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Abstract—Distributed R-tree overlays emerged as an alter-
native for efficiently implementing DHT-free publish/subscribe
communication primitives. Overlays using R-tree index struc-
tures offer logarithmic delivery garantis, guarantee zero false
negatives and considerably reduce the number of false positives.
In this paper we extend the distributed R-trees (DR-trees)
in order to reduce event delivery latency. Our optimizations
target both the structural organization of the DR-Trees and
the publication policies. The contribution of the current work
steams in an extensive evaluation of the novel structure along
four parameters: latency, load, scalability and the rate of
false positives. The enhanced structure performs better than
the traditional distributed R-tree in terms of delivery lat ency.
Additionally, it does not alter the performances related to the
scalability, nor the load balancing of the tree, and neitherthe
rate of false positives and negatives filtered by a node.

Index Terms—Publish/subscribe, Distributed R-Trees, Perfor-
mance evaluation, Distributed multiplayer games

I. I NTRODUCTION

Publish/Subscribe primitives are efficient communication
abstractions very popular in large scale systems where the
number of nodes participating to a particular application is
limited to a strict subset of the network nodes. Recently,
publish/subscribe primitives found an interesting application
in massively distributed video games where the pertinent in-
formation has to be efficiently distributed to the interested par-
ties only. In these systems the amount of information a node
has to process is critical since nodes have to conserve their
computational power and bandwidth in order to fully satisfy
the users expectation. Therefore, communication primitives
targeted to reduce noisy events (false positives or negatives)
are highly requested. Publish/Subscribe implemented on top
of distributed R-trees (DR-trees) overlays, first introduced in
[1], are proven to be efficient communication primitives. They
have been designed to offer zero false negatives and reduce
the number of false positives. Interestingly, they also offer a
logarithmic delivery complexity. These characteristics make
them appealing for applications like P2P video games where
nodes have to process only pertinent information. However,
their main drawback is their unbalanced load. That is, nodes
in charge of the top levels of the overlay have to deal with
an important load due to the high traffic they have to process
(new subscriptions and events are generally filtered using a
top-down strategy). Therefore, in P2P video games where
the maintenance of the overlay is performed by the players
themselves1, delivery latency of updates and nodes’ load are
import concerns. The aim of this paper is to improve DR-tree
in order to offer low delivery latency while maintaining their
original features related to reduced number of noisy events
and load balancing.

1Note that in these systems players are mainly concerned withtheir
bandwidth and fast reactivity.

Our contribution. In this paper we optimize the DR-tree
overlays in order to meet the requirements of massively dis-
tributed video games such that pertinent information is quickly
distributed to all the interested parties without degrading the
load of nodes neither increasing the number of noisy events.
Our optimizations are twofold. First we target structural
optimization duplicating the virtual links between nodes in
the distributed R-tree. Then we propose novel strategies for
events dissemination that fully exploit the new added links.
The real contribution of the paper steams in the evaluation
of [1] according new criterias and in the extensive evalua-
tion of the performances of our optimized publish/subscribe
communication primitive targeting latency. The new structure
performs better than the traditional distributed R-tree interms
of latency. Additionally, it does not alter the performances
related to the structure scalability, the load balancing and the
rate of false positives and negatives a node has to filter.

II. RELATED WORK

Publish/subscribe systems have received much attention and
have been extensively studied in the last few years [2], [3].
In such systems, consumers specifysubscriptions, indicating
the type of content that they are interested in, using some
predicate language. For each incoming message (event), a
content-based router matches the message contents against
the set of subscriptions to identify and route the message to
the set of interested consumers. Therefore, the consumers and
the producers are unaware of each other and the destination
is computed dynamically based on the message contents and
the active set of subscriptions.

Traditional content routing systems are usually based on
a fixed infrastructure of reliablebrokers that filter and route
messages on behalf of the producers and the consumers. This
routing process is a complex and time-consuming operation,
as it often requires the maintenance of large routing tableson
each router and the execution of complex filtering algorithms
(e.g., [4], [5], [6]) to match each incoming message against
every known subscription. The use of summarization tech-
niques (e.g., subscription aggregation [7], [8]) alleviates those
issues, but at the cost of significant control message overhead
or a loss of routing accuracy.

