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Abstract—Network Slice placement with the problem of
allocation of resources from a virtualized substrate network is
an optimization problem which can be formulated as a multi-
objective Integer Linear Programming (ILP) problem. However,
to cope with the complexity of such a continuous task and seeking
for optimality and automation, the use of Machine Learning
(ML) techniques appear as a promising approach. We introduce a
hybrid placement solution based on Deep Reinforcement Learning
(DRL) and a dedicated optimization heuristic based on the Power
of Two Choices” principle. The DRL algorithm uses the so-
called Asynchronous Advantage Actor Critic (A3C) algorithm
for fast learning, and Graph Convolutional Networks (GCN) to
automate feature extraction from the physical substrate network.
The proposed Heuristically-Assisted DRL (HA-DRL) allows for
the acceleration of the learning process and substantial gain
in resource usage when compared against other state-of-the-art
approaches, as evidenced by evaluation results.

Index Terms—Network Slicing, Optimization, Automation, Deep
Reinforcement Learning, Placement, Large Scale.

I. INTRODUCTION

ETWORK Slicing is a major stake in 5G networks, which
Nis notably enabled by virtualization techniques applied
to Network Functions, a.k.a. Network Function Virtualization
(NFV), and by Software Defined Network (SDN) techniques
[1]. Thanks to these technical enablers now widely used in the
telecom industry, a telecommunications network becomes a
programmable platform, which can offer virtual networks en-
riched by Virtual Network Functions (VNFs) and IT resources,
and can be tailored to the specific needs of certain customers
(e.g., companies) or vertical markets (automotive, e-health, etc.).
These augmented virtual networks give rise to the concept of
Network Slicing, which is specified by standardization bodies
[2], [3]. In this paper, we shall consider a Network Slice as
a chain of VNFs interconnected by a transport network and
with networking (bandwidth) and computing (CPU, RAM)
requirements.

Network Slice Placement problem is close to the Virtual
Network Embedding (VNE) problem but there are at least two
outstanding differences: 1) VNE consists of placing virtual
nodes onto physical ones subject to bandwidth constraints,
whereas Network Slice Placement takes into account several
constraints such as RAM, CPU, disk, bandwidth and latency; 2)
VNE consists of a 1:1 node mapping, whereas Network Slice
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Placement can place multiple “virtual nodes” (namely, VNFs)
on the same physical node. There is a huge amount of liter-
ature on VNF placement [4]-[8] and associated optimization
problems are usually modeled as Integer Linear Programming
(ILP) problems, which turn out to be A/P-hard [9] with very
long convergence time.

Heuristics have then been developed, see [10] for an
extensive list of heuristics for slice placement and in particular
the one based on the "Power of two Choices” principle (for
short, P2C), which gives satisfactory results, both in terms
of convergence time and slice acceptance ratio. From an
operational perspective, heuristic approaches are more suitable
than ILP as they yield faster placement results. This is very
important for operational networks because traffic conditions
are fluctuating and placement response time is an important per-
formance indicator in the customer relationship. The drawback
of heuristic approaches is that they give sub-optimal solutions.
To address this issue, Machine Learning (ML) offer a corpus
of methods able to overcome the convergence issues of ILPs
while being more accurate than heuristics. Deep Reinforcement
Learning (DRL) has recently been used in the context of VNE
and VNF-FGE [11]-[13].

A DRL agent is theoretically capable of learning an optimal
decision policy only based on its own experience; this property
eliminates the need for an accurate training data set that may
not be available. However, from a practical point of view,
ensuring that the DRL agent converges to an optimal policy is
a challenge since the agent acts as a self-controlled black box.
In addition, there are a large number of hyper-parameters to
fine-tune in order to ensure an adequate equilibrium between
exploring solutions and exploiting the knowledge acquired
via training. While there are techniques to improve the
efficiency of the solution exploration process (e.g., e-greedy,
entropy regularization), their use may also lead to situations of
instability, where the algorithm may diverge from the optimal
point.

To overcome this unsuitable behavior of DRL agents, we
introduce in the present paper the concept of Heuristically
Assisted DRL (HA-DRL) to accelerate and stabilize the
convergence of DRL techniques when applied to the Network
Slice Placement. The proposed contributions are twofold: i) We
propose a DRL algorithm combining Advantage Actor Critic
and a Graph Convolutional Network (GCN) to solve Network
Slice Placement optimization problem [11]; ii) We reinforce
the DRL learning process by using the P2C based heuristic
[10] to control the DRL convergence.

The organization of this paper is as follows: In Section II, we
review the related work on slice placement and more generally



on VNE by paying special attention to ML techniques. In
Section III, we describe the Network Slice Placement problem
and introduce the various elements of the model. The multi-
objective optimization problem of Network Slice Placement
is formulated in Section IV. A DRL approach to solving the
multi-objective optimization problem is described in Section V.
The control of the DRL convergence by using the P2C heuristic
is introduced in Section VI. The experiments and evaluation
results are presented in Section VII, while conclusions and
perspectives are presented in Section VIIIL.

II. RELATED WORK ANALYSIS

We review, in this section, recent studies on the network
slice placement problem. We consider comprehensive surveys
such as [4]-[8], [11] and analyse existing works along two
lines: i) ML-based approaches for slice placement optimization
(Section II-A), and ii) hybrid approaches combining both
heuristics and ML for slice placement (Section II-B). There
are many heuristics for the placement of chains of VNFs [8],
[10], [14]-[16]. In the following, we focus on ML methods.

A. On ML Approaches for Slice Placement Optimization

The most relevant ML-based approaches for network slice
placement optimization are DRL-based solutions. We analyze:
i) the RL setup elements of each solution (i.e., state, action,
reward); and ii) the modeling aspects of DRL (i.e., type of
convolutions, training algorithms).

