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Abstract—Due to the nature of ubiquitous systems, nodes (e.g.,
sensors) are frequently prone to failures. Such systems must,
therefore, present self-healing capabilities in order to detect fai-
lures and make the necessary adjustments to prevent their impact
on applications. In such a context, this work proposes a new and
flexible unreliable failure detector, denoted the Impact failure
detector (FD), for self-healing system in ubiquitous environments.
The output of the Impact FD concerns the confidence in the
system as a whole. By expressing the relevance of each node by
an impact factor value as well as a margin of acceptable failures
of the system, the Impact FD enables the user to tune the failure
detection configuration in accordance with the requirements of
the application: in some scenarios, the failure of low impact or
redundant nodes does not jeopardize the confidence in the system,
while the crash of a high impact factor one may seriously affect
it. A softer or stricter monitoring is thus possible. Performance
evaluation results using real PlanetLab [1] traces confirm the
degree of flexible applicability of our failure detector and, due
to the margin of failure, the number of false responses may
be reduced when compared to traditional unreliable failure
detectors.

I. INTRODUCTION

Ubiquitous computing has its origins in the visionary work
of Marc Weiser who, at the beginning of the 1990s, predicted
the existence of environments saturated with computing de-
vices and communication capabilities, highly integrated with
human users [2]. However, faults in ubiquitous systems occur
frequently due to the exposure to the physical environment
[3]. These systems must, thus, present autonomic computing
capabilities which render them more autonomous, to some
extent, in the presence of failures so as not to depend on
human intervention for preventing undesirable consequences
[4] induced by the failures.

One of the properties of autonomic computing is self-
healing. A system designed with this feature automatically
discovers, diagnoses, and reacts to disruptions [5]. The sys-
tem must be able to detect faults and make the necessary
adjustments to prevent the failures from having an unde-
sirable impact on the application which should keep active
and available. Hence, failure detection service which delivers
monitory information about the liveness of the system nodes is
a crucial feature of self-healing systems. In order to meet such
a requirement, this paper proposes a new unreliable failure
detector (FD), denoted Impact Failure Detector.

In our approach, we consider that the Impact FD is one
of the components of a Self-healing Module [6]. The latter
aims to cater for the needs of ubiquitous systems which must
manage applications that are distributed and adaptive to the
changing requirements of the environment. Hence, a Self-
healing Module should be available anywhere and at any
time and, whenever a failure is detected, it has to make the
necessary adjustments to avoid error propagation which can
result in major damage to the application. Notice that the self-
healing module can be incorporated in any ubiquitous system,
regardless of its architecture. Basically, it has two components:
the Failure Detector (FD) and Adaptation Manager (AM),
as shown in Figure 1. The former consists of an adaptive
unreliable failure detector that is responsible for detecting
crash failures of different entities (nodes, sensor, etc.) that
need to be monitored in the system. The AM provides suitable
adaptation strategies, aiming at reducing the impact of the
detected failure on the application. We emphasize that the
focus of this paper is not the Adaptation Manager but to
propose a suitable failure detector for self-healing service.

Contrarily to traditional unreliable failure detectors [7]
[8] that output the set of nodes suspected of having failed,
the Impact FD outputs a trust level and a status (trusted or
not trusted) concerning a given system S. The output can
be considered as the degree of confidence in the system. To
this end, an impact factor, defined by the user, is assigned
to each node and the trust level is equal to the sum of the
impact factor of trusted nodes, i.e., those not suspected of
failure. Furthermore, an input threshold parameter defines a
trust level limit value, over which the confidence degree on
S is not affected. Hence, by comparing the trust level with
the threshold, the system is considered trusted or not. If it
is not the case, the AM decides if some measures must be
taken (urgently or not, with regard to the trust level output).
In other words, when the FD informs, by status output, that S
is not trusted, the Adaptation Manager analyzes the trust level
output and decides about the recovery strategy and/or system
reconfiguration.

In [9], the authors propose the Accrual φ failure detector
which, similarly to our approach, outputs a suspicion level on
a continuous scale. However, the φ FD does not analyze the
output but just replays it to the application.