Another approach to content routing is to design it free of
broker infrastructure, and organize publishers and consumers
in a peer-to-peer overlay through which messages flow to
interested parties. Several designs of DHT-based peer-to-peer
publish/subscribe systems were proposed [9], [10], [11], [12],
[13], [14], [15]. The main advantage of these approaches
is their scalability, although most of them suffer from two
problems: the loss of accuracy (apparition of false negatives or
false positives) and poor latency in scenarios with high churn.
In this paper we are interested in publish/subscribe commu-
nication primitives that meet the massively distributed games



requirements: reduce number of noisy events, load balancing
and low latency. Hence, for such approaches to be efficient,
the overlay on top of which the primitive is implemented must:
avoid false negatives (a registered consumer failing to receive
a message it is interested in); minimize the occurrence of
false positives (a consumer receiving a message that it is not
interested in);self-adapt to the dynamic nature of the systems,
with peers joining, leaving, and failing;balance the load of
the subscribers in charge of the overlay maintenance and
efficiently distribute events to the interested parties (provide a
low latency). None of the previously mentioned systems meet
all these criteria.

VBI [16] is a framework to build several containement-
based structures (such as R-tree, M-tree, X-tree etc. . . ) over
a virtual balanced binary tree. The virtuality of that tree is a
very important point as it introduces a distinction betweenthe
overlay topology and peers organization. VBI [16] distingues
two kind of logical nodes; data nodes -leaves, that stores
objects- and routing nodes -internal nodes-. Each peer is
responsible for one data node and one routing node. Each
routing node maintains sideways routing table containing links
to particular nodes at the same level and an upside table
that contains links to its ancestors. Those extra routing tables
are used to balance load amongst peers using as much as
possible horizontal routing. The fixed degree of the logical
tree and the way it is mapped on peers are the two of the
main conceptual differences with our approach. Moreover VBI
mainly targets fair load balance while our approach mainly
target low delivery latency. Our structure is more specialized
as it’s dedicated to use spatial filters as a publish/subscribe
underlayer.

In massively distributed video games the most popular
publish/subscribe system is Mercury having a similar design
with [15]. Mercury [17] is a peer-to-peer DHT supporting
multi-attribute range-queries and explicit load balancing on
top of which a First Person Shooter (FPS) dedicated pub-
lish/subscribe has been built and used in Caduceus [17] and
Colyseus [18]. Subscriptions are mapped on range queries,
publications on classic DHTput() operation and each attribute
to a dimension. Mercury creates one ring per dimension; each
peer belongs to several rings. It doesn’t scale with dimension
number however it performs well in systems with moderated
number of dimensions. Each peer knows for each ring its
predecessor, its successor and hask long links obtained by
lazy random-walk.k may vary from one peer to another,
from one node to another and from one ring to another. On
publication, an event is inserted in each ring where it is routed
according to the corresponding attribute (resp. dimension).
Under the assumption of uniform node’s ranges on each ring,
Mercury route any event inO((log2n)/k). Due to the ring-
overlay design nodes in Mercury have to process both false
positives and negatives.

III. PUBLISH/SUBSCRIBE MODEL

We consider a distributed dynamic system where publishers
and subscribers are organized in a broker-free overlay. Every
peer in the overlay may have three roles: publisher/subscriber
and router. Also, the peers may participate in the event
dissemination, i.e., the event matching and forwarding process
is completely distributed among the peers in the system.

In the following we borrow the model proposed in [11],
[14], [1]. We assume that an event contains a set ofat-
tributes with associated values. In this work we consider

complex filters expressed as the conjunction of multiple range
predicates. Geometrically, these complex filters define poly-
space rectangles in an Euclidean space. This representation
captures well the range filters expressed in most popular
publish/subscribe systems (e.g., [2], [19], [7], [20]).

An event specifies a value for each attribute and corresponds
geometrically to a point. Without restraining the generality,
we illustrate our algorithms on two-dimensional filters cor-
responding to rectangles in a two-dimensional space. If one
attribute is undefined, then the corresponding rectangle is
unbounded in the associated dimension. If an attribute is com-
posed of disjoint ranges, the subscription will be represented
as multiple rectangles. In that case, we can split the original
subscription into several new subscriptions, one per rectangle,
or merge the multiple ranges of every attribute to produce a
single subscription, at the price of degraded accuracy.