1) RL Setup Elements:

a) State representation: The state representation is almost
similar in all analyzed solutions. In [11]-[13], [17], only
resource-related features are used to represent the state: i)
the number of resources available on physical nodes (CPU
and RAM) and links (bandwidth) and ii) the number of these
resources required by the VNFs and Virtual Links (VLs) of the
network slice to be placed. Latency-related features are also
considered in [18]-[21]. However, adding such features to the
state brings additional complexity to their models. In particular,
the model in [18] requires additional chaining information
and performance indexes for the VNFs. In [21], the model
requires an explicit VL representation. We adopt a resource
oriented state representation. A simpler model considering
latency remains an open issue.

b) Action representation: In [11]-[13], [17], [19], the
problem is modeled by considering finite action spaces. The
action in [11], [13], [19] is the index of the physical node in
which to place a specific VNF of the slice. This representation
of the action requires breaking the process of placing one slice
in a sequence of placement actions and has the advantage of
reducing the size of the action space to the number of physical
nodes. In [17], the action is represented as a binary variable
used to modify or accept the placement of a specific VNF of
the slice previously computed by a heuristic. The action in
[12] is either to mark a VNF to be placed on a physical node
or to place a VNF on the previously marked physical node.
The placement of the entire slice is then iteratively constructed
and the algorithm stops when all the VNFs of the slice are
placed or when a maximal number of iterations is reached.
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In [18], [20], [21], infinite action spaces are adopted, i.e., the
actions are real numbers. In [18] the action is defined as an
instruction to a scheduler to adjust the resources allocated to a
VNF by a certain percentage whereas in [21], the action is the
placement price returned to the client.

In [20], the action is represented by two sets of weights:
i) the placement priority of each VNF in the slice on each
physical node and ii) the placement priority of each VL in the
slice on each physical link. To reduce complexity, we adopt a
finite action space represented as in [11].

¢) Reward function: Most of analyzed solutions adopt
placement cost or revenue in their reward function [11]-[13],
[17], [19], [21]. Cost and revenue are mainly calculated
in terms of resource consumption. Some solutions adopt a
reward associated to acceptance ratio [11], [19], [20]. A
penalty for SLA violations is considered only in [18]. The
most complete reward function is the one proposed in [11]
combining acceptance ratio and placement cost with load
balance. We leverage on [11] reward function criteria but
propose a formulation that reduces bias during training.

2) Modeling Aspects of DRL:

a) Use of convolutions: Most of the analyzed papers
employ a Convolutional Neural Network (CNN) to perform
automatic feature extraction except the approach proposed
in [19], which uses regular Deep Neural Network (DNN).
Classical CNNs are limited by the fact that they only work
on Euclidean objects (e.g., images, grids). DRL algorithms
for network slice placement built upon this technique have
reduced real-life applicability because they can not work
on unstructured networks. To overcome this issue, Graph
Convolutional Networks (GCN) have been used in [22], [23]
in order to work on arbitrarily structured graphs. GCNs are
used in [11] to automatically extract features from the physical
network when solving a VNE problem. A type of GCN adapted
to hetero-graphs called Relational GCN is used by [17] to
automatically learn how to improve the quality of an initial
placement computed by a heuristic. We also use the power of
GCN in our proposal.

b) Training algorithms: All the analyzed solutions use dif-
ferent types of Policy Gradient (PG) training algorithms, except
the solution in [12], which uses the well-known value-based
algorithm “Deep Q-learning”. We rely on the Asynchronous
Advantage Actor Critic (A3C) approach introduced in [24]
and also used by [11] owing to its robustness and improved
performance.

B. On Hybrid ML Approaches for Slice Placement

Although ML-based techniques, such as DRL, have been
shown to be robust when applied to solving various problems,
these approaches also exhibit some drawbacks as they: i) are
difficult to run due to a variety of hyper parameters to tune;
ii) have convergence times difficult to control since they act
as self-controlled black boxes; and iii) take too much time to
start finding good solutions because their performance depends
on the exploration of a huge number of states and actions.
This makes pure DRL approaches uncertain in real online
optimization scenarios. Researchers then focused on developing
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hybrid methods that combine ML-based optimization with safer
but less scalable techniques such as heuristics. The concept
of Heuristically Accelerated Reinforcement Learning (HARL)
is introduced in [25] as a way to solve RL problems with the
explicit use of a heuristic function to influence the choice of
actions by a learning agent.

As shown in [26], HA- versions of well-known RL al-
gorithms such as Q-learning, SARSA()\) and TD()\) have
lower convergence times than those of their classical versions
when applied to a variety of RL problems. Although HARL
has shown relevant results in different fields of applications
such as video streaming [27], multi-agent systems [28] and
robotics [29], to the best of our knowledge, it has only been
used in [30] in the networking domain, namely, autonomous
spectrum management. We build on HARL to propose HA-
DRL and we apply this algorithm in the present paper to
slice placement. To the best of our knowledge, this is the first
work on HA-DRL. We rely on the formulation of heuristic
function proposed in [25]. We adapt this method to DRL and
combine it with an efficient placement heuristic proposed in
[10] to strengthen and accelerate the DRL learning process.
This improves performance and safety when compared with
state-of-the-art DRL placement approaches [11].

Other hybrid approaches for placement optimization com-
bining DRL and heuristics were proposed recently. In [20], a
HFA-DDPG algorithm combining Deep Deterministic Policy
Gradient (DDPG) with a Heuristic Fitting Algorithm (HFA) to
solve the VNF-FGE problem is proposed. Evaluation results
show that HFA-DDPG converges much faster than DDPG.
However, the approach reveals to be more complex than
needed due to the infinite action space formulation that adds an
unnecessary complexity, thus reducing the applicability of the
algorithm. Our approach, with a bounded action space, limits
the complexity and seems to be more appropriated for large-
scale scenarios. In [17], the REINFORCE algorithm is used to
learn and to improve a VNE solution previously computed by
a heuristic. In spite of the significant improvement of the initial
heuristic solution obtained by this approach, its effectiveness is
highly dependent on the quality of the initial solution provided
by the heuristic. In addition, both algorithms proposed in [20]
and [17] are based on a DRL agent that relies heavily on the
heuristic algorithm to compute the placement decisions. In our
case, we only use the heuristic to improve the DRL exploration
process. As a result, our DRL agent can scale and be used
after training even without the support of the heuristic.

III. NETWORK SLICE PLACEMENT OPTIMIZATION
PROBLEM MODELING

We present, in this section, the two main elements of the
Network Slice Placement Optimization problem: the Physical
Substrate Network in Section III-A, and the Network Slice
Placement Requests in Section III-B.

A. Physical Substrate Network Modeling

The Physical Substrate Network (for short, PSN) is composed
of the infrastructure resources, namely servers with IT resources
(CPU, RAM, disk, etc.) and the transport network, in particular

VLs interconnecting servers . As illustrated in Figure 1, the PSN
is divided into three components: the Virtualized Infrastructure
(VD) corresponding to IT resources, the Access Network (AN),
and the Transport Network (TN).

1) The Virtualized Infrastructure (VI): This component is
the set of Data Centers (DCs) interconnected by network
elements (switches and routers) and either distributed in Points
of Presence (PoP) or centralized (e.g., in a big cloud platform).