We should point out that both the impact factor and the
threshold render the estimation of the confidence of S more
flexible. For instance, it might happen that some processes in S
are faulty or suspected of being faulty but S is still considered
to be trusted. Consequently, the Adaptation Manager will
be less requested, since there is some flexibility for nodes
failure. Furthermore, the Impact FD is easily configurable and
adaptive according to the needs of the application or system
requirements that can dynamically changes. For instance, the
application may require a stricter monitoring of nodes during
the night than during the day. For such an adaptation, it is only
necessary to adjust the threshold.

The paper is structured as follows. In Section II, some
application scenarios are presented. Section III outlines some
basic concepts of unreliable failure detectors. In Section IV, the
Self-healing Module is described and Section V presents the
Impact Failure Detector. Section VI presents some preliminary
evaluation results of experiments conducted with real traces
on PlanetLab [1]. Section VII discusses some existing related
studies. Finally, Section VIII concludes the paper and outlines
some of our research research work.

II. MOTIVATION SCENARIOS

The Impact FD can be applied to different distributed
scenarios and it is flexible enough to meet different needs. It is
quite suitable for environments where there is node redundancy
or nodes with different capabilities. The following examples
illustrate scenarios where the module can be used.

A system in the area of healthcare requires the use of
several sensors to measure different kinds of information about
the health status of a person, such as, vital signs, location,
falls, gait patterns, and acceleration. From this perspective,
this scenario is critical since faults in the components can
risk the patient’s life. For instance, let’s consider a scenario
with four sensors: q1 - body temperature; q2 - pulse; q3

- electrocardiogram(ECG); and q4 - galvanic skin as well
as node p, responsible for collecting information from these
sensors and taking appropriate action based on the output
of the Impact FD. In this example, some sensors are not
considered to be critical, such as the sensor q1 which measures
the temperature. On the other hand, q3, the ECG sensor, is
crucial. Therefore, the impact factor assigned to q3 should
be higher than q1’s. Furthermore, q3 collects data about both
the heartbeats and electrical activity of the heart while q2 is
a type of sensor that also collects data about the heartbeats.
Hence, there is redundancy of information, i.e., the failure of
q2 sensor is not critical enough to make the system vulnerable
and endanger the life of the monitored person. We could then
define a threshold equals to the sum of the impact factor of
all the sensors minus q2’s impact factor since, the failure of
q2 does not jeopardize the trustness of the system.

Another important scenario that motivates our proposal is
Ubiquitous Wireless Sensor Network (WSNs). These kinds
of networks are deployed to monitor physical conditions in
various places such as geographical regions, agriculture lands,
battlefields, etc. In WSNs, there are a variety of sensor nodes
with different battery resources and communication or com-
putation capabilities [10]. However, these sensors are prone to
failures (e.g., battery failure, process failure, transceiver failure,

etc.) [11]. Hence, it is necessary to provide failure detection
and adaptation strategies in order to ensure as much as possible
that the failure of sensor nodes does not affect the overall task
of the network. Redundant use of sensor nodes, reorganization
of sensor network, and overlapped sensing regions are some
of the techniques used to increase the fault tolerance and
reliability of the network [12].

Let us take as an example a ubiquitous WSN which collects
environmental data within a vineyard, which is grouped into
management zones according to different characteristics (e.g.,
soil properties). Each zone is composed of sensors of different
types (e.g., humidity control sensors, temperature control sen-
sors, etc.) and the density of sensors in each zone depends on
the characteristics of the latter. That is, the number of sensors
can be different for each type of sensor within a given zone.
Furthermore, sensors’ redundancy ensures both area coverage
and connectivity in case of failure. We can thus consider
each management zone as a single set whose sensors of the
same type are grouped into subsets. Such grouping approach
enables the definition of a threshold which is equal to the
minimum number of sensors that each subset must have in
order to keep connectivity and the application functioning all
time. Moreover, in some situation, there might be a need to
dynamically reconfigure the density of the zones. In this case,
the threshold value would change.

III. UNRELIABLE FAILURE DETECTORS

In the following of this article, we consider that there is one
process by node (site) or sensor. Therefore, the word process
can mean a node, sensor or site.

A correct process is a process that never fails during the
whole execution; otherwise it is faulty.

In synchronous distributed systems, message transmission
delays and process speed are bounded and known, such that
a simple timeout mechanism can be used to surely assert if a
node has failed or not. On the other hand, in asynchronous
distributed systems there are not bounds on process speed
neither message delay. Therefore, no mechanism can ensure
the failure of a remote process since it is impossible to know
whether the latter has actually crashed or whether its message
transmissions are delayed for some reason [13].

