
STAR: a Fault-Tolerant System for Distributed Applications

Pierre Sens

MASI Laboratory / CNRS 818
IBP, Paris VI University, France

4, place Jussieu - 75252 Paris Cedex 05
email: sens@masi.ibp.fr

Bertil Folliot

Blaise Pascal Institute
Paris VII University, France

2, place Jussieu - 75251 Paris Cedex 05
email: folliot@masi.ibp.fr

Abstract

This paper presents a fault-tolerant manager for
distributed applications. This manager provides an
efficient recovery of hosts’ failures on networks of
workstations. An independent checkpointing is used to
automatically recover application processes affected by
host failures. Domino-effects are avoided by means of
message logging and file versions management. STAR
provides an efficient software failure detection by
structuring hosts in a logical ring. Performance
measurements in a real environment show the interest and
the limits of our system.

1 Introduction

 Distributed systems provide new opportunities for
developing high-performance parallel and distributed
applications. However, because of the components
dependency, such systems are particularly fragile: the
failure of one component may imply the whole system
failure. Many existing systems integrate efficient
resources management for distributed applications among
a set of processors [4, 17], but few systems offer a fault
tolerant mechanism [8, 13, 14].

This paper presents STAR, a system managing fault-
tolerant distributed applications in a network of
workstations. An application is a dynamic set of
communicating programs accessing files. STAR is
designed to achieve five main goals:

 Proc. of the 5th IEEE Symposium on Parallel and
Distributed Processing, Dalla Texes, December 1993
(IEEE Computer Press)

• fault- tolerance: users’ applications tolerate
simultaneous hosts’ failures,

• transparency: failure occurrence is transparent to
applications,

• failure confining: only processes running on faulty
hosts are recovered,

• flexibility: STAR is application independent and
highly configurable,

• portability: STAR is designed on top of the UNIX
operating system and is easily portable to any other
UNIX-like operating systems.

The failure detection delay is a crucial point for fault-
tolerant managers. To provide an efficient failure
detection, we use a specific structuring of hosts in a
logical ring for host crash detection.

We use an independent checkpointing mechanism to
recover processes [10]. When a failure occurs, concerned
processes and their files are restored from checkpoints. A
reliable message logging allows to recover only processes
allocated on faulty hosts [16, 18] and thus, to avoid all
domino effects.

We present in section 2 the application, environment
and failure models managed by STAR. Section 3 describes
the design of our system. Finally, we give performance
measurements of STAR in a real environment.

2 Application, environment and failure
models

ST A R deals with distributed applications. An
application is a dynamic set of communicating processes.
A process can use any resources of the network (CPU and
files). The only way to exchange information between
processes is through message passing. All processes in
the system are deterministic. The state of a process is

determined by its starting state and by the sequence of
messages it has received.

STAR works on a set of workstations connected
together by a local area network (Ethernet). We consider
that the failure probability is low and that there is little
interest to manage fault-tolerant for short running
applications. Applications concerned by a fault-tolerant
management have long execution time such as high
number factoring, VLSI applications or image processing.
Such applications may run for hours, days or weeks. In
that case, the failure probability becomes significant.

We make the following assumptions about the failure
model:

• The system is composed of fail-silent processors
[15], where the failed nodes simply stop on failing
and all the processes on the node die.

• Failures are uncommon events while very short
recovery delays are not required. Thus, we always
favor a solution with a lower overhead in normal
functioning.

• We only consider host failures. A host is considered
faulty if it is not accessible. We will not consider
network partitions in this paper.

3 STAR description

In order to satisfy our flexibility and portability
requirements, we designed STAR on top of the UNIX
operating system. Users’ applications rely on a fault-
tolerant layer that provides access to all external
components (processes and files). This approach is more
costly than a fault-tolerance management integrated in the
kernel but it has the advantage of not being system
dependent.

All accesses to processes or files are done through the
fault-tolerant layer. This layer provides a global naming
space for processes. Thus, the process identification is
location independent and a process can transparently
migrate.

3.1 Host crash detection

Software host crash detection is rarely described in the
literature. The straightforward and most used way to
detect a host failure is to wait for a normal host access to
fail. This detection method has no overhead but the
failure treatment can only occur when one needs to use the
faulty host. Thus, the response time in case of failure can
be very high because it depends on the network traffic.
For this reason, such a method is not adapted to an
efficient failure processing.

A second detection method is to periodically check the

hosts states. The recovery is invoked as soon as a host
does not respond to the checker. This technique provides
a good recovery time but introduces an overhead in the
network traffic.