Following the reference architecture presented in [31] and
describing the possible of a network operator, we define three
types of DCs with different capacities: Edge Data Centers
(EDCs) as local DCs with small resources capacities, Core
Data Centers (CDCs) as regional DCs with medium resource
capacities, and Central Cloud Platforms (CCPs) as national
DCs with big resource capacities.

2) The Access Network (AN): This set represents User Ac-
cess Points (UAPs) (Wi-Fi APs, antennas of cellular networks,
etc.) and Access Links. Users access slices via one UAP, which
may change during the life time of a communication by a user
(e.g., because of mobility).

3) The Transport Network (TN): This is the set of routers
and transmission links needed to interconnect the different DCs
and the UAPs.

The complete PSN is modeled as a weighted undirected
graph G5 = (N, L) where N is the set of physical nodes in
the PSN, and L C {(a,b) € N x N Aa # b} refers to a set of
substrate links. Each node has a type in the set {UAP, router,
switch, server}. The available CPU and RAM capacities on
each node are defined respectively as capP* € R, cap;®™ € R
for all n € N. The available bandwidth on the links are defined
as cap?zb) € R,¥(a,b) € L.
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Fig. 1. Physical Substrate Network.

B. Network Slice Placement Requests Modeling

We consider each slice as a finite number of VNFs to
be placed and chained on the PSN. VNFs are batched and
introduced in the network as Network Slice Placement Requests
(NSPRs). The NSPRs are similarly represented as a weighted
undirected graph G, = (V, E), where V is the set of VNFs in
the NSPR, and E C {(a,b) € V x V Aa # b} is a set of VLs.



The CPU and RAM requirements of each VNF of an NSPR
are defined as reg’* € R and req;*™ € R for all v € V,
respectively. The bandwidth required by each VL in an NSPR is
given by reqé’gjl—)) € R for all (@, b) € E. The end-to-end (E2E)
latency is denoted by J. An example of NPSR is represented
in Figure 2.
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Fig. 2. Example of an NSPR.

IV. MULTI-OBJECTIVE OPTIMIZATION PROBLEM FOR
NETWORK SLICE PLACEMENT

In this section, we formulate the multi-objective optimization
problem for network slice placement. The parameters related
to PSN and NSPR are described in Tables I and II, respectively.

A. Network Slice Placement Optimization Problem Statement

e Given: an NSPR graph G, = (V, E) and a PSN graph
Gs = (N, L),

e Find: a mapping G, — G, = (N,L), NCN,LCL,

e Subject to: the VNF CPU requirements regq’",Vv &
V, the VNF RAM requirements req””" Yv € V, the
VLs bandwidth requirements req(, b),V(a b) € E, the
server CPU available capacity cap?®,Vs € S, the server
RAM available capacity capi®™,Vs € S, the physical
link bandwidth available capacity capl(’}l",b), V(a,b) € L.

e Objective: maximize the network slice placement request
acceptance ratio, minimize the total resource consump-
tion, meet E2E latency requirement, and maximize load

balancing.
TABLE I
PSN PARAMETERS
Parameter Description
Gs = (N,L) PSN graph
N Network nodes
SCN Set of servers

7{(a b) € Nx NAa#b}
cap(a b%ER,V(a, b)eL
capsP* € R, Vs € S
MPY e R, Vs € S
capi®™ € R,Vs € S
MIem € R Vs € S
MM cR,Vs€ S
5(a,b) ER,V(Q,Z)) €L

Set of physical links

Bandwidth capacity of link (a, b)

available CPU capacity on server s
maximum CPU capacity of server s
available RAM capacity on server s
maximum RAM capacity of server s
maximum outgoing bandwidth from s
latency induced by physical link (a, b)

B. Problem Formulation

To formulate the optimization problem, we introduce the
decision variables and we identify the constraints, which have
to be satisfied by the placement algorithm.
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TABLE 11
NSPR PARAMETERS

Parameter Description
Gy =(V,E) NSPR graph
14 Set of VNFs of the NSPR

E={(a,b) € Nx NAa#b} Set of VLs of the NSPR

Vroot € V' Root VNF of the NSPR
reg,t" € R CPU requirement of VNF v
req’“am eR RAM requirement of VNF v
reqb! b) eR Bandwidth requirement of VL (&, b)
Teq(y 5 € R Latency requirement of VL (@, b)
0eR E2E latency requirement of the NSPR
Qmaz € R Access latency requirement of the NSPR
as €ER Access latency to server s

1) Decision Variables: We use the two following binary
decision variables:
e 27 € {0,1} for v € V and s € S is equal to 1 if the
VNF v is placed onto server s and O otherwise,
. yga é)) € {0,1} for (a,b) € E and (a,b) € L is equal to
1 if the virtual link (a,b) is mapped onto physical link
(a,b) and O otherwise.
2) Problem Constraints:
a) VNF placement: The following constraint ensures that:
i) all VNFs of the NSPR must be placed; and ii) each VNF
must be placed in only one server:

VweV, Y al=1. (1)
ses
b) Network resource capacities constraints: Eqs. (2) and
(3) below ensure that the resource capacities of each server (for
CPU and RAM, respectively) are not exceeded; the subsequent
Eq. (4) guarantees that the bandwidth capacity of each physical
link is not exceeded:

Vs € 5, Z reqlz. < cap® 2)
veV
Vs € 5, Z req, "z, < capl®™, 3)
veV
w a,b
V(a,b) € L, Z reqé’a BY ga b)) (a b)- 4)
(a,b)€EE

c) Eligible physical path calculation: We use flow con-
servation constraints [32] formulated by Eq. (5), (6), and (7)
for the definition of the eligible physical paths in which to
map every VL (@,b) € E as : for all a € S and (@,b) € E

S uen = D i) = e -l 5)
bEN: bEN:
(a,b)eL (b,a)eL
and
(@p) _
Vae N\S¥@b eB Y ylo)— 3y =0
bEN: beN
(ab)EL (b,a)eL
(6)
V(a,b) € E,¥(a,b) € L, y@Y + @0 < 1. 7
(a7 )E ) (a’a )G ’ y(a,b) +y (b a) Q)

The left-hand sides of Eq. (5) and (6) compute the difference
between the activated links outgoing and incoming from/to
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each node @ € N. One computation is done for each VL
(a,b) € E. If a € S, the right-hand side of Eq. (5) ensures
that the computed difference must be equal to 2% — 2. That
is: 0 if server a is used to place both VNFs a and b or if its
not used to place neither of them; -1 if only the source VNF
a is placed on a; 1 if only the destination VNF b is placed
on a. If a € N\ S, Eq. (6) ensures that this difference will
always be 0. Eq. (7) imposes that each link must be used only
in one direction when mapping a specific VL.

d) Network Slice Latency Requirements Constraints: The
equations below ensure the respect of latency requirements for
each VL and the access together with the E2E latency:

Y(a,b) € E, Z S(a,p)¥ ZLZ)) q(a Bk ®)
(a,b)eL

Za;‘xgroot < Gmaz, 9)

sES

Za xvrﬂof + Z Z 6 (a b)y(a b) < 4. (10)

ses (a,b)€L (a,b)ec

The above constraints have been considered in [10]; for the
sake of simplicity, they will be not be included in the DRL
algorithm proposed in the present paper.