An important abstraction for the development of fault
tolerant distributed systems is the unreliable failure detector
[14]. It aims to encapsulate the uncertainty of the communi-
cation delay between two distributed entities and is usually
implemented using wait time bound (timeouts).

An unreliable FD can be seen as an oracle that gives
information, not always correct, about processes failures and it
is based on the state notion of processes (trusted or suspected).
It thus usually provides a list of processes suspected of having
crash. According to [15], an unreliable FD module can make
mistakes (1) by erroneously suspecting some correct process
(false suspicion), or (2) by not suspecting a process that has
actually crashed. If later the FD detects its mistake, it corrects
the mistake. For instance, an FD can stop suspecting at time t
+ 1 some process that it suspected at time t. Unreliable failure
detectors are characterized by two properties, completeness
and accuracy, as defined in [14]. The completeness is re-
lated to the FD capability of suspecting every faulty process



permanently, while accuracy concerns the capability of not
suspecting correct processes. FD are then classified according
to two completeness proprieties and four accuracy properties
[14]:

• Strong (resp. weak) completeness: Eventually every
process that crashes is permanently suspected by every
(resp. some) correct process.

• Strong (resp. weak) accuracy: No (resp. some) process
is suspected before it crashes.

• Eventual strong (resp. weak) accuracy: There is a time
after which correct processes (resp. some correct pro-
cess) are (is) never suspected by any correct process.

Notice that the type of accuracy depends on the synchro-
nism or stability of the network. For instance, a strong accuracy
requires a synchronous system while a eventual strong one
relies on a partially synchronous system which eventually
ensures a bound for message transmission delays and processes
speed.

The combination of the above properties yields eight
classes of failure detectors as shown in Table I.

TABLE I. FAILURE DETECTORS CLASSIFICATION

Accuracy
Completeness

Strong Weak Eventual strong Eventual weak

Strong P S ♦P ♦S

Weak Q W ♦Q ♦W

A. Implementation of Failure Detectors

The literature contains several proposals for implemen-
tation of unreliable failure detectors which usually exploit
timers to detect faults. Basically, there are two main strategies:
heartbeat and ping.

In the heartbeat strategy, the most current one, every
process q periodically sends an “I am alive” message to the
processes p in charge of monitoring q’s liveness. If p does not
receive such a message from q after the expiration of a timer,
it adds q to its list of suspected processes. If p later receives
an “I am alive” message from q, p then removes q from its
list of suspected processes [13]. On the other hand, in the ping
strategy, p monitors a process q by sending “Are you alive?”
messages to q periodically. Upon reception of such messages,
q replies with an “I am alive” message. If the timeout of p
related to q expires, p adds q to its list of suspected processes.
If later, p receives an “I am alive” message from q, p removes
q from its list of suspected processes [13].

B. Estimation of heartbeat arrivals

Aiming at reducing both the number of false suspicions
and the time to detect a failure, Chen et al. [7] propose an
approach to estimate the arrival of the next heartbeat which
is based on the history of heartbeats arrival time and a safety
margin (α). The timer is then set according to this estimation.

The estimation algorithm is the following: process p takes
into account the n most recent heartbeat messages received
from q, denoted by m1, m2, . . . , mn; A1, A2, . . . , An are

Fig. 1. Self-healing Module

their actual receipt times according to p’s local clock. When
at least n messages have been received, the theoretical arrival
time EA(k+1) for a heartbeat from q is estimated by:

EA(k+1) =
1

n

k∑
i=k−n

(Ai −∆i ∗ i) + (k + 1)∆i

where ∆i is the interval between the sending of two q’s
heartbeats. The next timeout value which will be set in p’s
timer and will expire at the next freshness point τ(k+1), is
then composed by EA(k+1) and the constant safety margin α:

τ(k+1) = α+ EA(k+1)

Bertier et al. [8] have extended Chens approach by propos-
ing an estimation function which combines Chens with Jacob-
sons [16] estimation. However, their approach is more suitable
for LAN environments.

