Experience and Prospects for Various Control Strategies
for Self-Replicating Multi-Agent Systems

J.-P. Briot!? S. Aknine! C. Lucena?
Z. Guessoum'! A.L. Almeida’ J. Malenfant
N. Faci® O. Marin?
Jean-Pierre.Briot@lip6.fr et al. M. Gatti? P. Sens!

L LIP6, Paris, France

ABSTRACT

Distributed cooperative applications (e.g., e-commerce) are
now increasingly being designed as a set of autonomous en-
tities, named agents, which interact and coordinate (thus
named a multi-agent system). Such applications are often
very dynamic: new agents can join or leave, they can change
roles, strategies, etc. This high dynamicity creates new chal-
lenges to the traditional approaches of fault-tolerance. As
relative importance of agents may evolve during the course
of computation and problem solving, we need to dynami-
cally and automatically identify the most critical agents and
to adapt their replication strategies (e.g., active or passive,
number of replicas), in order to maximize their reliability
and their availability. One important issue is then: what
kind of information could be used to estimate which agents
are most critical agents? In this paper, we will first introduce
our prototype architecture for adaptive replication. Then,
we will discuss various kinds of information and strategies to
estimate criticality of agents: static dependences, dynamic
dependences, roles, norms, and plans. Some preliminary
measurements and future directions will also be presented.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]|: Reliability, Test-
ing, and Fault-Tolerance

General Terms
Reliability

Keywords

Agent, multi-agent system, dependability, fault-tolerance,
control, adaptive, replication, criticality, estimation, strat-
egy, dependence, role, norm, plan.

2 LES, PUC-RIo, Brazil

3 CReSTIC, Reims, France

1. INTRODUCTION

The possibility of partial failures is a fundamental charac-
teristic of distributed applications. The fault-tolerance re-
search community has developed solutions (algorithms and
architectures), notably based on the concept of replication,
which have been applied e.g. to data bases. As implied
by [11], software replication in distributed environments has
significant advantages over other fault-tolerance solutions.
First and foremost, it provides the groundwork for the short-
est recovery delays. Also, generally it is less intrusive with
respect to execution time. Finally, it scales much better.

But these techniques are in general applied explicitly and
statically, at design time. Thus, it is the responsibility of the
designer of the application to identify explicitly which crit-
ical components should be made robust and also to decide
what strategies (e.g., active or passive replication) and their
configurations (how many replicas, their placement, etc.).

Meanwhile, new cooperative applications, e.g., e-commerce,
air traffic control, crisis management systems, ambient intel-
ligence, increasingly designed as multi-agent systems (MAS),
are much more dynamic. In such applications, the roles and
relative importance of the agents can greatly vary during
the course of computation, of interaction and of cooperation,
because the agents may change roles, plans and strategies.
Also, new agents may join or leave the application (as an
open system). It is thus very difficult, or even impossible,
to identify in advance the most critical software components
of the application.

Such new challenges reach the limits of traditional static
approaches of replication, and motivate the study of adap-
tive replication mechanisms. One key issue is then the iden-
tification of the most critical components (agents) of the
application at a certain time. Therefore, we consider using
various levels of information: system level, e.g., communica-
tion load, and application/agent level, e.g., roles or plans, to
estimate criticality. This paper will report on our past and
current experiments using various types of informations, no-
tably references, communications, roles, plans, and norms.

2. CONTEXT OF THIS WORK

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are . .
not made or distributed for profit or commercial advantage and that copies 2.1~ Model of Failure Considered

bear this notice and the full citation on the first page. To copy otherwise, to Any software/hardware component may be subject to faults

republish, to post on servers or to redistribute to lists, requires prior specific resulting in output errors, which can lead to a deviation of
rmission and/or a fee. . : . . ; o

permission and/or a fee its specified behaviour, i.e. a failure. In distributed sys-

SEAMS’06May 21-22, 2006, Shanghai, China. 3 . .
Copyright 2006 ACM 1-59593-085-X/06/0005$5.00. tems, and even more so in scalable environments, failures

37

are unavoidable. A subdomain of reliability, fault-tolerance
aims at allowing a system to survive in spite of faults, i.e.
after a fault has occurred, by means of redundancy in either
hardware or software architectures.