We use a combination of these two methods. The
normal traffic is used as in the first method, but when the
traffic stops between two hosts during a given time
(specified by the network administrator, for instance three
seconds), we generate a specific detection message.

This combination method raises an other problem:
how each host checks each other ? To respect our
portability principle, we don’t want to use special
hardware. We operate a logical structuring of hosts in a
logical ring of detection. Each host only checks its
immediate successor in the ring. The checking process is
straightforward and the cost in messages traffic is low.

As for all logical structuring of hosts, a ring
reconfiguration protocol must be executed when adding or
removing a host [3, 12].

Ring insertion: when a new host joins the fault-
tolerant system, it is inserted into the detection ring. The
logical ring is scheduled according to the host
identifications (host ID). We don’t use any centralized
coordination. Each host has a global view of all hosts in
the ring. When a host wants to be inserted in the ring, it
broadcasts its host ID. On reception of this message,
each host updates its global knowledge. The logical
predecessor connects itself to the new host and this one
connects itself to its successor. Finally, the predecessor
transmits its global knowledge of the ring to the new
host.

Ring reconfiguration: when a host detects its
successor’s failure, it initiates a reconfiguration step. The
detector connects itself to the first valid successor and
broadcasts the new structure of the ring.

3.2 Processes recovery

Our recovery mechanism is based on a checkpointing
method. The related works in checkpointing are divided in
two classes: consistent and independent checkpointing.

In the first approach, processes coordinate their
checkpoints such that the set of checkpoints forms a
snapshot of a consistent global state of the system [6].
When a failure occurs, processes rollback to their last
checkpoints. The main drawback of this approach is that
messages used for synchronizing a checkpoint are an
important source of overhead. Moreover, after a failure,
surviving processes may have to rollback to their latest
checkpoint in order to remain consistent with recovering
processes [11].

We adopt the second approach where processes save

their states independently. This technique is simple, but
since the checkpoint of processes may not define a
consistent global state, the failure of one process leads to
rollback other processes. To avoid this classical domino
effect, we use a reliable message logging [10, 18]. This
logging is particularly adapted for applications composed
of processes exchanging small streams of data. In that
case, the message logging overhead becomes negligible.

In order to ensure fault-tolerant file accesses, users’
files are duplicated on several disks belonging to several
hosts. Replicated files are not sufficient for users’
processes. When a process rolls back to its last
checkpoint, it needs to see used files at the state of the
checkpoint time. To solve this problem, we also manage
versions of duplicated files (see section 3.4).

3.3 Communication management

The STAR communication protocol is based on the
local simulation of interactions for the recovered
processes. It relies on the confining principle: “a
recovered process has no interaction with the others until
it reaches the last state before the failure”. To respect this
principle, we use message logging of all received
messages and we detect retransmissions from recovered
processes.

Each process reliably saves all received messages. A
recovered process refers to this backup to access to old
messages. Thus, old valid senders are not concerned by
the recovery of a process. The reception of messages is
done by the fault-tolerant layer. This layer accesses to the
backup or waits for messages according to the user
process state (recovered or not). At the process level there
is no difference between a message reception from the
network or from the backup.

Because processes are determinists, a recovered process
sends again all messages since its last checkpoint. The
sending is done by the fault-tolerant layer. In this layer, a
stamp on each message allows to detect retransmissions
of messages. Each message has a unique stamp and is
retransmitted with the same stamp in case of failure. The
fault-tolerant layer detects the retransmission by
comparing the stamp of a message with the stamp of the
last transmitted message. This method avoids the
reception of an old message from a recovered process.

With this protocol, the fault transparency and fault
confining goals are respected.

3.4 File management

The file manager is the central point of STAR. It is
used for users’ files, for messages backups and for

checkpoints storing. This manager has the following
properties:

• fault tolerance: each file is duplicated on separate
disks,

• coherency: file copies are kept identical,
• version management: each used file has an old

version (also duplicated) corresponding to the last
checkpoint of the process.

To ensure coherence of all copies, the file manager
performs a reliable broadcast protocol [2]. A file’s update
is atomically broadcasted to all managers keeping a copy.
A read operation is done locally whenever possible.

The file manager also manages versions of duplicated
files. There are two versions of used files: a current one
for all accesses and a checkpoint one created at the
checkpoint time. When a process rolls back, old versions
of used files replace current ones.

3.5 Failures Treatment

The failure treatment begins after the ring
reconfiguration. First, faulty processes (processes that
were running on the faulty host) are identified, then new
processes are created on a valid host and their states are
restored from checkpoints.

