
Appears in "Software - Practice and Experience", Vol. 28(10), 1079-1099 (AUGUST 1998)
@ 1998 John Wiley & Sons, Ltd

The STAR Fault Manager for Distributed Operating
Environments

Design, Implementation, and Performance

PIERRE SENS

University Paris VI, LIP6 Laboratory / CNRS, 4 place Jussieu, 75252 Paris Cedex 05 - France
(Pierre.Sens@lip6.fr)

AND

BERTIL FOLLIOT

University Paris VII, LIP6 Laboratory / CNRS, 4 place Jussieu, 75252 Paris Cedex 05 - France
(Bertil.Folliot@lip6.fr)

SUMMARY
This paper presents the design, implementation, and performance evaluation of a
software fault manager for distributed applications. Dubbed ST A R , it uses the natural
redundancy existing in networks of workstations to offer a high level of fault
tolerance. Fault management is transparent to the supported parallel applications.
To improve the response time of fault-tolerant applications, ST A R implements non-
blocking and incremental checkpointing to perform an efficient backup of process
state. Moreover, ST A R is application independent, highly configurable. Star actually
runs on top of SunOs and is easily portable to UNIX™-like operating systems. The
current implementation is based on independent checkpointing and message logging.
Measurements show the efficiency and the limits of this implementation. The
challenge is to show that a software approach to fault tolerance can efficiently be
implemented in a standard networked environment.
KEY WORDS Fault-tolerance Distributed Systems Independent Checkpointing Message Logging Performance

INTRODUCTION

This paper presents the design, implementation and performance evaluation of STAR30,
a fault-tolerant facility to support execution of reliable distributed applications in a
network of workstations. For instance, a parallel numerical application may support an
arbitrary number of host failures during its execution.

Many systems integrate efficient resource management for distributed
applications3,14,36,41. Several other systems offer fault management using the natural
redundancy of the distributed system without requiring specific hardware
support1,4,22,24,32. STAR fills this gap and is built totally outside the operating system.

-2-

The challenge is to show that software fault tolerance can be efficiently implemented in
a standardized environment.

STAR uses checkpointing and rollback recovery. Such techniques are well-known to
provide fault tolerance in distributed systems 8,19,20,23. In the STAR implementation, an
independent checkpointing mechanism is used to recover processes7,16,31. This
implementation is based on a stable storage integrated in STAR . Each process
independently saves its state and, when an error is detected, the execution is rolled back
and resumed from earlier checkpoints. Because processes do not synchronize
themselves for checkpointing, this method generally provides low run-time overhead.
However, since the set of checkpoints may not define a consistent global state, the
failure of one process may lead to the rollback of other processes (the well-known
"domino effect" 10). To avoid such an effect, our recovery protocol is based on message
logging7,33. In the general approach, processes log their received messages. When a
faulty process restarts, messages are replayed from the log in their original order to
deterministically reconstruct its pre-failure state.

STAR fulfills the following goals. First, it allows users' applications to transparently
tolerate an arbitrary number of host failures. Secondly, it is designed on top of the
Unix operating system without need for any hardware support or kernel modification.
Finally, STAR is application independent and flexible with tunable parameters so that
each programmer can choose the recovery algorithm geared to his/her application's
requirements. When the users starts his/her application, he/she can choose the
appropriate message logging strategies (optimistic or pessimistic), he/she can also fix the
checkpoint frequency and the replication degree of the stable storage.

STAR has been developed on a set of SUN-Sparc stations connected by Ethernet.
The results demonstrate that independent checkpointing is an efficient approach for
providing fault tolerance for the chosen applications, namely long-running ones with
few message exchanges. We show that software based fault tolerance management is an
interesting alternative to specialized hardware or kernel-integrated fault tolerance.
Results from24 as well as our own instrumentation of several parallel applications
corroborate this claim.

The remainder of this paper is organized as follows. The next section presents the
application, environment and failure models. The two sections following that describe
the mechanism of failure detection and the process recovery strategy. We then present
the message logging mechanism and our implementation of the stable storage. Finally
we give the performance of STAR with several real applications in an academic
environment.

ENVIRONMENT

This section presents our target environment and outlines some other systems providing
fault tolerance in similar environments.

We consider an application as a dynamic set of communicating processes. A process
may use any resource of the network (mostly CPU and files). The only way to
exchange information between processes is through a message passing library provided
by STAR. File sharing is not allowed. We also make the assumption that processes
involved in the parallel computation are piecewise deterministic35,39; in other words

-3-

process execution is divided into a sequence of state intervals each of which is started by
a non-deterministic event such as the receipt of a message. The execution within an
interval is completely deterministic. In STAR, we assume that message-delivering events
are the only source of non-determinism. The application has to handle other sources
of non-determinism coming from the Unix system itself (for example due to time
sharing) using local synchronization. This assumption is met by many applications, but
excludes for example all programs relying on the local time values. To handle this kind
of non-determinism, we can extend the message logging scheme by treating each non-
deterministic function as a message, logging it and replaying it during recovery16.

For each program, the user specify the initial execution host. To dynamically benefit
of the available processing power, STAR has been integrated into the Gatos process
allocation manager17.

Users applications rely on a fault-tolerant software layer providing a reliable access
to all external components (processes and files). This layer allows automatic recovery
of processes affected by a host failure on any of the remaining valid and compatible
hosts. The faults are totally hidden at the applications layer. In this sense, the fault
tolerance mechanisms provided by STAR are transparent to the programmer apart from
the need to link the final executable with the STAR library. STAR provides a global
naming space for processes which is used to locate them. Each local fault-tolerant layer
maintains a global view of the location of all current processes. We choose to limit
migration on set of homogeneous hosts. Process migration among heterogeneous host
is complex and appears to restrict significantly the permitted application behaviour9,28.