3) Objective Function: We consider three objective func-
tions: a) minimization of resource consumption; b) maximiza-
tion of slice acceptance; and c¢) maximization of node load
balance.

a) Minimization of resource consumption: The placement
of all VNFs of an NSPR is mandatory otherwise the solution
would violate Eq. (1). The optimization objective is then to
minimize the bandwidth consumption given by

H,{m Z Z y(gzl:)req(ab)

(a,b)€E (a,b)eL

(1)

This objective can be seen as finding the shortest path to map
each VL (a, b) € E of an NSPR. It is worth noting that Egs. (5),
(6), and (7) control the value of y in such a way that yEZZ)) =1
for all links (a,b) € L included in the path used to map VL
(a,b) € E

b) Maximization of slice requests acceptance: The maxi-
mization of slice request acceptance objective function is given
by Equation (12). Auxiliary variable z € {0, 1} representing
whether the NSPR is accepted (z = 1) or not (z = 0) is used
in this case.

max z.
z,y

12)

In this case, Eq. (1) is relaxed and additional Eqgs. (13) and
(14) below need to be inserted in the model:

VvEV,z§Zx§, (13)
seS
2> > al— |V 1. (14)
seSveV

Eq. (13) ensures that z = 0 if there is a VNF v € V that cannot
be placed (i.e., there is a v € V such that ) __s 27 = 0). Eq.
(14) ensures that z = 1 if and only if all VNFs v € V are

placed (i.e., D cq D ey 7o = [V.

¢) Maximization of node load balance: Eq. (15) gives
the maximization of node load balance objective function.

Capcpu capram
max 3" 3ot (M A

Mram
seSveV S
C. P2C Heuristic Principles

We have proposed in [10] a heuristic to solve the ILP
problems introduced above. This heuristic is based on the
P2C principle [33], which states in the present context that
considering 2 possible data centers chosen “randomly” instead
of only 1 brings exponential improvement of the solution
quality.

The proposed heuristic is a greedy algorithm such that for
each VNF b € V: i) randomly selects 2 candidate servers
s1,82 € 5 ii) evaluates the resource consumption when placing
b in s; and sy and place b on the best server; iii) maps the
VLs (a,b) € E associated to b. This heuristic contains the
limitations of all heuristic approaches: the lack of flexibility
due to manual feature design, the difficulties to handle multiple
optimization criteria, and the sub-optimality of the provided
solutions. But it also yields low execution time and good load
balancing; it was shown in [10] that the heuristic outperforms
two ILP based algorithms. We elaborate in the present paper
on these proprieties of the heuristic to propose our HA-DRL
approach described in the following sections.

5)

V. DRL FOR NETWORK SLICE PLACEMENT OPTIMIZATION

The ILP introduced in Section IV is too difficult to solve in
small configurations and all the more in near real-time under
operational conditions. As an alternative, we have used DRL
techniques in toy scenarios with networks with a small number
of links and nodes. It turns out that DRL methods are very
efficient and give results very close (up to a few percents) to
those obtained when solving the corresponding ILP, which is
manageable in this case. Motivated by this observation, we
develop in this section a DRL approach for large scale networks,
which will be augmented by a heuristic in the subsequent
section.

A. DRL Framework for Network Slice Placement

Figure 3 presents the proposed DRL framework. The state
contains the features of the PSN and NSPR to be placed. A
valid action is, for a given NSPR graph G, = (V, E), to find
sub graph G of the PSN graph G (i.e., Gs C Gy = (N, L))
to place the NSPR that does not violate the problem constraints
described in Section IV-B. The reward evaluates how good is
the computed action with respect to the optimization objectives
described in Section IV-B3. DNNSs are trained to: i) calculate
optimal actions for each state (i.e., placements with maximal
rewards), ii) calculate the State-value function used in the
learning process.

B. Policy Enforcement

Let A be the set of all possible actions that the DRL agent
can take and S the set of all states that it can visit. We adopt
a sequential placement strategy in which, at each time step,
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Fig. 3. DRL framework for Network Slice Placement Optimization

we choose a node n € N where to place a specific VNF
v € {1,...,]V]}. The VNFs are placed in ascending order,
which means that the placement starts with the VNF v = 1
and ends for the VNF v = |V|.

We break then the process of placing one NSPR graph
G, = (V,E) into a sequence of |V| actions, one for each
v € V, instead of considering the one shot placement of G,,.
The latter strategy would require the definition of the action
as a subgraph of the PSN graph G, = (N, L) what would
imply |A| = |SG|, where SG is the set of all sub graphs of
G, that grows exponentially with size of G5. Note that with
the sequential placement strategy A = N, thus |A| < |SG].
At each time step t, the DRL agent focuses on the placement
of exactly one VNF v € V' of the NSPR. The mapping of the
virtual links associated to the VNF v to a physical path in the
PSN is done by the shortest path algorithm.

Given a state o4, the DRL agent uses the policy to select an
action a; € A corresponding to the PSN node for placing VNF
v. The policy probabilities are calculated using the Softmax
distribution defined by

€Z9 (ot,a),

)

where the function Zy : S x A — R maps each state and action
to a real value. In our formulation this function is calculated by
a DNN described in Section VI-A1l. The notation 7y is used
to indicate that policy depends on Zy. The control parameter
0 represents the weights in the DNN.

7rg(at = CL|O't) = (16)

C. State Representation

The state contains a compact representation of the two main
elements of our model.
1) PSN State: The PSN State is the real-time representation

of the PSN status, which is given by four characteristics.

Three of these characteristics are related to resources (see
Table I for the notation) and are defined by the following sets:

cap = {captP* : n € N}, cap™™ = {capl® : n € N}
and cap® = {cap?’ = 2 (nb)el cap%’;ﬁb) :n € N} We

consider in addition one characteristic related to placement in
order to record the actions taken by the DRL agent during
the placement of the current NSPR described by the vector
X = {xn € {0,.,|V|} : n € N}, where y,, corresponds to
the number of VNFs of the current NSPR placed on node n.
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2) NSPR State: The NSPR State represents a view of
the current placement. It is composed of four characteristics.
Three resource requirement characteristics (see Table II for the
notation) associated with the current VNF v to be placed:

reqf}pu’ Tquam and Tquw = Z(U,E)EE /r-eq?:}ljg). We also
consider the number m, = |V| — v + 1 used to track the

number of VNFs still to be placed at each time step.