Each host knows all information concerning the
applications’ processes. This knowledge allows a local
identification of faulty processes. It is updated each time
a process is created, terminated or recovered.

After the identification step, we choose a valid host to
reallocate faulty processes. In the first version of STAR,
processes are relaunched on the host which has detected
the failure. This may overload the detecting host, if a
big number of processes were running on a faulty site, or
if the host detects successively several failures. The
second version of STAR includes a load balancing
capability for dynamic reallocation of processes when
recovered [5].

4 Performances

In this section, we present the performance of STAR.
We evaluate the cost of the communication protocol,
checkpoints and failure recovery. These measures will
help system administrators or application designers to
choose the good parameters (various degrees of
replications, period of checkpointing) according to their
fault-tolerance and performance requirements.

All measures have been done in a set of Sparc Station
1 with 24 Mb of memory connected by Ethernet. The
environment has not been modified (usual daemons were
running).

4.1 Checkpoint evaluation

The figure 1 shows the checkpointing cost with
different replication degrees. The replication degree is the
number of identical copies of the checkpoint files. This
cost directly depends on the process context size. We
indicate the checkpointing time for programs with
different size of local data.

For a 100 kilobytes’ data program and for a replication
degree of two, the cost of a checkpoint is 1.4 seconds.
For the same size and a replication degree of four, the cost
is 2.7 seconds.

4321

0

1

2

3

4

25 Kb
50 Kb

100 Kb
200 Kb

Replication degree

Time (seconds)

data size

Figure 1: Checkpoint cost

Such performances are relatively good compared to
other systems. For instance, DAWGS [7] does a similar
checkpointing with only one replication degree (i.e., a
faulty process must wait for the faulty host to be
restarted). In this system, the checkpoint time is about
3.5 times slower (1.84 seconds for only 25 Kbytes) than
the checkpoint time in STAR.

Elnozahy et al [8] have implemented a consistent
checkpointing with also one replication degree. They
obtain results according to the application complexity.
For a relatively simple application, such as a distributed
gaussian elimination, the checkpoint time to save 200
Kbytes of data is about 6 seconds (5 times slower than in
ST A R). For a complex application, such as a
computation of a grid, the checkpoint time is about 10
seconds (about 8 times slower than in STAR). In
consistent checkpointing, the cost of the checkpoint

depends not only on the process size but also on the
synchronization between involved hosts.

Bhargava et al [1] also give some performance
measurements of consistent checkpointing. In their
environment, the messages needed for synchronizing a
checkpoint implied an important overhead. Authors have
limited their study to small size of programs (4 to 48
kilobytes).

Borg et al [3] have implemented a fault-tolerant version
of UNIX based on three-way atomic message
transmission: the TARGON/32 system. They measured
the performance on only two machines. In that case, the
performance turns out to be 1.6 times that of a standard
UNIX. This system is totally transparent to users, but
implies more overhead than in STAR.

4.2 Recovery evaluation

We have evaluated the cost to restore faulty processes.
Measures have been done with different processes sizes.
They are quite linear. For a 25 Kbytes process, the
average restoration time is 2.2 seconds. For a 50 Kbytes
process, it is 2.5 seconds, for a 100 Kbytes process, it is
3.2 seconds, and for a 200 Kbytes process, it is 4.1
seconds.

This restoration time seems important compared to the
checkpoint cost. In fact, the restoration step is much
more complex. It includes the time to identify the
process, to reconfigurate the ring, to create a new process,
to restore its context and eventually to update the global
knowledge.

In the TARGON/32 system the average recovery time
for a process is 5-15 seconds.

4.3 Communication protocol evaluation

We have evaluated the cost of the ST A R
communication protocol according to the replication
degree of backups. The replication degree is the number of
identical copies of the backup. The cost to send one
message with one backup is 1.6 times slower than
without backup. It is 2.2 times slower for two backups,
2.6 times slower for three backups, and 3 times slower for
four backups.

Process that only communicates would see their
performances at least divided by two. The communication
protocol is the weak point of our system, and more
generally, of all systems based on message logging.
Thus, STAR is particularly adapted for long running
application composed of processes exchanging small
streams of data.

5 Conclusion

We have presented the STAR fault-tolerant system for
distributed applications. It uses an independent
checkpointing of processes. By a reliable storage of
processes’ messages, the well-known domino effect is
avoided. STAR provides an efficient host crash detection
with a logical structuring of host in a ring.