IV. SELF-HEALING MODULE

Figure 1 presents the Self-Healing Module which can
be incorporated in a ubiquitous system, regardless of the
architecture of the latter. It has two components: the Failure
Detector and the Adaptation Manager. The former consists of
an adaptive failure detector which is responsible for detecting
crash failures of the different entities (nodes, sensors, etc.) that
need to be monitored in the system. The Adaptation Manager
makes decisions in order to adopt suitable adaptation strategies,
aiming at reducing the impact of the detected failure.

A. Failure Detector

In order to fulfill the requirements of ubiquitous environ-
ments, a failure detector should present the following features:

• Strong Completeness: the FD oracle of a correct
process should eventually detect all failures.

• Grouping: The user of the FD, in our case the Adap-
tation Manager, is interested in knowing if the system
is trusted or not. Therefore, the FD output should
express the confidence about the system as a whole
(set of nodes) and not about each node individually.
Moreover, it must provide the possibility of organizing
nodes with some common characteristics in groups,
i.e., subsets (see section II).



• Flexibility: nodes can be of different relevance or
have different roles in the system. Consequently, their
respective failures may have different impact on the
proper functioning of the system. The FD must take
into account such an heterogeneity. Furthermore, some
systems tolerate a margin of failures (e.g. systems with
redundant nodes) which the FD should also consider.

• Adaptability: The FD should be configurable in order
to cope with different system confidence requirements,
i.e., the fault margin may vary depending on the en-
vironment, situation, or context, that can dynamically
change.

B. Adaptation Manager

According to the FD output, the Adaptation Manager can
decide about the most suitable adaptation. Nevertheless, it
is noteworthy that the application should have implemented
the action of adaptation as well as the interaction with the
Self-healing Module which triggers its execution. In other
words, there exists an interaction protocol between the self-
healing module and the application. Whenever requested, the
Failure Detector informs if the system is trusted or not. If
it is not the case, the Adaptation Manager takes a decision
about the need of an adaptation. If the latter is necessary, it
chooses a reconfiguration strategy and communicates it to the
application which will activate it. We highlight once again that
the Adaptation Manager is not the focus of this paper.

V. IMPACT FAILURE DETECTOR

We consider a distributed system that consists of a finite
set of processes Π = {q1, . . . , qn} with |Π| = n. Failures
are only by crash. Other types of failures (e.g. misbehavior,
transient, etc) is the object of a near future work. We assume
the existence of some global time denoted T. A failure pattern
is a function F: T→ 2Π, where F(t) is the set of processes that
have failed before or at time t. The function correct(F) denotes
the set of correct processes, i.e., those that never belong to
failure pattern (F), while faulty(F) denotes the set of faulty
processes, i.e., the complement of correct(F) with respect to
Π.

The Impact FD can be defined as an unreliable failure
detector that provides an output related to the trust level with
regard to a set of processes. If the trust level, provided by
detector, is equal or greater than a given threshold value,
defined by the user, the confidence in the set of processes
is ensured. We thus say that the system is trusted. We denote
Ip

S the Impact failure detector module of process p.

Let S ⊂ Π be a set of processes. Each process q ∈ S has
an impact factor ( Iq|Iq > 0 : Iq ∈ N ). Moreover, the set S
can be partitioned into m disjoint subsets {S1, . . . , Sm}.

Notice that the grouping feature of the Impact FD allows
S to be partitioned into disjoint subsets, according to some
criterion. For instance, in a scenario where there are different
types of sensors, those of the same type can be gathered in
the same subset, as in the example of the ubiquitous WSN of
Section II.

An acceptable margin of failures, denoted thresholdS ,
which characterizes the acceptable degree of failure flexibility

in relation to set S, is also defined. The thresholdS is related
to the minimum trust level required for each subset, i.e., it is
defined as a set which contains the respective threshold of each
subset of S: thresholdS = {threshold1, . . . , thresholdm}.

The Impact FD needs as input the set of subsets of S and
the impact factor of processes that compose S as well as the
respective threshold value of each subset of S. Moreover, each
process knows its own impact factor as well as the subset to
which it belongs and include such information in the messages
it sends to the other processes of S.

