

on Reliable Distributed Systems, pp. 39-47.

[5] Chandy, K.M. & Lamport, L. (1985). Distributed snapshots:

Determining global states of distributed systems. In

Transactions on Computer Systems, vol. 3(1). ACM, pp. 63-

75.

[6] Johnson, D.B. & Zwaenepoel, W. (1987). Sender-Based

Message Logging. In Digest of Papers: The 17th Annual

International Symposium on Fault-Tolerant Computing, pp.

14-19.

[7] Alvisi, L. Marzullo, K. (1998). Message logging: Pessimistic,

optimistic, causal, and optimal. IEEE Trans. Software Eng,

vol. 24, no. 2, pp. 149-159.

[8] Bhatia, K., Marzullo, K. Alvisi, L. (2003). Scalable causal

Message Logging for Wide-Area Environments. Concurency

and Computation: Practice and Experience, 15(3), pp. 873-

889.

[9] Guermouche, A., Ropars, T, Brunet, E., Snir, M. and

Cappello, F. (2011). Uncoordinated Checkpointing Without

Domino Effect for Send-Deterministic Message Passing

Applications. In 25th IEEE International Parallel and

Distributed Processing Symposium (IPDPS2011), Anchorage,

USA, pp. 989-1000.

[10] Monnet, S., Morin, C., Badrinath, R. (2004). Hybrid

Checkpointing for Parallel Applications in cluster

Federations. Proc. 4th IEEE/ACM International Symposium

on Cluster Computing and the Grid, pp. 773-782. Chicago:

USA.

[11] Himadri, S. Paul, Gupta, A. Badrinath, R. (2002).

Hierarchical Coordinated Checkpointing Protocol. In

International Conference on Parallel and Distributed

Computing Systems, pp. 240--245.

[12] Coti, C., Herault, T., Lemarinier, P., Pilard, L., Rezmerita, A.,

Rodriguez, E. Cappello, F. (2006). Blocking vs. non-blocking

coordinated checkpointing for large-scale fault tolerant MPI.

In SC '06: Proceedings of the 2006 ACM/IEEE conference on

Supercomputing. 127, New York, NY, USA.

http://www.omnetpp.org/