Many publish/subscribe systems are based on the property
of subscription containment,2 which is defined as follows:
subscription Si contains another subscriptionSj (written
Si ⊒ Sj) iff any eventm that matchesSj also matchesSi.
The containment relationship is transitive and defines a partial
order. Geometrically, subscription containment corresponds to
the enclosure relationships between the poly-space rectangles.
When organizing the peers based on the containment relation-
ship of their subscriptions, only the peers that are interested
in an event will participate in the matching and forwarding
procedure. In this way, events can be quickly disseminated
without incurring significant filtering cost.

IV. R-TREESOVERLAYS

In this section we recall the main caracteristics of the R-
Tree index structure and its distributed version.

A. R-Trees index structures

R-trees were first introduced in [21]. An R-tree is a height-
balanced tree handling objects whose representation can be
circumscribed in a poly-space rectangle. Each leaf-node in
the tree is an array of pointers to spatial objects. An R-treeis
characterized by the following properties:

• Every non-leaf node has a maximum ofM and at least
m entries wherem ≤ M/2, except for the root.

• The minimum number of entries in the root node is two,
unless it is a leaf node. In this case, it may contain zero
or one entry.

• Each entry in a non-leaf node is represented by (mbr,p),
where the mbr is the minimum bounding rectangle
(MBR) that encloses the MBRs of its child node and
p is the pointer to the child node. Each entry in a leaf
node is represented by (mbr,oid), where thembr is the
MBR that spatially encloses the object andoid is the
pointer to the object.

• All the leaf nodes are at the same level.
• The height of an R-tree containingN objects is

⌈logm(N)⌉ − 1.
• The worst space utilization for each node except the root

is m/M .

In a classical R-tree structure, the actual objects are only
stored in the leaves of the tree and the internal nodes only
maintain MBRs.

2The termcovering is also commonly used in the literature.
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B. Distributed R-tree Overlay
Distributed R-trees (DR-trees) introduced in [1] extends the

R-Tree index structures where subscribers are self-organized
in a balanced virtual tree overlay based on the semantic rela-
tions between their subscriptions. We consider that each filter
is a rectangle which can be represented by using coordinates
in a two dimensional space. The overlay preserves the R-trees
index structure features: bounded degree per node and search
time logarithmic in the size of the network. Moreover, the
proposed overlay copes with the dynamism of the system.

S1

S1

S1

p1

S2

p2

S3

p3

S4

p4

S5

S5

p5

S6

p6

S7

S7

p7

S8

p8

S9

p9

(a) DR-tree

p1

p2 p3 p4 p5

p6

p7

p8 p9

(b) Communication graph

Fig. 1: Nodes distribution and resulting overlay

Each leave (subscriber) of the DR-Tree is assigned to a peer
of the overlay. Furthermore, some peers can be responsible
for both leaves and internal nodes of the DR-tree. Thus, since
an internal node keeps information about the MBRs of its
children, a peer filters for every internal node that it holds
the events for the respective internal node’s subtree. Some
subscribers are responsible for both leaves and internal node of
the DR-tree. The choice of which subscriber are promoted to
be responsible to internal nodes are discussed in [1]. Figure 1a
shows an example of a DR-Tree and a possible assignment
of subscribers to peers: subscriptionS1 . . . S9 are distributed
among peersp1 . . . p9. Each peer holds exactly one leaf of
the DR-Tree and a dotted cloud emphasizes that the same
subscriber can be both a leave and an internal node. For
instance,p1 is responsible for subscriptionS1, which appears
in different levels of the tree including the root whilep6 is
responsible forS6 which is just a leave. How nodes of a
DR-tree are distributed amongst peers of the overlay depends
on node join/leave and split algorithms which are described
in [1].

The communication graph related to the DR-tree of Fig-
ure 1a, which expresses the communication links between
the subscribers/peers, is shown in Figure 1b. Two peers are
neighbors in the communication graph if and only if they
hold nodes that are neighbors in the DR-tree, i.e., a node is
neighbor of its children and father nodes. For instance,p1 and
p3 are neighbors in the communication graph becausep1 is
responsible forS1 andp3 is responsible forS3 and the former
is the father of the latter.