D. Reward Function

The proposed Reward function contains one reward value
for each optimization objective introduced in Section IV-B as
detailed in the following sections.

1) Acceptance Reward: Each Action may lead to a suc-
cessful or unsuccessful placement depending on whether it
respects the problem constraints for the candidate VNF v and
its associated VLs or not. We then define the Acceptance
Reward value due to action a; as

" 100,
t+1 —

—100,
2) Resource Consumption Reward: As above, we define
the Resource Consumption Reward value for the placement of
VNF v via action a; as

if a; is successful,

otherwise. a7

if |P| > 0,

otherwise.

el ) 1
i :{ ey lP TP a8)
where P is the path used to place VL (v — 1,v). Note that
a maximum 67, ; = 1 is given when |P| = 0, that is, when
VNFs v — 1 and v are placed on the same server.
3) Load Balancing Reward: Finally, we define the Load
Balancing Reward value for the placement of VNF v via ay

ob,, = CoPar” | COPa,” (19)
t+1 — cpu .
‘jlﬂ.t/ ‘jlgt(l/ln

4) Global Reward: On the basis of the three reward values
introduced above, we define the global as

if t <T and a; is successful

if t =T and a: is successful

otherwise
(20)
where 7' is the number of iterations of a training episode
and the quantities 6, 07, |, and 67, are defined by Equa-
tions (17), (19) and (18), respectively. The notation 7;4; is
used to emphasize that the reward obtained via action ay is
provided by the environment after the action is performed,
that is, at time step ¢ 4+ 1. In the present case, we consider
T < |V]. Our reward function formulation is inspired by that
proposed in [11] but different. In [11], partial rewards are
admitted by considering that ryy1 = &% ,67, 6%, ;. In practice
this approach can lead to ineffective learning, since the agent
can learn how to obtain good partial rewards without never

reaching its true goal, that is, to place the entire NSPR.

To address this issue, we propose to accumulate the inter-
mediary rewards and return them to the agent only if all the
VNFs of the NSPR are placed (second case of Eq. (20)). A
0 reward is given to the agent on the intermediary time steps,

0,
_ T b
Tt+1 = Zi:O 57.'”‘+15i+152‘c+17
a
5t+17
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where a VNF is successfully placed (first case of Eq. (20)). If
the agent takes an unsuccessful placement action, a negative
reward is given (third case of Eq.(20)).

VI. ADAPTATION OF DRL AND INTRODUCTION OF A
HEURISTIC FUNCTION

A. Proposed Deep Reinforcement Learning Algorithm

To learn the optimal policy, we use a single thread version
of the A3C Algorithm introduced in [24]. This algorithm has
evidenced good results when applied to the VNE problem in
[11]. A3C uses two DNNs that are trained in parallel: i) the
Actor Network with the parameter 6, which is used to generate
the policy 7y at each time step, and ii) the Critic Network with
the parameter ¢, which generates an estimate v’ () for the
State-value function defined by

T—t—1

k
E Vripkyilor =0,
k=0

ve(tlo) = Ey

equal to the expected return when starting on state o and
following policy 7 thereafter with the discount parameter +.

1) DNNs Structure : Both Actor and Critic Networks have
identical structure except for their output layer as represented
in Fig. 4. As in [11], we use the GCN formulation proposed
by [23] to automatically extract advanced characteristics of
the PSN. The characteristics produced by the GCN represent
semantics of the PSN topology by encoding and accumulating
characteristics of neighbour nodes in the PSN graph. The size
of the neighbourhood is defined by the order-index parameter
K. If K is too large, the computation becomes expensive.

If K is too small, the GCN will use information from a
small subset of nodes and can become ineffective. The reader
may refer to [22], [23] for more details. As in [11], we consider
in the following K = 3 and perform automatic extraction of
60 characteristics per PSN node.

£%0(00a)

PSN topology mo(ar =a| o) =pg = )
i=1

State o, Actor Network

; S
N
PSN state R prenj— ©
cap Pt v GCN J f P2
cap™@m L t
bw > P3
cap 42 »m
x 5 a > Pa
. >
« L, X > Pn
NSPR state v :
| s - v52(00)
regram o / 0. m7
req?
m,

Critic Network
Fig. 4. Architecture of the proposed DRL algorithm

The NSPR state characteristics are separately transmitted
to a fully connected layer with 4 units. The characteristics
extracted by both layers are combined into a single column
vector of size 60| N| + 4 and passed through a full connection
layer with |N| units. In the Critic Network, the outputs of
this layer are forwarded to a single neuron, which is used to
calculate the state-value function estimation v (o). In the
Actor Network, the outputs of this layer represent the values
of the function Zy introduced in Section V-B. These values
are injected into a Softmax layer that transforms them into a
Softmax distribution that corresponds to the policy 7.

2) DNNs Update: During the training phase, at each time
step t, the A3C algorithm uses the Actor Network to calculate
the policy my(.|c¢). An action a; is sampled using the policy
and performed on the environment. The Critic Network is used
to calculate the state-value function approximation Z/gf (0¢).
The agent receives then the reward r,; and next state o4
from the environment and the placement process continues
until a terminal state is reached, that is, until the Actor Network
returns an unsuccessful action or until the current NSPR is
completely placed. At the end of the training episode, the A3C
algorithm updates parameters 6 and 60, adopting the rules given
in Table III, derived from the PG Theorem [24].

TABLE III
UPDATES OF THE CONTROL PARAMETERS ¢/ AND 6,,.

T
J(0) = Z log (mg(at|ot)) AT (o¢, at)

t=tg

T
8(6) =Y H(mo(.|or))

t=t
(e}

00— 0+ ——(VoJ(O Vo (0 21
+T_t0+1(9()+¢ 09(9)) 1)
T

J(00) = > (re1 + 150 (0041) — 150 (00))?
t=t

Oy 0y + — 9

v v Vo, J (0 22

— +T—to+1 0,J(0v) (22)

In Table III, the term A™ (o, a;) represents an estimate
of the Advantage function, which indicates how better is the
action a; when compared against the “average action” from
the corresponding policy under a certain state o;. By applying
the Temporal Difference (TD) method [34], A™ (04, a:) =
Tev1 + 50 (0r1) — 15 (1)

The J(6) function is the performance of the Actor Network.
It is given by the Log-likelihood of the policy weighted by
the Advantage Function. The §(0) is the sum of the policy
entropy H (m(.|o;) used as a regularization term to discourage
premature convergence. The function J(6,,) is the performance
of the Critic Network. It is given by the squared Temporal
Difference error of v4°(04+1). The gradients Vg and V, are
the vectors of partial derivatives w.r.t. 6 and 6,,, respectively.
The hyper-parameters «, o/, and ¢ are the learning rates and
heuristically fixed. ¢ is the first time step of the training
episode and T is the last one. Note that to < T < tg+ |V|.