Figure 2 shows several examples of sets and its respective
threshold. In the first example (a) there is just one subset with
three processes. Each process has impact factor equal to 1 and
the threshold establishes that the sum of impact factor of non
faulty processes must be at least equals to 2, i.e., the system
is considered trusted whenever there are two or more correct
processes. The example (b) shows a configuration where the
processes must be monitored individually. Each process is in
a subset and the threshold defines that if any of the processes
fails, the system is not trusted anymore. In the next example
(c), S has two sets with three processes each. The threshold
requires at least two correct processes in each subset. The
last example (d) has a single subset with five processes with
different impact factor and the threshold delimits that the set
is trusted when the sum of impact factor of correct processes
is at least equals to seven.

When invoked in p, the Impact FD (IpS) returns the
trust levelp

S and statuspS (trusted/not trusted) values. The
trust levelp

S is a set that contains the trust level of each
subset, i.e., it expresses the confidence that p has in the set
S. The statuspS informs whether the system is trusted or not
trusted according to the analysis of the threshold.

Let FD (IpS) be the failure detector module of process
p. trustedpS(t) = {trusted1, . . . , trustedm}, where each
trustedi (1 ≤ i ≤ m) contains the processes of Si not
considered faulty by p at time t ∈ T .

The trust level at t ∈ T of processes p /∈ F (t) of S
is the function trust levelp

S such that trust levelpS(t) =
{trust leveli|trust leveli = sum(trustedi); 1 ≤ i ≤ m}.
The function sum(set) returns the sum of impact factor of all
elements of set.

The statuspS is generated at t based on the comparison
of the thresholdS with trust levelpS(t). If, for each subset
of S, the trust leveli(t) ≥ thresholdi, S is considered to be
trusted at t by p, i.e., the confidence of p in S has not been
compromised; otherwise S is considered not trusted by p at t.

Figure 3 shows an example with three subsets. The values
of the set thresholdS define that the subsets S1 and S2 must
have one correct process at least and the subset S3 must have 2.
Several situations are shown and the set S is considered trusted
when, for each subset Si, trust leveli(t) ≥ thresholdi.

We should point out that both the impact factor and the
thresholdS render the estimation of the confidence of S flexi-
ble. For instance, it might happen that some processes in S are
faulty or suspected of being faulty but S is still considered to be
trusted. Furthermore, the thresholdS increases the tolerance



Fig. 2. Examples of sets and threshold

Fig. 3. Example of FD output related to S with three subsets

S to false suspicions, reducing thus, wrong decisions of the
Adaptation Manager.

It is also worth noting that the Impact FD is easily
configurable according to the needs of the environment. The
thresholdS can be tuned in order to provide a more restrict
or softer monitoring. Such an adaptability, as mentioned in the
previous section, is essential in dynamic environments such as
ubiquitous ones. Notice that the Impact FD can also be applied
when the application needs information about each process of
S individually. In this case, each process should be defined as
a subset (see example (b) of Figure 2).

VI. PERFORMANCE EVALUATION

In this section, we firstly describe the environment in which
the experiments were conducted and the QoS metrics which
were used. Then, we present some evaluation results with
different configurations of node sets with regard to both the
impact factor and the threshold as well as comparison with the
Chen FD [7], whose output is a list of suspect processes.

A. Environment

We used realistic traces files collected from ten nodes of
PlanetLab [1], as summarized in Table II. The experiment
started on July 16, 2014 at 15:06 UTC, and finished one full
week later. Each site sent heartbeat messages to other sites at a
rate of one heartbeat every 100 ms (the sending interval). Table
III shows information about the heartbeat messages received
by site number 1 (the monitor node). We observe that the
mean inter-arrival times of received heartbeats is very close to
100 ms. However, in some sites, the standard deviation is very
high, like in site 5 which the standard deviation is 310.958 ms

TABLE II. SITES OF EXPERIMENTS

ID Site Local

0 ple4.ipv6.lip6.fr France
1 planetlab1.jhu.edu USA East Coast
2 planetlab2.csuohio.edu USA, Ohio
3 75-130-96-12.static.oxfr.ma.charter.com USA, Massachusetts
4 planetlab1.cnis.nyit.edu USA, New York
5 saturn.planetlab.carleton.ca Canada, Ontario
6 PlanetLab-03.cs.princeton.edu USA, New Jersey
7 prata.mimuw.edu.pl Poland
8 planetlab3.upc.es Spain
9 pl1.eng.monash.edu.au Australia