It is worth pointing out that in our approach, discussed in
the following, links are added to the communication graph but
the logical structure of the DR-tree is kept unchanged.

V. OPTIMIZED DISTRIBUTED R-TREE

In this section we detail the optimizations we propose for
the classical DR-trees described in Section IV. We address
both the topological extensions and publishing strategies.

A. Topological extensions

In order to reduce the delivery time of published events and
hence the latency of events distribution we have added links
to the communication graph improving thus the connectivity
of the corresponding DR-Tree. We propose tree extensions by
adding links between peers based on the different relations
between the nodes they hold, which are the following:

Brothers Connections: If two peers hold nodes which are
brothers, i.e., have the same father node, a link between them
is added to the communication graph. The brother relation is
symmetric, transitive and non-reflexive. We could have linked
all brothers in a ring or multi-ring structure. However, forthe
sake of efficiency, we have chosen a crossbar to keep brothers
relation. This structure offers the maximal performance in
terms of latency since messages within the brother set are
routed in one hop.

Root Link Connections: In this extension, all peers of the
communication graph have a link to the peer that holds the
root node of the DR-Tree.

Ancestors Connections:A node is the ancestor of another
node if and only if the former is the father of the latter
or the father of an ancestor of the latter. In this extension,
we consider thus that every subscriber is aware of all of its
ancestors. Links are added to the communication graph to this
end.

B. Publishing strategies

We denote that a local eventis an event that has been
published by the node itself, that an upward eventis an event
that a node has received from one of its children, and that
a downward eventis an event that a node has received from
its father. A publishing strategy thus defines the traffic rules,
i.e., the routes that local, upward and downward events should
take.

The containment relation between MBRs entails the filter-
ing in both directions. Therefore, in the classical DR-trees [1],
the publishing strategy, denoted in the sequelDouble Wave
strategy, consists in forwarding the local event produced by
a node both to its interested children and its father. Further,
every internal node which receives an upward event from one
of its children adopts the same strategy: it forwards the event
to its interested children and its father. Note that theDouble
Wave publishing strategy was only described in [1]. The
simulations were conducted based on a simplified strategy:
publication via the root node.

In the following we introduce three new publishing strate-
gies which exploit the addition links that characterize the
topological extensions described above.

Brothers wave strategy: brother links are used to ex-
ploit “tree-locality” of a publication. The idea as follows:
events that interest a node might also interest its brothers
as well. Therefore, the publication strategy is the following:
local events are forwarded to publisher’s interested brothers,
children, and father; upward events are also forwarded to the
receiver’s interested brothers and father (if the receiveris not
the root); downward events are forwarded to the interested
children.
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Root link wave strategy: Local events are forwarded to the
root peer, then they are sent downward to interested children.

Ancestors wave strategy: ancestor links are used to
maximize messages diffusion parallelization. Local events are
forwarded to interested children and every ancestors of the
publisher; upward and downward events are forwarded to
interested children.

VI. PERFORMANCEEVALUATION

This section presents a set of results aimed at evaluating the
performance of the three new publishing strategies (Brothers
wave, Root link wave and Ancestors wave) compared to the
original one (Double wave).

The goal of our optimized DR-trees is to offer a pub-
lish/subscriber system that exploits locality of subscribers’
interests and efficiently disseminates events by adding extra
links between peers. They are thus very suitable for maintain-
ing the state of distributed multiplayer games since optimized
DR-Trees provide both filtering of information and low event
delivery latency, which are essential features for these kind
of application. It is worth remembering that in distributed
multiplayer game, each participating node (player) only needs
information relevant to his/her associated player. In thisway,
the optimized DR-tree can be used by the game application in
order to update fast the view that each player (node) has of the
game. Based on these arguments, our evaluation performance
tests characterize the behavior of different distributed applica-
tions in terms of publication patterns and users interests,i.e.,
subscription distributions.

A. Simulation environment and parameters

Experiments were conducted on top of PeerSim[22], a Java-
based discrete event simulator. They last 600 cycles where a
cycle is a discrete unit of time. Publication frequency was 0.5
event per cycle for each peer. Network latency between two
peers was 1 cycle with a jitter of± 0.1 cycle.