In this work, we consider crash type of failures, that is
when a component stops producing output. It is the sim-
plest type of failure to contend with. However, in various
cases our solution allows to deal with other types of failures
(omission, timing, byzantine). They are currently being in-
vestigated, but will not be considered in this paper.

2.2 Types of Technigues Considered

Replication is an effective way to achieve fault-tolerance
for crash types of failures. A replicated software component
has representations (replicas) on two or more hosts [11]. The
two main types of replication protocols are:

e active replication, in which all replicas process concur-
rently all input messages,

e passive replication, in which only one of the replicas
processes all input messages and periodically trans-
mits its current state to the other replicas in order to
maintain consistency.

Active replication strategies provide fast recovery but lead
to a high overhead. Passive replication minimizes processor
use by activating redundant replicas only in case of failures.
Then a new replica is elected among the set of passive ones
and the execution is restarted from the last saved state.
This technique requires less CPU resources than the active
strategy but it needs an expensive checkpoint management.

2.3 Limitations of Current Replication
Techniques and Toolkits

Many toolkits (e.g., [10]) include replication facilities to
build reliable applications. However, most of them are not
quite suitable for implementing large-scale, adaptive repli-
cation mechanisms. For example, although in some toolkits
the replication strategy can be modified in the course of the
computation, no indication is given as to which new strat-
egy ought to be applied. Moreover, such a change must have
been devised by the application developer before runtime.

3. PRINCIPLES OF OUR APPROACH FOR
DYNAMIC REPLICATION

To overcome the limitations of standard way of replica-
tion where decision is fixed by the configuration at design
time, we propose an approach with automatic and dynamic
control of replication.

At first, we need a replication architecture which allows
dynamic replication and dynamic adaptation of the repli-
cation policy (e.g., passive to active, changing the number
of replicas). As discussed in Section 2.3, current replica-
tion toolkits rarely support such dynamicity. Therefore, we
designed a novel replication framework, named DarX, with
such dynamic features.

3.1 DarX: A Framework for Dynamic
Replication
DarX is a framework for designing reliable distributed ap-
plications based on adaptive replication. Each agent can

38

be replicated an unlimited number of times, with differ-
ent replication strategies (main ones are: passive and ac-
tive). A novel feature is the reification of the replication
strategy, so that it may be dynamically changed. DarX in-
cludes group membership management to dynamically add
or remove replicas. It also provides atomic and ordered
multi-cast for the replication groups’ internal communica-
tion. Messages between agents, that is communication ex-
ternal to the group, are also logged by each replica, and
sequences of messages can be re-emitted for recovery pur-
poses. DarX also includes an original failure detection ser-
vice, based on a hierarchy of adaptive failure detectors [2].
DarX was designed to easily integrate various agent archi-
tectures, and the mechanisms that ensure dependability are
kept as transparent as possible to the application. See e.g.,
[22, 21] for further details on DarX.

3.2 Need for Automatic and Adaptive Control

Provided the architecture for dynamic replication, we need
a control mechanism for deciding which agent should be
replicated and with what strategy (active or passive, how
many replicas, where to create the replicas, etc.).1 For dy-
namic applications,? a manual control is not realistic, as
the application designer cannot monitor the evolution of
a distributed cooperative application of a significant scale.
Therefore, the control mechanism should be automatic, al-
though it may use some information as provided by the de-
signer of the application.

3.3 A Simple Scenario

As a simple example of scenario, let us consider a dis-
tributed multi-agent system that helps at scheduling meet-
ings. Each user owns a personal assistant agent which man-
ages his calendar. This agent interacts with: the user to
receive his meeting requests and the associated information
(a title, a description, possible dates, participants, priority,
etc.) ; the other agents of the system to schedule meetings,
based on preferences of its human owner.

If the assistant agent of one important participant (ini-
tiator or prime participant) in a meeting fails (e.g., his ma-
chine or PDA crashes), this may disorganize the whole meet-
ing planification. As the application is very dynamic - new
meeting negotiations start and complete dynamically and
simultaneously - decision for replication should be done au-
tomatically and dynamically.