B. Remarks on the Implementation of the DRL Algorithm

All resource-related characteristics are normalized to be in
the [0, 1] interval. This is done by dividing cap’ and req’,
j € {cpu, ram,bw} by max,cny M;. With regard to the
DNNs, we have implemented the Actor and Critic as two
independent Neural Networks. Each neuron has a bias assigned.
We have used the hyperbolic tangent (tanh) activation for non-
output layers of the Actor Network and Rectified Linear Unit
(ReLU) activation for all layers of the Critic Network. We have
normalized positive global rewards to be in the [0, 10] interval.



During the training phase, we have considered the policy as
a Categorical distribution and used it to sample the actions
randomly. In the validation tests, we have always selected the
action with higher probability, i.e., a; = argmax .y 7g(a|oy).
As in [11], we have taken ¢ = 0.5. We performed hyper-
parameter search to define o and o’ values as described in
Section VII-E.

C. Introduction of a Heuristic

1) Motivation: To learn the optimal policy 7, the proposed
DRL agent needs to perform actions over various states
and receives the respective rewards to improve the policy
iteratively. However, this is not a straightforward process since
the convergence depends on many hyper parameters. The agent
may get stuck in suboptimal policies or have trouble to learn
good estimations for the state-value function. Also, pure DRL
approaches need to perform many actions and visit a huge
number states to learn good policies.

As a consequence, these approaches take much time to
start providing good solutions. We propose then to reinforce
and accelerate the DRL learning process using the heuristic
described in Section I'V-C.

2) Modified DRL algorithm: Fig. 5 presents the architecture
of the proposed HA-DRL algorithm. We modify the structure
of the Actor Network by introducing a new layer, namely
the Heuristic layer that calculates an Heuristic Function H :
S x A — R based on external information provided by the
heuristic method described in Section IV-C and referred to as
HEU.

£%0(00)

nglar =alo) =pa =

HEU M ezo(oed
‘ PSN topology l =
State o, Actor Network H S
e » >
PSN state N e u o P1
capP* v GCN ¥ r > f > P2
caprem T t
s P3
cap™ £ Wnwny i S "m
x . a t
o $ron, e i lanT” Ps
X rLp
NSPR state o : e = n
pu . 3
o i@ 2 A I
req?™
m,

Critic Network

Fig. 5. Architecture of the proposed HA-DRL algorithm

As described in [26], the Heuristic Function H (oy,a¢) is
a policy modifier that defines the importance of executing a
certain action a; in state o;. In what follows, we adapt the
H(oy,a;) formulation proposed in [26] to our DRL algorithm
and describe how we use H (o¢, a;) as a modifier of the Actor
Network output to give more importance to the action selected
by the HEU method.

3) Heuristic Function Formulation : Let Zy be the function
computed by the fully connected layer of the Actor Network
that maps each state and action to a real value which
is after converted by the Softmax layer into the selection
probability of the respective action (see Section V-B). Let
G; = argmax ¢ 4 Zy(ot,a) be the action with the highest Z
value for state 0. Let af = HEU (o) be the action derived by
the HEU method at time step ¢ and the preferred action to be
chosen. H(oy,a}) is shaped to allow the value of Zy(oy, a})
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to become closer to the value of Zy(o,a;). The aim is to turn
aj into one of the likeliest actions to be chosen by the policy.
The Heuristic Function is then formulated as

o Zg(Uz,(_lt)_ZB(Utyat)+n> if at :a:
H(oy,a0) = { 0, otherwise
(23)

where 7 parameter is a small real number. During the training
process, the Heuristic layer calculates H (o, .) and updates the
Zy(o¢,.) values by using the following equation:

Zo(o,.) = Zo(ow,.) + EH(oy,.)?

The Softmax layer then computes the policy using the modified
Zy. Note the action returned by a; will have a higher probability
to be chosen. The £ and 3 are parameters used to control how
much HEU influence the policy.

(24)

VII. IMPLEMENTATION AND EVALUATION RESULTS
A. Implementation Details & Simulator Settings

1) Experimental setting: In the absence of real data sets of
slice demand and data center capacities, we simulate realistic
network scenarios. We consider fixed capacities and demands
and we control the “difficulty” of the problem by varying the
network load. We developed a simulator in Python containing:
1) the elements of the Network Slice Placement Optimization
problem (i.e., PSN and NSPR); ii) the DRL and HA-DRL
algorithms. We used the PyTorch framework to implement the
DNNs. We consider an implementation of the HEU algorithm
[10] in Julia as a benchmark in the performance evaluations.
Experiments were run in a 2x6 cores @2.95Ghz 96GB machine.

2) Physical Substrate Network Settings: We consider a PSN
that could reflect the infrastructure of an operator [35]. In this
network, three types of DCs are introduced as in Section III.
Each CDC is connected to three EDCs which are 100 km
apart. CDCs are interconnected and connected to a CCP that
is 300 km away. The Tables IV and V summarize the DCs
and transport links properties. The CPU and RAM capacities

of each server are 50 and 300 units, respectively.
TABLE IV
DATA CENTERS DESCRIPTION

Data Number of Number of Intra data
center data servers center links
type centers per data center bandwith capcity
CCP 1 16 100 Gbps
CDC 5 10 100 Gbps
EDC 15 4 10 Gbps
TABLE V
TRANSPORT LINKS CAPACITIES
CCp CDC EDC

CcCp NA 100 Gbps 100 Gbps

CDC 100 Gbps 100 Gbps 100 Gbps

EDC 10 Gbps 10 Gbps 10 Gbps

3) Network Slice Placement Requests Settings : We consider
NSPRs to have the Enhanced Mobile Broadband (eMBB)
setting described in [10]. Each NSPR is composed of 5 VNFs.
Each VNF requires 25 units of CPU and 150 units of RAM.
Each VL requires 2 Gbps of bandwidth.
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Fig. 6. Hyper-parameter search results.