We have considered a 2D virtual area of[[0, 1024]] ×
[[0, 1024]] and a network with 1024 peers with one subscriber
per peer. The communication latency distribution between
peers is homogeneous; the impact of heterogeneity and nodes
placement will be investigated in future works. Each peer
(subscriber) has just one zone of interest, whose height and
width are uniformly randomly distributed between[[5, 50]], and
one zone of publication. We denote thecovering zone of a peer
the MBR of the uppermost level that it holds.

Every non-leaf node of the DR-Tree has a maximum of
M=8 and a minimum of m=4 entries, except the root which
has 2 entries. For the sake of evaluation, nodes can be grouped
by level: 0 is the root level, 1 is root’s children level, and so
on. The level of the leaves is equal to the RTree height which
is equal to 4 in our experiments.

Subscription distribution: Most of the massively dis-
tributed video games present hotspot zones, i.e. “popular”
regions in which a group of peers have similar interests.
Thus, based on population distributed of existing games, we
have considered in our experiments four hotspot distribution
configurations for the 1024 peer subscriptions of the system:

• Cold (no hotspot): subscriptions are uniformly randomly
distributed.

• Warm (not very “popular” hotspots): the number of
hotspots is1024/8 = 128.

• Hot (“popular” hotspots): the number of hotspots is√
1024 = 32.

• Burning (very “popular” hotspots): the number of
hotspots is equal tolog(1024) = 10 hotspots.

The Cold and Warm hotspot distributions respectively
model the population distribution of deserted zones of DVE
3[23] and interested zones of FPS4 [24] games. TheHot
distribution represents the population distribution of dense
zones of DVE like towns in MMO-RPG5 (World Of Warcraft,
[25], Dofus [26]) or popular islands ofSecond Life) [27])
while the Burning one maps the population distribution of
massive battlefields in MMO-RPG or wide events (concert,
meeting).

Publication pattern: Peers (players) subscribe to the ge-
ographic area where they are located and publish events re-
lated to their positions/movements/actions. However, in video
games, players are usually interested in a small part of the
game map (zone) and they only interact with entities that
are in that zone. Such a behavior thus implies that the
publication zone of a peer corresponds to its zone of interest,
i.e., a peer publishes just in its own zone of interest. To
our experiments, we have then considered that publications
are uniformly randomly distributed in publishers’ subscription
zones.

Metrics: As previously explained, our goal in propos-
ing new publishing strategies is to provide low publication
delivery latency without unbalancing load, increasing noisy
events such as false positives (DR-Tree does not present false
negatives) or limiting scalability of the system. Hence, the
metrics we have used to evaluate the four strategies are:

• Latency: the average time (in cycles) elapsed between
the moment an event is published and its delivery to all
subscribers which are interested in it.

• Message load: this metric concerns both thefan in, the
average number of received messages per peer, andfan
out, the average number of sent messages per peer.

• False positive: the average number of false positives per
level of the DR-Tree.

• Scalability: this metric concerns the delivery latency
when the number of peers increases.

B. Latency

Latency measures the elapsed time between the moment an
event takes place and the moment all interested subscribersare
aware of it (e.g. the time elapsed between a bomb’s explosion
and the moment every near player is warned of it; the elapsed
time between a player kills another one and the moment every
witness “sees” this action, etc.).

Figure 2 shows the latency evaluation results for the four
publication strategies defined in Section V. X-axis corre-
sponds to the number of subscribers concerned by a publica-
tion. Notice that the colder hotspots are, the lower the number
of interested subscribers is. Y-axis corresponds to the average
total publication time.

Since a peer publishes in its respective zone of interest, a
publication is delivered at least to it. Thus, except for theRoot
Link strategy where every publish event must be first send to
the root, whenever an event is delivered to exactly one peer
(the event publisher), the average global publication timeis
equal to zero independently of the hotspots distribution. The
Root Link strategy exhibits a linear behavior regardless of

3Distributed Virtual Environments
4First Person Shooter
5Massively Multiplayer Online Role Playing Game
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Fig. 2: Average total propagation time versus event popularity

the publication popularity. In fact, the latency of this strategy
depends only on the height of the tree since publications are
systematically sent to the root and then propagated to the
leaves. However, for the other three strategies, the higherthe
number of peers concerned by an event, the higher the chances
that the event will have to be forwarded far from the the
publisher and hence routed through more peers. Therefore,
such an event will take more time to be delivered to all
interested subscribers.