3.4 Notion of Criticality

The control mechanism will estimate the most critical
agents of the application and this information will be regu-
larly updated. Here we may informally define the criticality
of an agent as follows: the criticality of an agent, relative
to an organization of agents it belongs to, is the measure of
the potential impact of the failure of that individual agent
on the failure of the organization. In the following, we con-
sider criticality of an agent as a numerical value within the

'Here, we only discuss the decision about which agents to
replicate and with how many replicas. Other issues are ad-
dressed elsewhere, e.g., where to create the replicas in [14].
2For multi-agent applications which are very static (fixed
organization, fixed behaviors, etc., and with a small number
of agents), the most critical agents may be identified by the
application designer at design time. Thus, replication may
be decided at configuration time, as for traditional replica-
tion techniques.

interval [0 1]. Various strategies to estimate the criticality
of an agent are discussed in Section 4.

3.5 Replication Control

Once we have a strategy for computing (estimating) the
criticality of each agent, we may compute the number of
replicas nb; of an agent as follows:

nb; = rounded(rm + w; * Rm /W)
e w;: the criticality of the agent,
e WW: the sum of the domain agents’ criticalities,
e rm: the minimum number of replicas,

e Rm: the available resources, i.e., the maximum num-
ber of replicas.

The numbers of replicas is then used by DarX to control
and update replication for each agent.

4. ESTIMATING THE CRITICALITY

In order to estimate the criticality of an agent, the issues
are: What kind of information will be pertinent ? And how
can we obtain it ? (explicitly stated by the application de-
signer, inferred by external observation, e.g., amount of mes-
sages exchanged, or by internal observation, e.g., plans of an
agent, etc.). We describe below various strategies: some are
completely general and use basic information (references,
messages), some make some assumption of higher-level ab-
stractions (performatives, roles, plans, norms) which may or
not be supported by a given multi-agent architecture.

4.1 Static Dependences

The first strategy that we studied is based on the concept
of dependence (between agents). Intuitively, the more an
agent has other agents depending on it, the more it is critical
in the organization. Interdependence graphs [6] were intro-
duced as a way to specify interdependences between agents.
But as we want control to be as much automatic as possi-
ble, we would like to estimate and infer such dependences.
A first estimation of dependences may be done statically by
using message sending instructions from the code of agents.

Starting from the code of the whole multi-agent system,
we automatically extract message sending instructions. In
current implementation, we made the assumption that the

behavior of an agent is structured through <condition,action>

transition rules.®> Thus, the code extractor can use the
causality information about condition (message reception)
and action (message sending).

Then, an algorithm automatically computes the graph of
communication dependences. An example of resulting com-
munication dependences graph is shown at the left side of
Figure 1, where each node is a communication expression
(r — y means: agent x sends a message to agent y).

The complexity of that first algorithm is O(N?), where
N is the aggregated number of transitions, p the maximum
number of transitions matching a specific message sending.

3Such as used in the DIMA multi-agent architecture [12].
Meanwhile, this technique is actually more general and the
extraction algorithm (code parser) could be adapted to other
kinds of structurations (agent architectures), as long as at
least message sending instructions are made accessible.

39

=9
7N 7N
amr D
: ViR Ziila
= o= ye o
=)
Communication Agent Replication level

Dependencies Graph Dependencies Graph ordered list

Figure 1: Static extraction of dependences

p is at most N — 1, but in practice with a lower bound, so
the algorithm is polynomial.

A second algorithm transforms the communication depen-
dences graph into an agent dependences graph, where each
node corresponds to an agent and a label representing how
many agents depend on it (can receive messages from it). It
is shown at the middle of Figure 1.

Last, from that second graph, we can extract, in a stan-
dard way, its connex parts, minimal covering trees, and fi-
nally an ordered list, as a guide for ordering criticality of
agents (shown at the right side of Figure 1). Further details
were described in [20].

4.2 Dynamic Dependences

A limitation of the first strategy is that it is static and
based on communication expressions, thus only capturing
potential communications. Also, complex multi-agent sys-
tems are characterized by emergent structures, which thus
cannot be always statically defined by the designer. Our
second strategy is then to explicitly represent dependences
between agents as a weighted graph, and to provide a mech-
anism to automatically update its respective weights accord-
ing to communications between respective agents.