STAR is implemented on top of a Unix operating system (SunOs). It works on a set
of workstations (hosts) connected by a local area network (Ethernet). We assume that
the underlying transport layer provides reliable, sequenced point-to-point
communication (TCP). We make the following assumptions about the failure model.
The processors are assumed to be fail-silent25: a failed node simply stops and all the
processes on the node die. Viewed from the communication network, a faulty processor
remains silent and cannot receive or send a message. However, a guaranteeing that
nodes are fail-silent implies that the nodes are implemented with a perfect self-checking
mechanism25. Although many techniques are available implementing self-checking
hardware37, at present we do not assume any specific hardware to achieve the fail-silence
property. We also consider that failures are uncommon events and so very short
recovery delays are not required. Therefore, we favour solutions with a low overhead
under normal operation, possibly to the detriment of an increase in recovery time. At
present, we make no attempt to detect individual process failures on a node. Future
versions of the STAR software will handle finer-grained failures.

STAR consists of a set of servers and a client library (Figure 1). There are three main
servers: the failure manager in charge of failure detection and restarting processes
affected by host failures, the file server implementing the stable storage by means of
replicated files, and the communication server managing interactions between
application processes. Each part of the implementation is explained in the following
related sections.

-4-

UNIX

Failure
manager

File
server

STAR

Applications

Comm.
server

UNIX

Failure
manager

File
server

STAR

Applications

Comm.
server

library

P1

library

P2

library

P3

library

P4

Figure1.STAR architecture
The STAR library offers a RPC-like interface for communication and a standard

Unix interface for file access. Programs must use this interface for communication.
Other Unix communication functions such as signals and pipes are not supported by
STAR. Consequently, portions of code using these functions must be rewritten to use
our library communication interface. The STAR library offers the following functions
(Figure 2):

• Process creation and termination: at start-up, the main function registers the new
process with STAR. Similarly at the end, the exit function unregisters the
process with STAR.

• Checkpoint and restoration: the checkpoint function is either implicitly (at
regular interval transparently to the application), or explicitly called as indicated
in the source code. When a process is restarted, the restore function is
automatically called from the main function.

• File access functions: these functions provide a Unix-like interface to the STAR
file manager.

• Communication functions: these functions allow reliable message exchanges
implementing message logging strategies.

main

Program
code

restoration checkpoint

communication files
exit

register to Star

unregister

to Star daemons

Figure2. Process organization

-5-

While STAR can be used in an almost transparent mode (the user has only to define
the checkpoint period when he/she starts the application), it also offers the possibility to
the user to explicitly include checkpoints supports in the source code. This user-
triggered approach allows the application designer to use his/her knowledge about the
application to judiciously insert checkpoints (e.g. after performing a significant amount
of communication in order to purge the log).

Some process managers already provide fault tolerance in similar environments.
Condor22 is a well-known process manager on top of Unix workstations. It provides a
checkpointing facility that allows sequential programs to use the idle time of
workstations. Alternatively, checkpoints can be used to tolerate host failures. Recently,
an extension proposed by 27 adapts the Condor sequential checkpointing to parallel
programs. Libckpt24 is another portable checkpointing tool for Unix that implements
classical performance optimizations such as non-blocking and incremental
checkpointing. However, Libckpt is limited to sequential programs. These two projects
provide efficient tools for designing reliable applications. However, recovery is not
automatically invoked and the fault treatment is not transparent to the user, who must
explicitly restart the application. Moreover, checkpoints are not replicated and
applications cannot recover from the failure of the file server.

In STAR, we want to provide a self-contained fault manager. STAR processes
transparently all the steps of the fault treatment: checkpointing, fault detection, and
restarting from valid hosts. Moreover, we do not want to be dependent on a single
specific host. For this reason, STAR uses a replicated file manager to implement the
reliable storage of critical data, such as checkpoints and message logs.

FAILURE DETECTION

The software approach to detecting a host crash is often realized by monitoring the
normal communication traffic. This method has no overhead, in terms of the number
of messages, but the failure can only be processed when one needs to use the faulty
host. Thus, the recovery time in case of failure can be very high. Such a method, based
only on normal communication traffic, is not appropriate for a fault manager.

Another solution consists of periodically checking the hosts' states7. The recovery is
invoked as soon as a host does not respond to the checker. This technique allows a fast
recovery, but introduces an overhead in the network traffic. This overhead is
proportional to the checking rate multiply by the number of checked hosts.

STAR uses a combination of the two methods. The normal traffic is used as in the
first method, but in addition, when there is no traffic during a given period, a specific
detection message is generated. A naive implementation of this detection would be for
each host to check all the other active ones. This solution is not suitable for complex
systems with many hosts, since the network would become rapidly overcrowded with
detection messages. In order to get an efficient detection message traffic, we organize
all the hosts in a logical ring. Periodically, each host only checks its immediate
successor on the ring. The checking process is straightforward and the cost in messages
is very low. For a two second detection time, the network overhead on a 10 Mb/s
Ethernet is negligible. However, to ensure the coherence of the ring, a two-phase

-6-

reconfiguration protocol is executed when adding or removing a host. The cost of the
reconfiguration protocol is not significant since host crashes are uncommon events.

On each host a replicated failure manager maintains a global view of the ring. In case
of failure, the predecessor of the faulty host can locally determine its new successor.
Host insertion in the ring is done in three steps: broadcast of an insertion message,
update of the global knowledge, and transmission of the knowledge to the new host.
The new host takes place in the ring according to its own host identification. This
method supports an arbitrary number of simultaneous failures.

The implementation of the logical ring is as follows. Each failure manager is linked
to its predecessor and successor using the TCP communication protocol. Periodically,
the server checks if a normal message has been received from its successor. If no
message has been received, it sends a detection message to its successor. If this sending
fails, the successor is considered faulty and the server initiates the recovery step*.

PROCESS RECOVERY

The recovery step is invoked as soon as a failure is detected. Processes affected by
the failure are immediately restarted on a valid host, unlike some other fault managers
where processes can only be restarted after the faulty host is rebooted (as in DAWGS12

or Arjuna32). The process recovery in STAR is done by (1) checkpointing the process
to stable storage, (2) restarting the process on a hardware compatible valid host, (3)
redirecting communications to the new process location.