Ancestors, Brothers and Root Link latency gains are quite
significant for all hotspot distributions compared to theDouble
Wave. In particular,Ancestors strategy is around 35% better
than Double wave strategy for theBurning distribution, and
around 45% better for theCold distribution.Ancestors strategy
is always better than the other strategies because it parallelizes
the diffusion of publications. We also observe that below 4
subscribers theRoot link strategy is less efficient than the
other ones since the latter benefit from locality of subscription
which avoids the propagation of publications to the root. On
the other hand, when such a locality decreases, i.e., the number
of subscribers interested in the event increases, publications
need to be forwarded to the root, which explains why both the
Root Link and theAncestors strategies present lower delivery
latency compared to the other two since the extra link to the
root allow publications to bypass inner levels.

It is worth pointing out that the curves of Figure 2 could be
roughly interpreted as “the number of hops versus the number
of reachable nodes in the communication graph” except for
the Root Link strategy. Thus, since the communication graph
is a tree, whose height is majored by the height of the DR-tree,
the curves have a logarithmic behavior. The inflexion point of
curves corresponds to the tree’s height. Figure 2 shows also
that hotspots distribution has small impact on overall latency;

in any case, each strategy’s curve stabilizes around the same
value, which is an interesting result for video games since
latency is always a matter of concern for them. Furthermore,
the zone of interest of a player is very likely to change
during the game but, due to the mentioned stabilization, such
a change will probably not affect the game’s reactivity.

C. Message load

In the previous section we have shown thatAncestors,
Brothers and Root Link strategies provide significant latency
gains when compared toDouble wave. In the following we
investigate two metricsfan in and fan out which are related
to the node load. For a given peer, both thefan in and thefan
out are dependent of the following three factors:

• peer’s zone of interest
• peer’s routing upward activity
• peer’s routing downward activity

Note that these factors may have very different order of
magnitude according to the publication strategy and the level
of the peer in the overlay.

a) Fan in evaluation: Figure 3 shows some results
related to thefan in metric. The X-axis corresponds to the
R-Tree levels. The leftmost level is the root, the rightmost
level corresponds to the leaves, and the in-between levels cor-
respond to internal nodes. For the Y-axis, each bar represents
the averagefan in of peers at a given level. The standard
variation of fan in for peers at each level is very low.

We can observe in Figure 3 that all strategies are roughly
equivalent in terms offan in, regardless of the hotspot
distribution. Since DR-tree routing avoids false negatives, a
peer receives an event either if it is interested in the eventor
if some of its children are. In other words, a peer receives
an event only if the latter is in its zone of interest or in

5



0.0⋅100

2.0⋅104

4.0⋅104

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1.6⋅105

A
ve

ra
ge

 fa
n 

in

Level

DoubleWave
Brothers

Ancestors
RootLink

(a) Cold: 1024 hotspots

0.0⋅100

2.0⋅104

4.0⋅104

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1.6⋅105

A
ve

ra
ge

 fa
n 

in

Level

DoubleWave
Brothers

Ancestors
RootLink

(b) Warm: 128 hotspots

0.0⋅100

2.0⋅104

4.0⋅104

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1.6⋅105

A
ve

ra
ge

 fa
n 

in

Level

DoubleWave
Brothers

Ancestors
RootLink

(c) Hot: 32 hotspots

0.0⋅100

2.0⋅104

4.0⋅104

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1.6⋅105

A
ve

ra
ge

 fa
n 

in
Level

DoubleWave
Brothers

Ancestors
RootLink

(d) Burning: 10 hotspots

Fig. 3: Fan in versus level

its covering zone. The closer to the root a peer is, the
large its covering zone is and thus the higher the number
of upward events it receives which explains why the bars of
Figure 3 decreases when the level increases, independentlyof
the hotspots distribution.