B. Algorithms & Experimental Setup

1) Training Process & Hyper-parameters: We consider a
training process with maximum duration of 24 hours for the
DRL and HA-DRL agents with learning rates for the Actor
and Critic networks set to o = 107% and o’ = 2.5 x 1073
(see Section VII-E about hyper-parameter tuning). We program
four versions of HA-DRL agent (HA-DRL, § = 0.1; HA-DRL,
B = 0.5; HA-DRL, 8 = 1.0; HA-DRL, 8 = 2.0), each with
a different value for the S parameter of the heuristic function
formulation (see Section VI-C3). We set the parameters £ = 1
and n = 0.

2) Heuristic baseline: Since the performance of the HEU
algorithm does not depend on learning, we consider the
placement of 100,000 NSPRs with the HEU algorithm and use
its performance in the steady state as a benchmark.

C. Network Load Calculation

We use the formula proposed in [35] to compute the NSPR
arrival rates (A\*) under the three network load conditions
considered in the evaluation: underload (p = 0.5), normal load
(p = 0.8 and p = 0.9), and critical load (p = 1.0). Network
loads are calculated using CPU resources. In general, we set
1/p = 100 time units for all k& € K, where K is the number
of slice classes. For the resource j with total capacity C,
the load is p; = & S1 2% A, where A% is the number of

#k
resource units requested by an NSPR of class k.

D. Evaluation Metrics

To characterize the performance of the placement algorithms,
we consider 3 performance metrics:

1) Average execution time: the average execution time
in seconds required to place 1 NSPR. This metric is
calculated based on 100 NSPR placements;

2) Acceptance Ratio per training phase: the Acceptance
Ratio obtained in each training phase, i.e., each part of the
training process, corresponding to 1000 NSPR arrivals.
It is calculated as follows: #accepted NSPRs e metric
is used to evaluate the convergence of the algorithms as
it allows us to observe of the evolution of the agent’s
performance in time;

3) Acceptance Ratio after training: the Acceptance Ratio
of the different tested algorithms after training computed

. . #accepted NSPRs .
after each arrival as follows: rrived NSPRs * This

(b) Critic Network, p = 0.50.
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(c) Actor Network, p = 1.0.

(d) Critic Network, p = 1.0.

metric is used in our validation test to compare the
performance of the agents after training.

E. Hyper-parameter Tuning

To define the appropriate learning rates « and «’ for training
the Actor and Critic networks, respectively, we perform a
classical hyper-parameter search procedure divided in 3 steps:
i) we conduct several training experiments with different
combinations of « and o' values, ii) we observe the final
acceptance ratios, i.e., the acceptance ratios obtained in the
last training phase of each experiment, and iii) we aggregate
the final acceptance ratios by learning rate values.

The DNNs are trained for 4 hours and we consider o and
o/ to be in the following intervals: o € [0.00001, 0.00025] and
o’ € [0.000001,0.0025], where upper bounds of the intervals
are the learning rates used in [11]. Fig. 6 presents the average
values and standard deviations of the final acceptance ratios
aggregated by learning rate for the Actor and Critic networks
considering two values for the network load parameter p: p =
0.5 (Fig. 6a and 6b) and p = 1.0 (Fig. 6¢c and 6d). As shown
in Fig. 6a and 6c, under both network load conditions, the
best average of final acceptance ratios was achieved when
considering a learning rate o = 10~ for the Actor Network.
This fact can be observed even more clearly when p = 1.0
since we observe a peak in the curve when a = 10~* in
addition to a smaller standard deviation as shown by Fig. 6c.

Fig. 6b and 6d show that the best average of final acceptance
rate was obtained when considering a learning rate o = 2.5 X
1073 for the Critic Network. We also observe a higher standard
deviation when aggregating the final acceptance ratios on the
basis ' than on the basis of «.. The parameter « thus seems to
have a stronger impact on the final acceptance ratios obtained
than obtained for «’.

F. Acceptance Ratio Evaluation

Fig. 7 and Tables VI-IX present the Acceptance Ratio per
training phase obtained with the HA-DRL, DRL and HEU
algorithms under different network loads.

HA-DRL with 8 = 2.0 exhibits the most robust performance
with convergence after a few training phases for all values of
p. This happens because when setting 5 = 2.0 the Heuristic
Function computed on the basis of the HEU algorithm has



TABLE VI
ACCEPTANCE RATIO AT DIFFERENT TRAINING PHASES, p = 0.5.
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TABLE VII
ACCEPTANCE RATIO AT DIFFERENT TRAINING PHASES, p = 0.8.

Acceptance Ratio at different Training Phases (%)

Acceptance Ratios at different Training Phases (%)

Algorithm Algorithm
25 100 200 300 400 25 100 200 300 400 480
HADRL,3=0.1  57.90 80.20 92.70 93.00 96.20 HADRL,3=0.1 44.10 74.60 77.80 82.80 87.50 85.30
HADRL,3=0.5 58.50 83.00 90.20 94.80 96.30 HADRL,3=0.5 46.30 75.00 77.40 80.90 86.90 83.60
HADRL,3=1.0  58.80 86.20 86.80 85.50 85.80 HADRL,3=1.0  46.00 77.00 74.90 72.40 74.80 74.10
HADRL,3=2.0 93.50 90.30 93.10 92.20 94.80 HADRL,3=2.0  87.80 88.80 85.60 86.50 84.90 85.40
DRL 57.10 83.60 91.20 94.80 95.70 DRL 46.10 71.89 75.70 78.40 83.70 77.80
HEU 93.50 94.00 94.00%* 94.00%* 94.00%* HEU 79.20 79.27 79.27%  79.27%  79.27%  79.27*
TABLE VIII

strong influence on the actions chosen by the agent. Since
the HEU algorithm often indicates a good action, this strong
influence of the heuristic function helps the algorithm to
become stable more quickly.

Fig. 7a and Table VI reveal that DRL and HA-DRL
algorithms with 8 € {0.1,0.5,1.0} converge within an interval
of 200 to 300 training phases when p = 0.5 and that all
algorithms except HA-DRL with 8 = 1.0 have an Acceptance
Ratio higher than 94% in the last training phase.