Checkpointing a single process
The checkpoint of a single process is a snapshot of the process's address space at a

given time. Each checkpoint is saved on stable storage capable of surviving some given
number of host failures. To reduce the cost of checkpointing, two complementary
techniques can be applied: incremental, and non-blocking checkpointing15,24.

Incremental methods reduce the amount of data that must be written. Only those
pages of the address space modified since the last checkpoint are written to stable
storage. The most efficient way to implement incremental checkpointing is to use
internal operating system mechanisms such as memory page protection. Thus, the set
of modified pages is determined using the dirty bit in each page table entry. This
implementation reduces the cost of checkpointing significantly. However, it often must
be integrated with the kernel.

Non-blocking methods allow the process to continue executing while its checkpoint is
written to stable storage15. However, if the process modifies any of its pages during the
checkpoint, the resulting checkpoint may not represent the real state of the process.
The internal copy-on-write memory protection may be used to protect pages during the
checkpoint. At the start of the checkpoint, the pages to be written are write-protected.
After writing each page to stable storage, the checkpoint manager removes the
protection from the page. If a process attempts to modify a protected page, the page is

* We consider that the probability of incorrect failure detection is negligible using TCP. This assumption seems realistic for
local area network.

-7-

copied to a newly allocated page, and the protection of the original page is removed.
The newly allocated page is not accessible to the process. It is used only by the
checkpoint manager to finish the checkpoint. This technique improves significantly the
response time, between 3.4 times and 4.7 times faster checkpointing according to
experimental results presented by 15.

ST A R 's checkpoint mechanism uses both incremental and non-blocking
checkpointing. The Unix fork() primitive provides exactly the mechanism needed to
implement non-blocking checkpointing. The fork system call creates a new process
with the same address space as the caller. When checkpointing, the STAR library forks a
child process which performs its context backup while the parent process returns to
executing the application. Many implementations of fork use a copy-on-write
mechanism to optimize the copying of the parent's address space. To perform
incremental checkpointing outside the kernel, each child process created at the
checkpoint time compares its address space with the space of the child process created at
the previous checkpoint. This comparison is performed through a pipe and we save
only data that have been modified. We show in the performance section that these two
techniques considerably reduce the cost of checkpointing compared with full blocking
checkpointing. However, they require a larger amount of memory and result in
increased multiprogramming. The default checkpoint strategy is the non-blocking and
incremental. The user may choose an other checkpoint strategy at link time.

In terms of implementation, periodically or by explicitly calling the checkpoint
function, a process saves its data segment, and stack. Then, a setjmp is executed to
save the register contents. When a process is relaunched on a new host, it first allocates
enough memory to contain the saved data and stack segments (a call to the sbrk
function to expand the data segment and to the alloca function to expand the stack).
Then, it loads segments from the checkpoint and finally it executes a longjmp to
restore registers.

Recovery schemes for communicating processes
When processes exchange messages, the simple approach to recovery for

independent processes is no longer adequate21. In particular, attempts by individual
cooperating processes to achieve backward error recovery can result in the well-known
domino effect29. To recover from a fault, the execution must be rolled back to a
consistent state, but rolling back one process could result in an avalanche of rollbacks of
other processes before a consistent state is found. For example, when the sender of a
message is rolled back, the corresponding receiver is also rolled back. This effect is
illustrated in Figure 3.

xxx

x

x x x

x
fault

p0

p1

p2

-8-

Figure3. Domino effect
The Xs indicate checkpoints and the arrows represent the messages. To recover from

the failure of p1, all processes must be rolled back to their initial checkpoints.
A substantial body of work has been published regarding fault tolerance by means of

checkpointing. The main issues that have been covered are limiting the number of
hosts that have to participate in taking the checkpoint or in rolling back20, reducing the
number of messages required to synchronize a checkpoint5,16, or using message
logging7,19. Checkpointing techniques can be classified into two categories: coordinated
and independent checkpointing.

With coordinated checkpointing, processes coordinate their checkpointing actions
such that the collection of checkpoints represents a consistent state of the whole
system10. When a failure occurs, the system restarts from these checkpoints. Looking at
the results of 5,15,23, the main drawback of this approach is that the messages used for
synchronizing a checkpoint are an important source of overhead. Moreover, after a
failure, surviving processes may have to rollback to their latest checkpoint in order to
remain consistent with recovering processes20. Alternatively, the number of processes to
rollback can be reduced by analyzing the interactions between processes20,13.

In independent checkpointing, each process independently saves its state without any
synchronization with the others. Message logging was introduced to avoid the domino
effect7,16,18,35. Logging methods fall into two classes: pessimistic and optimistic. In
pessimistic message logging the system writes incoming messages to stable storage
before delivering them to the application31,40. To restart, the failing process is rolled
back to the last checkpoint and replies to outgoing messages are returned immediately
from the log. The receiver is blocked until the message is logged on stable storage.
Alternatively, the system delivers the message to the application immediately but
disallows the sending of further messages until the message has been logged18. In
optimistic message logging messages are tagged with information that allows the system
to keep track of inter-process dependencies16,19,33,34,38. Inter-process dependency
information is used to determine which processes need to be rolled back on restart.
This approach reduces the logging overhead, but processes that survive a failure may
still be rolled back. Alternatively, messages are gathered in the main memory of the
sending host and are asynchronously saved to stable storage.

The implementation of STAR is based on independent checkpointing with pessimistic
and optimistic message logging. This technique is tailored to applications consisting of
processes exchanging few messages. This method totally suppresses the domino-effect
and consequently only one checkpoint is needed for each process. We have
implemented both pessimistic and optimistic message logging to allow application
designers to choose the logging algorithm according to their application requirements.
In every case, STAR guarantees that any process state is always recreated.

The benefits listed above are obtained at the expense of the space and time required
for logging messages. The space overhead is reasonable given the current large disk
capacities. Furthermore, at each new checkpoint all messages are deleted from the
associated backup (a log is completely deleted after each checkpoint). The main
drawback is the Input/Output overhead (i.e., the latency in accessing the stable storage).