Figure 2: Example of interdependence graph

We consider the interdependence graph as a labeled ori-
ented graph (see Figure 2), where each node represents a
domain agent and each labeled arc between two nodes rep-
resents a dependence between the associated agents. The
label of an arc (oriented) is a real number which reflects
the importance of the dependence (oriented) between the
associated agents. The interdependence graph is dynamic
as it can be modified when a new domain agent is added, or
disappears, or when interaction patterns evolve.

At design time, the interdependence graph is initialized by
the designer,* and at run time, it is automatically dynam-
ically adapted. Several parameters may be used to update
the interdependences between agents. Our primary updat-
ing strategy is using communication load (number of mes-
sages) as the parameter. The adaptation algorithm updates
the interdependence graph, based on local information (com-
munication load) and on global information, which is defined
as an aggregation of the local information of the various
agents and hosts.

The algorithm is very simple: only the number of mes-
sages is considered, independent of their contents, thus the
cost of monitoring is very low. We also proposed and exper-
imented with an extension of this algorithm, using perfor-
matives as additional input information (e.g., request has
a weight greater than cancel) [14]. Note that monitoring
of communication, is implemented by a general monitoring
distributed architecture, which can also be used by other
strategies (e.g., for monitoring roles [14]).

4.3 Roles

Another strategy that we studied is based on the concept
of role. A role, within an organization, represents a pattern
of services, activities and relations. As an example, in some
e-commerce organization, roles are: service provider, client,
broker, etc. A role will be fullfilled (played) by one or more
agents, and the same agent may simultaneously play several
roles in different organizations.

Roles are usually defined relatively to some organization,
but they may also be defined relatively to some protocol. An
example is the standard Contract Net Protocol [23] which
considers two roles: manager (which broadcasts the call for
proposal), and bidder (who proposes a bid). In fact, proto-
col roles can be considered as some specific case of organi-
zational role, where an organization is created dynamically
during the scope of the protocol activation.

For example, for the simple scenario introduced in Sec-
tion 3.3, we may use the contract net protocol (CNP) as
following (see Figure 3):

Call For Proposal (cfp)

refuse

Participant

not—understood

propose

accept

[reject

inform

failure

Figure 3: Contract net protocol
e A call for proposals message is sent to the participants

from the initiator following the FIPA CNP.

e The participants reply (propose or refuse) to the ini-
tiator with the proposed meeting times.

4Note that it can actually be automatically initialized by the
previous strategy, based on static analysis of dependences.

e The initiator sends accept or reject messages to par-
ticipants.

e The participants which agree to the proposed meeting
inform (confirm) the initiator.

The notion of role captures some information about rela-
tive importance of roles and their interdependences. Thus
we thought that a role is a pertinent concept for estimating
criticality. We ask the designer to grade the various roles
along their criticality (relative importance). In the scenario,
two roles are considered: Initiator and Participant. Their
respective weights could be set by the application designer
to e.g., respectively 0.7 and 0.4.

In order to monitor roles, we must consider if we can make
the assumption that agents signal explicitly when they play
a role (role-taking and then role-leaving) or if we cannot.

Signaling explicitly when an agent starts (and stops) play-
ing a role is usually the case for organizational roles, where
organizational actions are usually made public to the orga-
nization. For protocol roles, if agents use FIPA ACL and
specify explicitly the protocol used (within the messages),
that information can then also be used.

Meanwhile, as we want our role strategy to be general,
we also considered the case where agents do not necessar-
ily signal their roles. We only suppose that they communi-
cate with some agent communication language such as FIPA
ACL. We thus designed a role monitoring mechanism, de-
scribed in [13]. It uses a description language for specifying
protocols, stored in a library, and a recognition algorithm.

Last, the criticality of an agent is computed as the aggre-
gation of the weights set to the roles it is currently playing
[13].