TABLE III. SITES AND HEARTBEAT SAMPLING

Site Messages Mean (ms) Min (ms) Max (ms) Stand. Dev.(ms)

0 5424326 100.058 0.025 26494.168 19.525
2 1759989 100.415 0.031 509.093 9.275
3 5426843 100.012 0.027 1227.349 1.709
4 5414122 100.247 0.003 1193.276 18.595
5 5413542 100.258 0.006 657900.226 310.958
6 5426700 100.015 0.003 3787.643 2.557
7 5424117 100.062 0.006 59603.188 31.229
8 5424560 100.054 0.027 11443.359 100.714
9 5422043 100.100 0.004 30600.076 18.798

with a minimum of 0.006 ms, and a maximum of 657900.226
ms. Such values inform that, for a certain time interval during
execution, the site stopped sending heartbeats and started again
afterwards. Note also that site 2 stopped sending messages after
approximately 48 hours and, therefore, there are just 1759990
received messages. Finally, we observe that sites 3 and 6 (resp.
5 and 8) are the most stable (resp. unstable) sites.

We should point out that, despite the “large-scale” system
and the high latency among the nodes, these traces of Pla-
netLab contain a large amount of data concerning the sending
and reception of heartbeats, including unstable periods of links
and message loss that induce false suspicions. Therefore, such
traces can characterize any distributed system that uses FDs
based on heartbeats, including self-healing ones. Furthermore,
since the sending and arrival times of each heartbeat are
recorded in the trace files using the experimental, all expe-
riments were conducted with exactly the same scenarios and
history of heartbeats.

B. QoS Metrics

In order to evaluate the Impact FD, we use three of the QoS
metrics proposed by [7]: detection time, average mistake rate,
and query accuracy probability. Considering two processes q
and p where p monitors q, the QoS of the FD at p can be
determined from the transitions between the ”trusted” and ”not
trusted” states with respect to q.

• Detection Time (TD): it is the time that elapses from
the moment that process q crashes until the FD at p
starts suspecting q permanently.

• Average Mistake Rate (λR): represents the number of
mistakes that FD makes in a unit time, i.e., the rate at
each a FD makes mistakes.

• Query Accuracy Probability (PA): it is the probability
that the FD output is correct at a random time.



TABLE IV. SET CONFIGURATIONS

Config Impact Factor of each site

Set 0 I0=2; I2=1; I3=6; I4=6; I5=1; I6=6; I7=1; I8=2; I9=2;

Set 1 I0=1; I2=2; I3=6; I4=6; I5=2; I6=6; I7=2; I8=1; I9=1;

Set 2 I0=6; I2=2; I3=1; I4=1; I5=2; I6=1; I7=2; I8=6; I9=6;

Set 3 I0=2; I2=6; I3=1; I4=1; I5=2; I6=1; I7=2; I8=6; I9=6;

Set 4 I0=2; I2=1; I3=6; I4=6; I5=1; I6=6; I7=2; I8=2; I9=1;

Set 5 I0=3; I2=3; I3=3; I4=3; I5=3; I6=3; I7=3; I8=3; I9=3;

For the estimation of the arrival time of the next heartbeat
we have applied Chen’s approach [7], described in section III.
The authors suggest that the safety margin α should range
from 0 to 2500 ms. We set the window size for all experiments
to 100 samples, which means that the FD relies only on the
last 100 heartbeat message samples in order to compute the
estimation of the next heartbeat arrival time.

C. Set Configuration

We defined a set composed of sites 0, 2, 3, 4, 5, 6, 7, 8
and 9 (S= {{0, 2, 3, 4, 5, 6, 7, 8, 9}}). Site 1 was the monitor
node (p). Table IV shows the five configurations with regard
to impact factor values that we have considered for S in the
experiments. For all configurations, the sum of impact factor
of processes is 27.

D. Experiments

1) Experiment 1 - Query Accuracy Probability: The aim of
this experiment is to evaluate the Query Accuracy Probability
(PA) with different threshold values (18, 20, 21, 22, 23, 24,
and 25) and different impact factor configurations (Table IV).
We considered the fault margin α = 400 ms.

Figure 4 shows that the PA decreases when the threshold
increases. It is important to remember that the threshold is a
limit value defined by the user and if the FD trust level output
value is equal or greater than the threshold, the confidence
in the set of processes is ensured. Hence, the results confirm
that when the threshold is more flexible, the Query Accuracy
Probability is greater.