-9-

Interactive applications
Most fault-tolerant systems usually consider batch-only applications and do not

manage interactive applications. In the Condor system, the application is killed when
the user host crashes22. Alternatively, the interactivity can be managed in specific
hardware architecture, as in the TARGON-32 system, where devices are duplicated7.

An effort has been made to give STAR the capability to manage interactive
applications. Each interactive application is associated with a terminal (a user window).
The processes of such an application may be rolled back while the terminal is active. A
specific process, the Input/Output server, is the link between the user terminal and the
application processes. Each interactive process is linked to this I/O server to which it
directs its standard input and output messages. Thus, programs outputs are
transparently forwarded to the user window, and user inputs are sent to application
programs (Figure 4).

Communication
Sockets

I/O

I/O server

User Process

user's host

remote hosts

User Process

User Process

I/O

Figure 4. Management of interactive processes
If a remote host fails, the associated processes are restarted on valid hosts and their

standard Input/Output are transparently reconnected to the I/O server. If the user host
fails (i.e., the I/O server is no longer available), other processes continue their execution
but are suspended when they try to access to their standard input/output devices. In
such a case, STAR allows the user to login on another valid hosts. A new I/O server is
then automatically created and reconnected to all the frozen processes that may then
resume their executions.

COMMUNICATION MANAGEMENT

The STAR communication protocol relies on the confining principle: “a recovered
process has no interaction with the others until it reaches the last state before the
failure” and consequently avoids the domino effect. Communications between the
checkpoint and the fault point are simulated using data saved in the stable storage.

-10-

Thus, any process may be rolled back independently. To comply with this principle, we
use the following techniques:

1. Each process saves all input messages. A recovered process refers to this backup
to access old messages. Thus, old valid senders are not concerned by the recovery
of a process. All requests to receive messages are transparently transmitted to the
local fault-tolerance layer. This layer directly accesses the backup or waits for
messages according to the process state (recovered or not). At the process level
there is no difference between receiving a message from the network or from the
backup.

2. Because processes are piecewise deterministic, a recovered process resends all
messages that have been sent since the last checkpoint. A timestamp on each
message allows detection of these retransmissions. Each message has a unique
timestamp and is retransmitted with the same timestamp in case of failure. The
fault-tolerant layer detects retransmissions by comparing the timestamp of a
message with the stamp of the last transmitted message in order to discard
messages already received.

Each message is stamped with the global name of the sender and a sequence number.
The sequence number is incremented at each send and is stored in the process' address
space. The stamp uniqueness is ensured by the uniqueness of the global names. The
current value of the sequence number is saved within each checkpoint. When a process
recovers, the sequence number of its last checkpoint is restored and becomes the current
one. Retransmissions are detected by comparing the current number of the sender to
the number of its last message sent before the failure. This test is done, without any
communication, in the local fault-tolerant layer of the sending host.

One difficulty resides in obtaining the number of the last message sent before the
failure. It would be too costly to check for this number in all message logs. Thus, each
host keeps in memory the set of the last received stamps (one stamp for each process).
When a process is relaunched on a new host, all other hosts send the last stamp received
from the recovered process. The number of the last sent message is the maximum of all
the received numbers.

There remains the possibility that the maximum of all received numbers is not the
real one. That happens if the host (say Hmax) keeping the real maximum number is
down and cannot answer. Then, some messages may be sent again to processes
recovering from the Hmax failure. These retransmitted messages will be detected and
discarded by the communication server at the receiving host.

The following describes our implementation of message logging. Communications
between hosts are always performed in a reliable way. Point-to-point communications
are achieved through a reliable protocol (TCP). On each host, the communication server
manages all users’ processes communications. Each server uses local processes
information for the location resolution and for the detection of retransmissions.

-11-

CS a
retransmission ?

X

Host: A

CS b

Y

Host: B

receive(mess, sender)

storage
retransmission ?

to the log

send(mess, Y)

Figure5. Communication protocol
In the pessimistic scheme, the communication from process X on host A to process Y

on host B is done in three steps (Figure 5):
1. X transparently calls its local communication server (CSa) with the name of the

receiver and the message.
2. If the message is a retransmission (i.e., X is recovering), CSa discards it. Otherwise,

CSa finds the location of process Y, based on its global knowledge about running
processes, then puts the message in a local queue and sends it to the
communication server of the remote host (CSb).

3. If the message received by CSb is a retransmission, CSb discards it. Otherwise,
CSb saves it in the log and puts it in the receiver queue (Y), then it sends an
acknowledgment to CSa that deletes the message from its sending queue. When Y
asks to receive a message, it makes a request to its local communication server
(CSb).

When host B fails, all new messages addressed to Y are locally queued at the sending
hosts. When the new location of Y is known, all waiting messages are sent. They are
deleted when the acknowledgments are received. If host B fails while logging a message,
the message is not acknowledged and stays in the sending queue of host A. The latter is
retransmitted when Y is recovered.

In the optimistic scheme, messages are not directly saved in stable storage but are
kept in the main memory of the sending host. Periodically, the sending host saves all
messages to stable storage. In case of failure, messages addressed to faulty processes are
found either on the stable storage or on the main memory of the sending hosts. The
receiving host only saves in stable storage the order information used to reorder
messages in case of failure. The extreme case of optimistic logging is the sender-based
algorithm, where all messages are kept in the sending queue and are never saved to
stable storage. However, messages saved in volatile memory may be lost upon a failure,
but since the processes are piecewise deterministic they resend their messages and the
receiving host uses order information to deterministically reconstruct its pre-failure
state.