4.4 Norms

A strategy under current investigation extends the previ-
ous strategy using roles, with two kinds of additional infor-
mations: time outs and norms. The underlying assumption
is that time outs and norms (permissions, obligations, pro-
hibitions) also capture some indication of criticality. We
start from a description language (with its associated con-
trol architecture), named XMLaw, for law-based governance
of multi-agent systems [5]. In XMLaw, we specify an inter-
action protocol (with its transitions), and a set of norms and
clocks (see [5] for details on XMLaw).

Let’s take a simple example of e-commerce, with a seller
and a customer, as shown in Figure 4. The customer re-
quests for products through a call for proposal (cfp mes-
sage, based on CNP, as in Section 4.3) sent to various sell-
ers. When a seller proposes a product (propose message),
a clock (time out) is activated in order to check that the
customer answers (accept or refuse the offer) within a spe-
cific time frame (which then deactivates the clock). If the
customer accepts the offer in time, then the seller sends the
bill to the customer (inform (bill) message). A norm -
to be more precise, an obligation - is then activated to en-
sure that the customer sends a proof of payment to the seller
(which deactivates the norm). The specification of the norm
in XMLaw, with its associated activation and deactivation
events, is shown below. It is a fragment of the whole XM-
Law specification of the example.

<Norms>
<Owner>Customer</Owner>
<0bligation id="obligation-customer-to-pay">
<Activations>

<Element ref="customer-receive-bill"
event-type="transition_activation"/>
</Activations>
<Deactivations>
<Element ref="customer-send-proof-payment"
event-type="transition_activation"/>
</Deactivations>
</0Obligation>
</Norms>

These specifications about role taking/leaving,® clock ac-
tivation/deactivation, and norm activation/deactivation, are
used as inputs to automatically adjust the criticality along
the various steps of the protocol, as shown in Figure 4.
These three contributions (role, clock, norm) to the change
of criticality are then aggregated to produce the estimation.

customer seller

cfp

refuse

propose

accept

refuse

> X

inform (bill)

+N

-N l inform (proof)

clock norm
activation activation
fdeactivation (deactivation

protocol

role
adoption
fabandon

: clock + : activation

N :norm = : deactivation

Figure 4: Evolution of criticality for customer role

The designer may also have a finer grain control explicit
of the weights associated to each activation or deactivation
event. Further details of that strategy may be found in [9].

45 Plans

That last strategy uses the plans of an agent, i.e., the
actions that the agent has planned to execute in the near
future. In our model, we consider that each agent of the
system knows which sequence of actions (plan) must be ex-
ecuted in order to accomplish its current goal.® We assume
that at each given instant of time, the agent is executing at
most one action.

Using the same approach established by [16], we repre-
sent the plan of an agent as a directed acyclic AND/OR
graph where each node represents an action. The nodes are
connected by AND or OR edges.

In the example of Figure 5, after performing the action
A, Agentl needs to have both actions B and C' executed in
order to accomplish its plan. However, after C, only one of
D or E needs to be performed so that Agentl accomplishes
its plan. We call an external action an action belonging

5The use of roles is analog to Section 4.3.

5Since unexpected events may occur in dynamic environ-
ments, agents usually interleave planning and execution.
Consequently, their plans are established just for the short
term.

41

Agent1 Agent2
(a)
. B '\I , C '

A Mz 2

(A .
D)E\ GO (D)

S _.-/ __

Figure 5: Examples of plans

to the plan of an agent which will be executed by other
agents. For example, consider the action C' belonging to the
plan of Agentl in Figure 5. Since this action is performed
by Agent2, it is an external action in the current plan of
Agentl. A terminal action is an action after which no other
known action will be performed.

In order to calculate the criticality of an action, we dis-
tinguish its absolute criticality from its relative criticality.
The absolute criticality (AC) of an action is defined with-
out taking into account the current plans of the agents. It
is given a priori by the system designer and can be deter-
mined in function of a number of factors: number of agents
capable of performing the action, duration of the action, re-
sources required for the execution of the action, application
dependent information.