On the one hand, “Set 0” configuration has the highest PA

for all thresholds due to the assignment of high (resp. low)
impact factors for the most stable (resp. unstable) sites. On
the other hand, “Set 2” and “Set 3” have the lowest PA since
unstable sites have high impact factor values in these sets. For
instance, for site 8, the mean of inter-arrival times of received
heartbeats is 100.05 ms, but the standard deviation is 100,71
ms. The impact factor assignment has thus an impact on the
PA performance.

“Set 5” presents an abrupt decrease when the threshold =
25. Such a behavior can be explained since, in this set config-
uration, all sites have the same impact factor (3). Therefore,
every false suspicion leads the trust level to be smaller than
then threshold (25) which increases the mistake duration and,
consequently, the PA decreases.

Notice that site 2 failed after approximately 48 hours. Thus,
after its crash, the FD output, which indicates status = not
trusted is not a mistake, i.e., it is not a false suspicion. Hence,
in “Set 3”, whose impact factor of site 2 is 6 (high), the PA is

Fig. 4. PA vs. threshold with different set configurations

constant for threshold greater or equal to 22: after the crash of
site 2, the FD output state is always “not trusted” and false
suspicions related to other sites do not modify it. The average
mistake duration of the experiment is thus smaller after the
crash, which improves PA.

In order to further compare the PA of Impact FD with
an approach that monitors the processes individually, we
monitored each site using the same Chen algorithm and
parameters (WS=100; α=400 ms). The mean PA obtained
was 0,979788. Such a result shows that, independently of the
set configuration, Impact FD presents higher PA than Chen
FD since the former has flexibility to tolerate failures, i.e.,
the mistake duration only starts to be computed when the
Impact FD output state informs that the system is “not trusted”,
contrarily to individual monitoring, as Chen FD, where every
false suspicion increases mistake duration.

The results of this experiment highlight that the assignment
of heterogeneous impact factors to nodes can degrade the
performance of the failure detector, specially when unstable
sites have high impact factor.

2) Experiment 2 - Detection time: In the second experi-
ment, we have evaluated the average Query Accuracy Probabi-
lity (PA) average regarding the average detection time (TD). To
this end, we varied the safety margin (Chen’s estimation) to get
different values of detection time. It was varied with intervals
of 100 ms, starting at 100 ms. In this experiment we used
the set configuration “Set 0” and defined different thresholds.
We have chosen such a set because it presented the best PA

for all thresholds in Experiment 1. We have also evaluated the
PA and TD for the Chen’s algorithm, which outputs the set of
suspected nodes.

Figure 5 shows that for high threshold and detection
time close to 200 ms, the PA of the Impact FD is smaller,
independently of the threshold, because the safety margin (used
to compute the expected arrival times) is, in this case, equals to
100 ms, which increases both the number of failure suspicion
and mistake duration. However, when TD is greater than 230
ms, the PA of Impact FD is considerably higher than Chen.
After the detection time of approximately 400 ms, the PA

of Impact FD becomes constant regardless of the detection
time and threshold, getting close to 1. Such a behavior can



Fig. 5. PA vs. TD with different thresholds

Fig. 6. λR vs. TD with different thresholds

be explained since the higher the safety margin, the smaller
the number of false suspicions, and the shorter the mistake
duration which confirms that when the timeout is short, failures
are detected faster but the probability of having false detections
increases [17].

3) Experiment 3 - Average mistake rate: In this experiment,
we have evaluated the average detection time vs. the mistake
rate (mistakes per second). We consider “Set 0” configuration
and the mistake rate is expressed on a logarithmic scale. We
can observe in Figure 6 that the mistake rate of the Impact
FD is higher when the detection time is low (smaller than 400
ms) and the threshold is high (from 23 to 25). Such a result is
in accordance with Experiment 2: whenever the safety margin
is small and threshold tolerates fewer failures, the Impact FD
makes mistakes more frequently. In other words, the mistake
rate decreases when threshold is more flexible or the time
detection increases.

VII. RELATED WORK

Related studies can be divided into two groups: (1) ubi-
quitous systems with failure handling and (2) failure detectors
respectively.