The programmer can choose the message logging scheme (pessimistic or optimistic)
when starting the application according to the application requirements. Moreover,
STAR allows the disabling of fault-tolerant management to temporarily suppress the
message logging overhead. Each application process may have two states: reliable or
unreliable. In the unreliable state, a process will not be recovered if a failure occurs and

-12-

messages sent to an unreliable process are not saved. The programmer can change the
process state to optimize part of the computation which has a high rate of
communication. An application must explicitly handle failure of an unreliable process
using checkpoint and restore functions provided by the STAR library. Such
processes can be restarted from the beginning, or may coordinate their checkpoints
before starting unreliable steps. For instance, consider the following application. At
start-up, a master process sends a large matrix to some slave processes. In the reliable
scheme, each slave process has a copy of the matrix in its address space and a copy in
its log. To reduce the space and communication overhead, the application may be set as
unreliable while the matrix is transferred. Then, processes may save coordinated
checkpoints before starting the reliable computation step.

STABLE STORAGE

Stable storage is a key feature in a fault manager. The STAR file system (SFS)
implements stable storage. It is used for file accesses, message backups and checkpoint
storage. In several systems, the stable storage is based on specific hardware2,26. Some
software fault managers use a reliable central file server4,15. Alternatively, to protect
against a failure of the primary server, data can be duplicated on a backup server. In
any case, this solution is not suitable for many environments, where there is no specific
reliable host.

We developed a new file system which provides reliability using file replication. We
do not use NFS for performance reasons (see Performance section) and because NFS
does not provide replication. In SFS, each file is replicated on separate disks on
different hosts. For each file, the user defines the initial number of copies (the default
number is two). This number is maintained in case of failure (obviously, only if the
number of remaining disks is sufficient). With N file copies, N-1 simultaneous failures
are tolerated. Because failures are uncommon events, only a small number of copies is
usually necessary (usually 2 for a network of 20 workstations). This number is set by
the network administrator or by the application designer according to the fault tolerance
and performance requirements. To ensure consistency of all copies, the file manager
uses an atomic broadcast protocol6. A file update is broadcast to all managers that have
a copy of it. Since files are not shared between processes, the broadcast protocol doesn't
need to be fully ordered: it only assumes fifo channels. Read operations are completed
locally whenever possible.

The reliable file manager is implemented as follows. A reliable file is composed of a
set of standard UNIX files replicated on a set of disks. On each host where copies are
present, a SFS file server manages accesses to copies. SFS daemons offer services for
reading and writing files. When a file server host fails, the files are copied from a valid
host to a new file server. This maintains the initial degree of replication.

The performance of STAR depends directly on the stable storage management. To
provide an efficient replicated file access, we take advantage of the pseudo-parallelism
offered by the underlying system: any access to a remote SFS server is achieved by a
specific process: the SFS server proxy. One proxy is associated with each remote SFS
server (Figure 6). A proxy is automatically created when a new SFS server is created.
Local clients and proxies exchange information through a local shared memory

-13-

segment (SM). When a client wants to send a request to N servers, it puts the request
arguments in the local memory and wakes up the proxies corresponding to the remote
servers. The proxies read and transmit the request in a pseudo-parallel way.

C

PS1

S1
Proxies of the file

servers

Star File Servers

S2

S3

PS3

PS2SM

Figure 6. Communications with the file servers
To increase the performance of transfer between client and SFS server, we

implemented a protocol specially optimized to deal with bursts of sending in order to
transfer large volumes of data. The main performance problem of NFS is due to the
use of a synchronous protocol to exchange information between client and server:
because the NFS server is stateless, each write request must commit any modified data to
stable storage before returning results. Such a protocol is not suitable for transferring
large amounts of data, when each send is delayed until the previous acknowledgment is
received.

Our protocol is asynchronous: only one acknowledgment is sent for the last message
of the transmitted data. To ensure reliability of message transfer we use the TCP
connection oriented protocol. At the initialization step, each proxy opens a TCP
connection to its SFS server.

PERFORMANCE EVALUATION OF STAR

This section presents the performance of STAR . The implementation runs on an
Ethernet network of Sun workstations. The environment has not been modified (all of
the usual demons were running). All presented results are averages over a number of
trials. These measurements could help system administrators or application designers to
choose appropriate parameters (message logging strategies, degree of replication, period
of checkpointing) geared to their fault tolerance and performance requirements.

First, we report performance measurements of the basic components then we show
performance of parallel applications using STAR.

-14-

Performance of STAR components

Performance of Star file system (SFS)

Figure 7 shows the performance of the STAR file system (SFS) with different
replication degrees for writing and reading a file of 1 Megabyte. These measurements
were taken on a set of Sun 5 and 10 workstations with 32 Mb of memory. A replication
degree of 4 means that each file is saved on 4 disks on 4 hosts. We also illustrate the
performance of NFS when data are in cache or not. Naturally, NFS measurements do
not depend on the replication degree. SFS read has not been optimized since it is only
used during recovering. On the other hand, SFS write is especially stressed since it is
used during normal running for checkpointing and message logging. We see that in
every case STAR writing is very efficient compared to NFS. This good performance is
essentially due to the parallelization of server accesses and the use of an asynchronous
protocol between client hosts and SFS servers.

SFS read

0

1

2

3

4

5

6

7

1 2 3 4

NFS read
(data in cache)

NFS read

NFS write

SFS write

Time (seconds)

Replication Degree

NFS write
(data in cache)

Figure 7. Performance of the STAR File System

Performance of message logging

Figure 8 shows the cost of optimistic message logging as a function of the size of the
queue on the sending host. 0 means that messages are directly saved on stable storage
before being delivered. 500 means that messages are queued at the sending host and
are asynchronously saved when the queue contains 500 messages. 0 queue size is
equivalent to the pessimistic strategy. These measurements were taken for 1024
messages of one kilobyte transmitted between two user processes. Messages are saved
on two different hosts. We indicate the average sending time. We also monitored the
relevant communication servers to determine the maximum amount of memory used
during the transfer.