An interesting remark is that in the case of theBrothers
strategy, the root peerfan in is equal to 0 and strictly
equivalent to a leaf peer for all hotspot distributions. As its
children know each other, the root peer is not involved in
routing events and thus it receives only those events in which
it is interested.

b) Fan out evaluation: Figure 4 presents some evalu-
ation results of thefan out metric. Like to thefan in figure,
the X-axis represents the DR-tree levels. In the Y-axis, each
bar corresponds to the averagefan out of peers at each level.
The standard variation offan out for peers of a given level is
very low.

Similarly to thefan in, the closer to the root a peer is, the
higher the number of upward events it has to forward to both
its father and its children which have interest in them.

Two points are worth remarking with regard to theBrothers
strategy. Firstly, the internal nodes are slightly more loaded
than with other strategies. The explanation comes from the
“horizontal routing” of such strategy which mostly involves
leaves and internal peers in order to reduce the cost of event’s
upward propagation. Secondly, as already mentioned in the
fan in evaluation, the root peer is not engaged in the routing
of events. Hence, itsfan out is equivalent to a leaf peer for
any hotspot distribution.

Finally, we should point out that we observe an increase
of load on the root node in theRoot Link strategy since the
root always forwards the publications to all its children which
are interested in them. Contrarily, in the other strategies, the

root does not forward the publications to those children from
which it receives them.

D. False positive

An event is considered as a false positive by a peer if the
latter is not interested in it, i.e., if the event is in the peer’s
covering zone but not in the peer’s zone of interest.

Figure 5 presents our evaluation results related to false
positives. X-axis is the levels of the DR-Tree similarly to the
fan in andfan out figures. In the Y-axis, each bar corresponds
to the average percentage of false positives for peers of each
level. As this metric is highly related to thefan in, the standard
variation is also very low.

All strategies are equivalent in terms of false positive rate
independently of the hotspots distribution. For a leaf peer,
the zone of interest and covering zone are equals. Hence, it
receives only events in which it is interested, i.e., no false
positive occurs. However, the closer to the root a peer is, the
wider its covering zone is and thus the higher the chances that
it receives events that are in its covering zone but not in its
zone of interest which leads to higher false positive rates.

We can also observe in the same figure that the overall
false positive rate decreases with the popularity of the hotspots
since the number of zones of interest that overlap increases
as well. The more they overlap, the higher the chances for a
peer to receive events that are in its zone of interest which
thus leads to slightly lower false positive rate.

A third remark is that in the case of theBrothers strategy,
root peer behaves like a leaf peer. As explained in the
description of this strategy, the root peer only receives events
in which it is interested in. Therefore, no false positive occurs.
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Fig. 4: Fan out versus level
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Fig. 5: False positive rate versus level
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E. Scalability

We have conducted the same set of experiments as the ones
shown in Figure 2, but with 10,000 peers instead of 1024. Our
results are shown in Figure 6.
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Fig. 6: Total propagation time for 10,000 peers

The shape of the curves is quite similar to those of Figure 2
(i.e., similar inflexion points, linear behavior forRoot Link
strategy and asymptotic behavior for the others). The 10-
times multiplication of peers number results in an increase
of the average latency by 25% for all strategies. Such an
overhead can be explained since latency is closely related to
the communication graph’s height which is majored by DR-
tree’s one which grows logarithmically with peers number.
The DR-tree we have considered in our experiments has a
degree of (m=4;M=8) which implies that the height of the
tree (and therefore the height of the communication graph)
increases when the number of peers grows from 1024 to
10,000.

VII. C ONCLUSION

In this article we proposed structural modifications of DR-
Trees by adding shortcut links in their communication graphin
order to efficiently disseminates events. Based on the results
of extensive evaluation experiments, our paper shows that,
compared to the traditional DR-Tree, our optimized DR-Trees
reduce event delivery latency, do not degrade load balancing
or scalability of the system, and do not entail more false
positives. Furthermore, the same evaluation performance tests,
which characterize both publication pattern and subscription
distributions of different types of multiplayer games, confirme
that our optimized DR-tree meet the requirements of dis-
tributed video games, i.e., scalability, low publication latency,
reduction of noisy events, and load balancing. Note that these
are essential concerns in distributed games in order to maintain

fairness between players and conserve their computational
power and bandwidth.
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