STAR has been developed on a set of Sparc stations
connected by Ethernet. We gave some performance
measures that show the efficiency of our system and that
prove that a fault tolerant system is viable for a
workstation model. The limit concerns highly
communicating programs that suffer from the reliable
logging cost. Otherwise, the ST A R overhead is
negligible.

We developed a new version to take benefit of a load
balancing manager (the GATOS System [4, 9] developed at
the MASI Lab.). GATOS allows to use efficiently all the
available processing power. It is used by STAR when
starting or recovering a process. The mean improvement
observed by using GATOS is from 20 to 50% (depending
on a large number of parameters, such as the parallelism
degree, the CPU needs and the overall network load).

The scalability of STAR is limited by the size of a
LAN (20-30 hosts). In large distributed systems, the
overhead of information distribution becomes too
important. A future extension will be to manage fault-
tolerance in wide area network.

References

[1] B. Bhargava, S-R. Lian, and P-J. Leu. Experimental
Evaluation of Concurrent Checkpointing and
Rollback-Recovery Algorithms. In Proc. of the
International Conference on Data Engineering, pp
182-189, March 1990.

[2] K. P. Birman, A. Schiper, and P. Stephenson.
Lightweight Causal and Atomic Group Multicast. ACM
Transactions on Computer Systems, 9(3):272-314,
August 1991.

[3] A. Borg, W. Blau, W. Craetsch, F. Herrmann, and W.
Oberle. Fault Tolerance under UNIX. A C M
Transactions on Computer Systems, 7(1):1-24,
February 1989.

[4] R. Boutaba and B. Folliot. Load Balancing in Local
Area Networks. In Proc. of the Networks’92
International Conference on Computer Networks,
Architecture and Applications, Trivandrum, India, pp.
73-89, October 1992.

[5] R. Boutaba, B. Folliot, and P. Sens. Efficient
Resources Management in Local Area Networks. In

Proc. of the International Conference on Advanced
Information Processing Techniques for LAN and MAN
Management, IFIP WG6.4, Versailles, Avril 1993.

[6] K.M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems.
ACM Transactions on Computer Systems, 3(1):63-75,
1985.

[7] H. Clark and B. McMillin. DAWGS - A Distributed
Compute Server Utilizing Idle Workstations. Journal
of Parallel and Distributed Computing, 14:175-186,
February 1992.

[8] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel.
The Performance of Consistent Checkpointing. In
Proc. of the 11th Symposium on Reliable Distributed
Systems, October 92.

[9] B. Folliot. Distributed Applications in Heterogeneous
Environments. In Proc. of The European Forum for
Open Systems, Tromsø, Norway, pp. 149-159, May
1991.

[10] D.B. Johnson and W. Zwaenepoel. Recovery in
Distributed Systems Using Optimistic Message
Logging and Checkpointing. Journal of Algorithms,
11(3):462-491, September 1990.

[11] R. Koo and S. Toueg. Checkpointing and Rollback-
Recovery for Distributed Systems. IEEE Transactions
on Software Engineering, SE-13(1):23-21, January
1987.

[12] G. Le Lann. Synchronization in Local Area Networks:
an Advanced Course. Lecture Notes in Computer
Science, (184), Springer-Verlag, pp 361-395, 1983.

[13] D. Powell. Delta 4: A Generic Architecture for
Dependable Distributed Computing. Research Reports
ESPRITS, Project 818/2252 Delta 4 Vol. 1, Springer-
Verlag Edition, 1992.

[14] M. Ruffin. KITLOG: a Generic Logging Service. In
Proc. of the 11h Symposium on Reliable Distributed
Systems, Houston, Texas, pp. 139-146, October 1992.

[15] R. D. Schlichting and F. B. Schneider. Fail Stop
Processors: An Approach to Designing Distributed
Computing Systems. IEEE Transactions on Computer
Systems, 1(3):222-238, August 1983.

[16] A. P. Sistla and J. L. Welch. Efficient Distributed
Recovery Using Message Logging. In Proc. of the 8th
Annual ACM Symposium on Principles of Distributed
Computing, August 1989.

[17] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G.
J. Sharp, S. J. Mullender, J. Jansen, and G. van
Rossum. Experiences with the Amoeba Distributed
Operating System. Communication of the ACM, Vol
33, pp. 46-63, December 1990.

[18] K. Venkatesh, T. Radhakrishnan, and H.F. Li. Optimal
Checkpointing and Local Recording for Domino-Free
Rollback Recovery. Information Processing Letters,
25:295-303, July1987.