-15-

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5Pessimistic

0 100 200 300 400 500

Time (seconds)

Size of queue

x

Memory (Kbytes)

100

200

300

400

500

600

700

800

•

•

•

•

•

•

•

• Max. Memory Usage
(right axis)

Transfer time
(left axis)

Figure 8. Optimistic message logging cost
We observe a sizeable reduction of the sending time when at least one hundred

messages are queued. Below this number, the message saving happens too frequently
and the size of saved data is too small to obtain a speed-up due to the asynchronous SFS
protocol. We also note a stabilization of the sending time when the queue contains
more than one hundred messages. This effect could result from an increase of the
average load of the communication servers, which consequently become less able to
satisfy application requests. The memory usage partly illustrates this effect.
Consequently, the application designer has to tune the queue size in order to find a
good compromise between the asynchronous storage and memory usage. One hundred
messages appears to be a good value and was chosen as a default value for the message
queue size.

We also measured the time to send messages with the sender-based algorithm where
all messages are kept in the queue and are never saved on stable storage. The average
sending time is only 3.8 seconds but the maximum memory usage is 1.2 Megabytes. In
fact the sender-based protocol uses too much memory to be useful for real applications.
In such a case, the queues on sending hosts will become too large and the demand-
paging system may slow down the application, depending on the size of the main
memory available.

Performance of checkpointing

Additional experiments were run with STAR ported to a Sun IPC network with an
approximate computing power of 12 VAX MIPS and 24 Mb of memory. The
following three figures present the running times of a simple sequential sort program

-16-

using three independent checkpointing implementations: full checkpointing (where all
data are written in stable storage and the process is blocked until the checkpoint is over),
full non-blocking checkpointing (where the application continues to execute while the
checkpoint is written on stable storage), and incremental non-blocking checkpointing
(reducing the amount of data to be written). The cost of checkpointing has been
measured with different replication degrees (from 1 to 4) and with different process
sizes (from 100 to 1150 kilo-bytes). Programs run with a rather short 20 second
checkpointing interval. In practice, longer intervals should be used. In that sense, we
overestimate the cost of checkpointing to evaluate the checkpoint mechanism in a
loaded situation. At the end of this section, Table II presents an evaluation with a more
realistic checkpoint interval.

4
3

2
1

Replication degree

1100900700500300100100
0

1

2

3

4

5

6

7

8

9

10

11

Process size (Kbytes)

Time (seconds)

Figure 9. Full checkpoint cost
Figure 9 shows the cost of full checkpointing, where data and stack segments are

entirely copied to stable storage. The cost linearly depends on the process context size.
The time to save 1150 kilo-bytes on four replicated files takes 10.3 seconds. This is
about three times slower than writing the same amount of data on a single file (3.4
seconds). The measured time can appear high compared to the performance of the
STAR file server presented above. This is due to the difference of machines in terms of
processing power. Moreover, the short checkpoint period overloads the file servers.

-17-

1100900700500300100100
0

1

2

3

4

5

6

7

8

9

10

11

4
3

2
1

Replication degree

Time (seconds)

Process size (Kbytes)

Figure10. Non-blocking checkpoint cost
With blocking checkpointing, the performance degradation is dependent on the

amount of data to be saved, due to the latency in accessing file servers. Figure 10 shows
the checkpoint cost with the full non-blocking method. It might seem surprising to see
no significant reduction of the checkpoint cost. In fact, this method consumes much
CPU time and memory capacity, and the host resources become saturated because of the
small checkpoint period. Non-blocking checkpointing provides better results for larger
processes with larger checkpoint intervals, as we will see with the parallel applications
(see Table II).

-18-

4
3

2
1

Replication degree

Process size (Kbytes)

Time (seconds)

1100900700500300100100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 11. Incremental checkpoint cost
Figure 11 shows the costs associated with incremental checkpointing. In the previous

checkpointing methods, the amount of data written on stable storage was significant
even though only a small part of the data changed between successive checkpoints.
With incremental checkpointing, we observe a sizeable reduction of the checkpoint
overhead. An incremental checkpoint is about three times faster than a full one. For the
smallest program the checkpoint cost is less than 1 second for any degree of the
replication. We can observe that the curves are not linear because the time to take a
checkpoint depends on the process's memory usage.

-19-

Performance of rollback/recovery

Now we consider the recovery time of a process after a failure. This time includes the
time to restart a process and to recover its state from its last checkpoint.

Time (seconds)

Process size (Kbytes)
1100900700500300100100

0

1

2

3

4

5

6

7

Figure 12. Restore context cost
The restoration time is large compared to the checkpoint cost. In fact, the restoration

step is much more complex. It must identify the faulty process, reconfigurate the ring,
create a new process, restore its context. Finally, all servers update their global view with
the new process location. Repeated failures incurs an extra-overhead due to the
detection period, the restoration time and the time to rollback. The time costs of one
fault may be evaluated as :

mean recovery time = detection period / 2 + restoration time + checkpoint period /2
The cost of faults is therefore linear with the number of failures.

Performance of applications using STAR
To tally the performance of STAR under a working load we chose three long-

running, compute-intensive applications exhibiting different memory usage and
communications patterns:

1. The gauss application performs gaussian elimination with partial pivoting on a
1024 x 1024 matrix. The matrix is distributed among several processes. At each
iteration of the reduction, the process which holds the pivot sends the pivot
column to all other processes.

2. The multiplication application, called matmul, multiplies two square matrixes of
size 1024 x 1024. The computation is distributed among several processes. No
communication is required other than reporting the final solution.

3. The fft application computes the Fast Fourier Transform of 32768 data points.
The problem is distributed by assigning each process an equal range of data
points. Like the previous application, no communication is required other than
reporting the final solution.

-20-

Table I presents running time, communication, and memory requirements for the
three applications when run without fault-tolerance management (i.e. without
checkpointing and message logging). Each application is distributed on five hosts: one
host executes a master process and the four other hosts execute the computational
processes.

Table I. Applications requirements

Applications Application Running
Time (seconds)

Per Process Memory
(Kbytes)

Per Process sending data
(Kbytes)

gauss 344 1704 2700

matmul 723 2688 0.06

fft 1177 1200 0.06

Gauss and matmul require a sizeable amount of data, stressing the checkpoint and
state restoration mechanisms. Moreover, the gauss application exhibits a large amount
of communications especially stressing the message logging. The fft application is
long-running and requires a medium amount of data.