The relative criticality (RC) of an action belonging to the
plan of an agent is proportional to the criticality of the agent
when it is executing the action or waiting for some other
agent to execute it. As a consequence, the relative criticality
of an action may vary depending on the agent plan it belongs
to. The relative criticality is calculated as follows:

e For an external action, it is equal to the local rela-
tie criticality (LRC). The LRC is obtained using the
AND-aggregation function if the action is connected
to its children by means of AND edges or the OR-
aggregation function if it is connected by OR edges. If
the action has only one child, its LRC is equal to the
relative criticality of its child. If the action is termi-
nal (i.e. it has no child), its local relative criticality is
equal to zero.

e For a non-external action a, its relative criticality is
equal to its absolute criticality plus the sum of the
local relative criticalities of a in each plan to which it
belongs.

We have also refined this strategy (summarized in this
paper) by considering the expected duration of actions. We
compute the estimated starting time of the actions using
a topological sorting in the graph (top-down), considering
the elapsed times of the antecedents and siblings actions.
Another issue is the possible dynamicity of plans of agents,
because of, e.g.: lack of resources, failed commitments, etc.
We proposed two main types of strategies to update critical-
ity: time-driven strategies and event-driven strategies (e.g.,
action completion, failure). More details of the strategies
are presented in [1]. Note that one expected advantage of
this strategy of using plans is that we can estimate not only
the immediate criticality, but also estimate future criticality.

5. DISCUSSION

Each strategy has its pros and cons: static, dynamic, cost,
and nature of assumptions of abstractions available (mes-
sages, roles, norms, plans). The last strategy (plans) has
the advantage of estimating future criticality and not just
instantaneous one. Note that various strategies that we pro-
posed are mostly bottom-up, as they use or infer information
from the program elements or/and from execution, to esti-
mate criticality of agents. We are also planning to study a
dual direction, top down, based on first analysis and speci-
fications of general dependability requirements, and then in
using that information to guide replication control. Some
directions are in using a dependability risk-driven approach
[4] or/and dependability cases [24].

We are currently conducting experiments to compare strate-

gies. In this paper, we summarize some of our experiments,

based on the scenario of meetings scheduling (see Section 3.3).

They were carried out on twenty machines with Intel(R)
Pentium(R) 4 CPU at 2 GHz and 526 Mb of RAM. To
compare accuracy of strategies, we used a fault simulator
which randomly chooses an agent and stops its thread. If
the killed agent was playing the role of an initiator, then its
associated meeting scheduling negociation (protocol) fails,
unless the agent has been replicated. Thus, that experi-
ment provides some measure of the accuracy of the strategy
to identify most critical agents and protect them.

We considered a multi-agent system with 200 agents dis-
tributed on 10 machines. We run each experiment 10 min-
utes and we introduced 100 faults. We repeated several
times the experiment with a variable number of extra re-
sources Rm. Here, Rm defines the number of extra replicas
that can be used by the whole multi-agent system. This
experiment measures the rate of succeeded simulations SR
which is defined as follows: SR =]Tv—sg, where NSS is the
number of succeeded simulations and T'N S is the total num-
ber of simulations.

100 -

Random —%—

Roles Explicitly Signaled —8—
Roles Implicilty Recognized — &
Dependencies —¢

20 -

80 |-

70

60 -

Rate of Succeeded Simulations

8 12
Number of Replicas

Figure 6: Rate of succeeded simulations for each
number of replicas

In Figure 6, we compare four strategies: 1) random, 2)
roles strategy with roles explicitly signaled, 3) roles strategy
with role monitoring, 4) dependences strategy. For each
strategy, we display the success rate SR as a function of the
number of extra replicas.

First, it shows that all strategies show better results than

42

the random strategy. The strategy with roles explicitly sig-
naled is the most accurate (actually it is also the less costly).
This can be explained for the example scenario by the im-
portance of the initiator in the negotiation. For application
domains where the roles have similar importance, the strat-
egy based on dependences may lead to better results. We are
currently conducting further measures on different types of
applications. The objective is to try to empirically identify
possible features of applications, correlated to the relative
accuracy of different strategies.

6. RELATED WORK

Some work [7] offers dynamic cloning of specific agents
in multi-agent systems. But their motivation is different to
ours, as their objective is to improve the availability of an
agent if it is too congested. The agents considered seem
to have only functional tasks (with no changing state) and
fault-tolerance aspects are not considered.