In the first group, we find middlewares like Gaia, SAFTM,
or MARKS. Gaia provides fault tolerance based on fail-stop
model. Only devices (e.g., laptops, portable devices, etc.) can
host applications [18]. Whenever it detects a lack of heartbeat
messages, it infers a contextually appropriate surrogate device

where the application can be restarted (rollback). The fault
tolerant self-adaptive SAFTM middleware [19] detects failures
by continuously monitoring of the state of the components (e.g.
CPU, memory, OS, I/O, network operations, etc.) and dynami-
cally building the self-adaptive mechanism in accordance with
the various types of failures. The MARKS (ad-hoc) middle-
ware has an unit called ETS (efficient, transparent, and secure)
which is self-healing [20]. By predicting failures, it conducts
an analysis of the changing rate of the status of each device
(e.g. memory, energy, communication signal, etc.). With regard
to fault containment, it isolates the faulty device and assigns
the service to a provider of alternative resources. Bourdenas
et al. [3] proposed the Starfish, a self-healing framework for
pervasive systems, that follows the Self-Managed Cell (SMC)
architectural paradigm. Starfish was an instantiation of an SMC
for wireless sensor networks. It supports adaptation on nodes
thereby allowing deployment of new strategies at run-time.
However, it only provides recovering from sensor failures and
does not consider other type of failures of pervasive computing.

We observe in the above works that there exist some
limitations with regard to adaptation: in presence of failures,
most of them use a fixed criterion for adaptation. Moreover,
they do not provide a failure detector tailored for the features
of ubiquitous environment, such as grouping, flexibility, or
adaptability, like proposed in the current work.

In the second group, there are some important studies
addressed to failure detectors. The φ Accrual failure detector
[9] proposes an approach where the output is a suspicion level
on a continuous scale, instead of providing information of a
binary nature (trust or suspect). It is based on an estimation
of inter-arrival times assuming that inter-arrivals follow a
normal distribution. The suspicion level captures the degree
of confidence with which a given process is believed to have
crashed. If the process actually crashes, the value is guaranteed
to accrue over time and tends toward infinity. In [17], the
authors extended the Accrual FD by exploiting histogram
density estimation. Taking into account a sampled inter-arrival
times and the time of the last received heartbeat, the algorithm
estimates the probability that no further heartbeat messages
arrive from a given process, i.e., the latter has failed. Accrual
failure detectors aim to decouple monitoring and interpretation.
FD of class Σ (Sigma or quorum) output, for any failure
pattern, any time τ , and any process pi, a set of processes
that are said to be trusted by pi at time τ , such that the two
following properties are satisfied: (1) the two sets of trusted
processes intersect; (2) Eventually every trusted process is
correct [21]. The FD of class Ω outputs the id of a process at
each process and there is a time after which it outputs the id
of the same correct process at all correct processes [22].

With respect to the above works, none of them deal with
subsets nor processes’ relevance and are not easily configurable
to the needs of the system. Furthermore, among them, only
Accrual and Adaptive Accrual have the output as a suspicion
level. However, they do not analyze the output but just replays
it to the application, contrarily to the Impact FD that compares
the trust level output with the threshold defined by the user.

VIII. CONCLUSION AND FUTURE WORK

Tailored for a self-healing module for ubiquitous com-
puting, we have presented a new unreliable failure detector,



the Impact FD, which provides an output related to a set of
processes and not just to each one individually. Both its impact
factor and the threshold offer a degree of flexibility since
they enable the user to tune the Impact FD in accordance
with the specific needs and acceptable margin of failures
of the application. As a result, the communication between
the Impact FD and Adaptation Manager is reduced. In some
scenarios and configurations, they also might weaken the rate
of false responses when compared to traditional unreliable
failure detectors. Performance evaluation results show that
the assignment of high (resp. low) impact factor to more
stable (resp. unstable) nodes increases the Query Accuracy
Probability of the failure detector.

As a future work, we intend to extend the Impact FD in
order to address misbehavior failures. Another direction of our
research is the dynamic adaption of nodes’ impact factor values
according to their respective stability. A third aim is to conduct
other experiments on different networks such as WiFi or LAN
in order to compare the Impact FD with other well-known
failure detectors. Finally, we look forward to evaluating the
self-healing module in ubiquitous scenarios.
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