Fig. 7b and Table VII show that the performance of DRL
and HA-DRL algorithms with 8 € {0.1,0.5,1.0} stabilizes
only after more than 400 training phases when p = 0.8.
They also show that when p = 0.8, only HA-DRL with
B €{0.1,0.5,2.0} have an Acceptance Ratio higher than 83%
in the last training phase. Algorithms HA-DRL with 5 = 0.1
and HA-DRL with 8 = 2.0 have similar performance and they
are about 2% better than HA-DRL for 8 = 0.5, 6% better than
HEU, 8% better than DRL, and 11% better than HA-DRL with
B = 1.0. As shown in Fig. 7c and Table VIII when p = 0.9,
only HA-DRL with 8 = 2.0 has an Acceptance Ratio higher
than 83% in the last training phase. HA-DRL with 5 = 2.0
is about 5% better HA-DRL with 5 = 0.1, 8% better than
DRL, HEU and HA-DRL with 8 = 0.5, and 16% better than
HA-DRL with g = 1.0.

Fig. 7c and Table VIII also reveal that the performance of
algorithms DRL and HA-DRL with 8 € {0.1,0.5,1.0} only
stabilizes after more than 400 training phases when p = 0.9.
Fig. 7d and Table IX show that when p = 1.0, HA-DRL with
B = 2.0 performs significantly better than the other algorithms
at the end of the training. HA-DRL with 8 = 2.0 accepts 67.2
% of the NSPR arrivals in the last training phase, 8.34% more
than HEU, 10.21% more than DRL, 14.7% more than HA-DRL
with # = 1.0, 22.6% more than HA-DRL with 5 = 0.5, 29.3%
more than HA-DRL with 5 = 0.1. Fig. 7d and Table IX also
show that performance of algorithms DRL and HA-DRL with
B €{0.1,0.5,1.0} is still not stable at the end of the training
process when p = 1.0.

G. Execution Time Evaluation

Fig. 8a and 8b present the average execution time of the
HEU, DRL and HA-DRL algorithms as a function of the
number of VNFs in the NSPR and the number of servers in
the PSN, respectively (see Section VII-D for details on the
metric calculation). In both evaluations, we start by the PSN
and NSPR settings described in Sections VII-A2 and VII-A3,
respectively, and generate new settings by increasing either

ACCEPTANCE RATIO AT DIFFERENT TRAINING PHASES, p = 0.9.

Acceptance Ratios at different Training Phases (%)

Algorithm
25 100 200 300 400 480
HADRL,3=0.1  42.40 66.20 75.00 73.00 81.70 78.50
HADRL,3=0.5 40.30 63.40 70.90 68.20 78.20 75.30
HADRL,3=1.0 42.69 66.00 70.90 68.40 71.10 66.90
HADRL,3=2.0  82.89 81.10 84.10 81.00 82.80 83.36
DRL 41.60 63.40 72.10 71.10 80.60 75.80
HEU 73.90 75.68 75.68*%  75.68*  75.68*%  75.68*

the number of VNFs per NSPR or the number of servers in
the PSN. The evaluation results confirm our expectations by
showing that the average execution times increase faster for
heuristics than for a pure DRL approach. However, both HEU
and DRL strategies have low execution times (less than 0.6s
in the largest scenarios). The number of VNFs per NSPR has
more impact on the average execution times of HEU and DRL
algorithms than the number of servers on the PSN. The average
execution time of HEU algorithm is more impacted than DRL
by the number of servers in the PSN. The HA-DRL algorithm
depends on a sequential execution of DRL and HEU. Therefore,
the average execution time of HA-DRL is approximately to
the sum of the execution times of HEU and DRL. Since DRL
and HEU have small execution times, the average execution
times of HA-DRL are also small (less than 1.0s for the largest
NSPR setting and about 0.6s for the largest PSN setting).

H. Validation Test

To validate the effectiveness of the different trained DRL
agents, we perform a validation test. We consider the same PSN
and NSPR settings described in Section VII and the arrival
of 10,000 NSPRs to be placed and generating a network load
p = 0.8. We run a simulation with each one of the trained

TABLE IX
ACCEPTANCE RATIO AT DIFFERENT TRAINING PHASES, p = 1.0.

Acceptance Ratios at different Training Phases (%)

Algorithm
25 100 200 300 400 480
HADRL,5=0.1  30.10 49.70 45.30 45.0 41.00 37.90
HADRL,5=0.5 30.80 45.90 50.80 44.5 38.90 44.60
HADRL,5=1.0 27.40 52.00 55.50 55.60 49.00 52.50
HADRL,5=2.0  67.60 67.60 70.80 69.60 66.10 67.2
DRL 29.30 49.10 46.60 50.10 53.40 56.99
HEU 60.70 58.86 58.86%  58.86*  58.86*  58.86*
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Fig. 9. Acceptance Ratio at validation test, p = 0.8

DRL agents as well with the HEU algorithm and compare the
obtained Acceptance Ratios at the end of the simulations (see
description of the Acceptance Ratio after training metric on
Section VII-D).

Fig. 9 and Table X show that the HA-DRL agent with
B = 0.1 is the one that better scales since it has the best
Acceptance Ratio after training. HA-DRL agent with 8 = 2.0
has the best Acceptance Ratio during training as described in
Section VII-F but is the one that scales the worst since it has
poorest Acceptance Ratio after training performance. This is
because with the use of a high 3 value, HA-DRL suffers from
a strong dependence on the HEU algorithm. This prevents HA-
DRL with 8 = 2.0 from being used with the HEU algorithm
deactivated. Note, however, that HA-DRL remains the best
solution even when HEU is disabled after 24 hours of training
since HA-DRL with g = 0.1 has an Acceptance Ratio 7.34%
higher than the pure DRL and 4.42% higher than the HEU
algorithm. To get the best performance we can then use the
HEU algorithm to help HA-DRL to learn during the training
phase and then “disengage” it to avoid the overhead generated
by the “node pooling” principle used by the HEU algorithm.

VIII. CONCLUSION

We have presented a Heuristically-assisted DRL (HA-DRL)
approach to Network Slice Placement Optimization with 5 main
contributions: the proposed method i) enhances the scalability
of existing ILP and heuristic approaches, ii) can cope with

multiple optimization criteria, iii) combines DRL with GCN to
automate feature extraction, iv) strengthens and accelerates the
DRL learning process using an efficient placement optimization
heuristic, and v) supports multi-domain slice placement.
Evaluation results show that the proposed HA-DRL approach
yields good placement solutions in nearly real time, converges
significantly faster than pure DRL approaches, and yields better
performance in terms of acceptance ratio than state-of-the-
art heuristics and pure DRL algorithms during and after the
training phase. As a future work, we plan to explore a parallel
computing implementation of HA-DRL to reduce its execution
time and thus achieve the best performance in both Acceptance
Ratio and Execution Time. We also plan to evaluate the HA-
DRL in an online optimization scenario with fluctuating traffic
demand to access the advantages of using HA-DRL in practice.
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