Table II presents the running times of the applications programs when run with
independent checkpointing and pessimistic message logging. Applications run with a 2-
minute checkpointing interval. Checkpoints and logs are duplicated.

Table II. Parallel applications evaluation

Applications Full checkpoint Full Non-blocking checkpoint Incremental checkpoint

Running Time
(sec.)

Percentage
of overhead

Running Time
(sec.)

Percentage
of overhead

Running Time
(sec.)

Percentage
of overhead

gauss 567 64.82 505 46.80 457 32.85

matmul 844 16.79 768 6.34 748 3.57

fft 1244 5.75 1228 4.36 1194 1.50

In spite of checkpoint optimizations, we observe a high overhead for the gauss
application. In fact this application is not a good candidate for message logging
approaches, specifically because of its communication rate. The overhead due to
message logging for this application is 14.53%. The cost of message logging represents
half of the global overhead when we apply incremental checkpointing.

For all three applications, incremental checkpointing provides a sizeable reduction of
the overhead. Comparing to the full non-blocking checkpointing, we obtain reduction
in overheads of between 24% and 63%. This difference is partly due to different
communication rates. Moreover, applications can be divided into two categories:
applications with an address space that is modified with high locality (matrix
multiplication and fft applications) and applications with an address space that is
modified almost entirely between any two checkpoints (gauss application). For
applications of the first category, incremental checkpointing is very successful (79% of

-21-

reduction for matrix multiplication and 75% of reduction for fft). For the applications
in the second category, incremental checkpointing is less effective (about 49% of
reduction for the gauss application).

CONCLUSIONS

This paper presented the STAR fault manager for distributed applications in a
standard workstation environment. The basic software components of STAR are (1) an
efficient host crash detection mechanism based on a logical ring, (2) three
checkpointing mechanisms (full, non-blocking, incremental), (3) a restoration
mechanism, and (4) a configurable stable storage using replicated files and a proxy
mechanism to reduce the latency in accessing file servers. The implementation is based
on independent checkpointing, and avoids the domino effect by using reliable storage
of messages. STAR is flexible with tunable parameters so that applications can adapt the
fault management according to the load and failure rate of the system.

STAR has been developed on a set of SUN-Sparc stations connected by Ethernet. We
have reported performance measurements of the basic software components. The results
demonstrate that independent checkpointing is an efficient approach for providing fault
tolerance for the specific applications studied, i.e., long-running with few message
exchanges. We have also shown that a software based management of fault tolerance is
an interesting alternative to specialized hardware or kernel-integrated solutions. Results
from 24, as well as our own instrumentation of distributed applications, corroborate this
claim. Furthermore, it appears from other work and our own experience, that some
optimization methods are very important: in particular non-blocking and incremental
checkpointing11,15. Either technique incorporated within STAR leads to a drastic
reduction of the overhead for classical parallel applications.

REFERENCES

1 . L. Alvisi, B. Hoppe, and K. Marzullo, ‘Nonblocking and Orphan-Free Message Logging Protocols’,
Proceedings of the 23rd International Symposium on Fault-Tolerant Computing, 1993, pp. 145-154.

2 . M. Banâtre, G. Muller, B. Rochat, and P. Sanchez, ‘Design Decisions for FTM: a General Purpose
Fault Tolerant Machine’, Proceedings of the 21st International Symposium on Fault-Tolerant
Computing, June 1991, pp. 71-78.

3 . A. Barak, A. Braveman, I. Gilderman, and O. Laden, ‘Performance of PVM with the MOSIX
Preemptive Process Migration Scheme’, Proceedings of the 7th Israeli Conference on Computer
Systems and Software Engineering, June 1996.

4 . G. Bernard and D. Conan, ‘Flexible Checkpointing and Efficient Rollback-Recovery for Distributed
Computing’, Proceedings of the Society UNIX User Group International Conference, Open Systems:
Solution for Open World, April 1994.

5 . B. Bhargava, S-R. Lian, and P-J. Leu, ‘Experimental Evaluation of Concurrent Checkpointing and
Rollback-recovery Algorithms’, Proceedings of the International Conference on Data Engineering,
March 1990, pp. 182-189.

6 . K.P. Birman and T. Joseph, ‘Reliable Communication in the Presence of Failures’, A C M
Transactions on Computer Systems, 5,47-76, (February 1987).

7 . A. Borg, W. Blau, W. Craetsch, F. Herrmann, and W. Oberle, ‘Fault Tolerance under UNIX’, ACM
Transactions on Computer Systems, 7,(1),1-24, (February 1989).

-22-

8 . D. Briatico, A. Ciuffoletti, and L. Simoncini, ‘A Distributed Domino-Effect Free Recovery
Algorithm’, Proceedings of the 4th Symposium on Reliable Distributed Systems, October 1984, pp.
207-215.

9 . G. Cabillic and I. Puaut, ‘Startdust: an Environment for Parallel Programming on Networks of
Heterogeneous Workstations’, Journal of Parallel and Distributed Computing, 40,(1),65-80,
(January 1997).

10. K.M. Chandy and L. Lamport, ‘Distributed Snapshots: Determining Global States of Distributed
Systems’, ACM Transactions on Computer Systems, 3(1):63-75, (1985).

11. Y. Chen, K. Li, and J.S. Planck, ‘CLIP: A Checkpointing Tool for Message-passing Parallel
Programs’, Proceedings of High Performance Networking and Computing, November 1997.

12. H. Clark and B. McMillin, ‘DAWGS - a Distributed Compute Server Utilizing Idle Workstations’,
Journal of Parallel and Distributed Computing, 14,175-186, (February 1992).

13. F. Cristian and F. Jahanian, ‘A Timestamp-based Checkpointing Protocol for Long-lived Distributed
Computations’, Proceedings of 10th Symposium on Reliable Distributed Systems, September 1991,
pp. 12-20.

14. F. Douglis and J. Ousterhout, ‘Transparent Process Migration: Design Alternatives and the Sprite
Implementation’, Software - Practice and Experience, 21,(8),757-785, (1991).

15. E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel, ‘The Performance of Consistent
Checkpointing’, Proceedings of the 11th Symposium on Reliable Distributed Systems, October
1992.

16. E.N. Elnozahy and W. Zwaenepoel, ‘On the Use and Implementation of Message Logging’,
Proceedings of the 24th International Symposium on Fault-Tolerant Computing Systems, June
1994, pp. 298-307.

17. B. Folliot and P. Sens, ‘GATOSTAR: A Fault-tolerant Load Sharing Facility for Parallel
Applications’, Proceedings of the First European Dependable Computing Conference, Lecture Notes
in Computer Science 852, October 1994, pp. 581-598.

18. D. B. Johnson and W. Zwaenepoel, ‘Sender-Based Message Logging’, Proceedings of the 7th
Symposium on Fault Tolerant Computing Systems, June 1990, pp. 97-104.

19. D.B. Johnson and W. Zwaenepoel, ‘Recovery in Distributed Systems using Optimistic Message
Logging and Checkpointing’, Journal of Algorithms, 11,(3),462-491, (September 1990).

20. R. Koo and S. Toueg, ‘Checkpointing and Rollback-Recovery for Distributed Systems’, IEEE
Transactions on Software Engineering, SE-13,(1),23-21, (January 1987).

21. P.A. Lee and T. Anderson, ‘Fault Tolerance, Principles and Practice, Second revised edition’,
Dependable Computing System Vol. 3, Springer-Verlag, 1990.

22. M. Litzkow and M. Solomon, ‘Supporting Checkpointing and Process Migration outside the UNIX
Kernel’, Proceedings of the Usenix Winter Conference, January 1992.

23. G. Muller, M. Hue, and N. Peyrouze, ‘Performance of Consistent Checkpointing in a Modular
Operating System: results of the FTM Experiment’, Proceedings of the First European Dependable
Computing Conference,, Lecture Notes in Computer Science 852, October 1994, pp. 491-508.

24. J.S. Plank, M. Beck, G. Kingsley, and K. Li, ‘Libckpt: Transparent Checkpointing under Unix’,
USENIX Winter 1995 Technical Conference, January 1995.

25. D. Powell, G. Bonn, D. Seaton, P. Verissimo, and F. Waeselynck, ‘The Delta-4 Approach to
Dependability in Open Distributed Computing Systems’, Proceedings of the 18th International
Symposium on Fault-Tolerant Computing Systems, 1988, pp. 246-251.

26. D. Powell (Ed.), ‘Delta 4: A Generic Architecture for Dependable Distributed Computing’,Research
Reports ESPRITS, Berlin, Germany, Springer-Verlag, 1991.

27. J. Pruyne and M. Livny, ‘Managing Checkpoints for Parallel Programs’, Proceedings of 2nd
Workshop on Job Scheduling Strategies for Parallel Processing, April 1996.

28. B. Ramkumar and V. Strumpen, ‘Portable Checkpointing for Heterogeneous Architecture’,
Proceedings of the 27th International Symposium on Fault-Tolerant Computing Systems, June
1997, pp. 58-67.

29. B. Randell, ‘Design Fault Tolerance’, The Evolution of Fault-Tolerant Computing Vol. 1, Springer-
Verlag, pp. 251-270, (1987).

30. P. Sens and B. Folliot, ‘STAR: A Fault Tolerant Systems for Distributed Applications’, Proceedings
of the 5th IEEE Symposium on Parallel and Distributed Processing, December 1993, pp. 656-660.

31. P. Sens, ‘The Performance of Independent Checkpointing in Distributed Systems’, Proceedings of
the 28th Hawaii International Conference on System Science, January 1995, pp. 525-533.

-23-

32. S.K. Shrivastava and D.L. McCue, ‘Structuring Fault-Tolerant Object Systems for Modularity in a
Distributed Environment’, IEEE Transactions on Parallel and Distributed Systems, April 1994, pp.
421-432.

33. A. P. Sistla and J. L. Welch, ‘Efficient Distributed Recovery using Message Logging’, Proceedings
of the 8th Annual ACM Symposium on Principles of Distributed Computing, August 1989.

34. S.W. Smith, D.B. Johnson, and J.D. Tygar, ‘Completely Asynchronous Optimistic Recovery with
Minimal Rollbacks’, Proceedings of the 25th Annual International Symposium on Fault-Tolerant
Computing, June 1995.

35. R.E. Strom and S.A. Yemini, ‘Optimistic Recovery in Distributed Systems’, ACM Transactions on
Computer Systems, 3,(3),204-226, (August 1985).

36. A.S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender, J. Jansen, and G.
van Rossum, ‘Experiences with the Amoeba Distributed Operating System’, Communication of the
ACM, 33,46-63, (December 1990).

37. J. Wakerly, ‘Error Detecting Codes, Self-Checking Circuits and Applications’, Elsevier North-
Holland, (1978).

38. Y.M. Wang and W.F. Fuchs, ‘Optimistic Message Logging for Independent Checkpointing in
Message-Passing Systems’, Proceedings of the 11th Symposium on Reliable Distributed Systems,
October 1992, pp. 147-154.

39. Y.M. Wang, O.P. Damani, and V.K. Garg, ‘Distributed Recovery with K-Optimistic Logging’,
Proceedings of the 17th International Conference on Distributed Computing Systems, May 1997,
pp. 60-67.

40. J. Xu and R.H.B Netzer, ‘Adaptive Independent Checkpointing for Reducing Rollback Propagation’,
Proceedings of the 5th IEEE Symposium on Parallel and Distributed Processing, December 1993, pp.
754-761.

41. S. Zhou, J. Wang, X. Zheng, and P. Delisle, ‘Utopia: a Load-sharing Facility for Large
Heterogeneous Distributed Computing Systems’, Software - Practice and Experience, 23,(2),1305-
1336, (December 1993).