Hagg introduces sentinels to protect the agents from some
undesirable states [15]. Sentinels build models of each agent
and monitor communications in order to react to faults.
Fach sentinel is associated by the designer to one function-
ality of the multi-agent system and handles agents which
achieve that functionality. Adding sentinels to multi-agent
systems is an interesting approach, however sentinels repre-
sent themselves failure points for the multi-agent system.

Fedoruk and Deters [8] propose to use proxies to make
transparent the use of agent replication, i.e. enabling the
replicas of an agent to act as a same entity regarding the
other agents. A proxy manages the state of the replicas.
All external and internal communications of the group are
redirected to the proxy. But this increases the workload
of the proxy which is a quasi central entity. To make it
reliable, they propose to build a hierarchy of proxies for
each group of replicas. Their approach lacks some flexibility
and reusability, in particular concerning replication control.
Replication is indeed set up by the designer before run time.

Kaminka et al. [18] adapt a monitoring approach in order
to detect and recover faults. They use models of relations
between mental states of agents. They adopt a procedural
plan-recognition based approach to identify the inconsisten-
cies. However, the adaptation is only structural, the rela-
tion models may change but the contents of plans are static.
Their main hypothesis is that any failure comes from incom-
pleteness of beliefs. Thus, the behavior of agent cannot be
adaptive and the system cannot be open.

Horling et al. [17] present a distributed system of di-
agnosis. The faults can directly or indirectly be observed
in the form of symptoms by using a failure model. The
diagnosis process modifies the relations between tasks, in
order to avoid inefficiencies. The adaptation is only struc-
tural because they do not consider the internal structure of
tasks. However, a problem of performances can occur in
this approach because the global performance improvement
is based on a local performance improvement.

The work by Kraus et al. [19] proposes a solution for
deciding allocation of extra resources (replicas) for agents.
They proceed by reformulating the problem in two succes-
sive operational research problems (knapsack and then bin
packing). Their approach and results are very interesting
but it is based on too many restrictive hypothesis to be
made adaptive.

Last, a related and much more general project is the Au-

tonomic Computing Program of IBM. They propose a gen-
eral blueprint architecture (monitor, analyze, plan, execute).
The ABLE prototype architecture/framework [3], partially
implements it and provides a toolbox of information analysis
and management components. Although fault-tolerance is
one of its crucial part, the ABLE architecture by itself does
not solve the problem, but the blueprint guidelines are an
interesting direction.

7. CONCLUSION

Large-scale multi-agent systems are often distributed and
must run without any interruption. To make these systems
reliable, we proposed an architecture (DarX) for dynamic
replication and its control [13]. In this paper we discussed
various strategies for estimating criticality of agents, infered
automatically from various kinds of information (references,
messages, roles, norms, plans). The agent criticality is then
used to replicate agents in order to maximize their reliability
and availability based on available resources.

We believe that our current results are promising. Mean-
while, more experiments are needed to better evaluate our
approach, various strategies, and classify their respective
classes of applications.

Acknowledgmentsrhe authors would like to thank Marin

Bertier, Alain Cardon, Sébastien Charpentier, Athmane Hamel,

Guillaume Lacote and Jakob Zimmerman, for their past con-
tributions to the project.

8. REFERENCES

[1] A. L. Almeida, S. Aknine, J.-P. Briot, and J.
Malenfant. Plan-based Replication for Fault-tolerant
Multi-Agent Systems. To appear in 11th IEEE
Workshop on Dependable Parallel, Distributed and
Network-Centric Systems (DPDNS’2006),
IPDPS’2006, Rhodes Island, Greece, April 2006.

[2] M. Bertier, O. Marin, and P. Sens. Performance
Analysis of a Hierarchical Failure Detector. Int. Conf.
on Dependable Systems and Networks, San Francisco,
CA, USA, June 2003.

[3] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N.
Mills, and Y. Diao. ABLE: A Toolkit for Building
Multiagent Autonomic Systems. IBM Systems
Journal, 41(3):350-371, 2002.

[4] G. Carvalho, R. Paes, R. Choren, and C. Lucena.
Towards a Risk Driven Method for Developing Law
Enforcement Middleware. 8rd Int. Workshop on
Agent-Oriented Methodologies, OOPSLA’2004,
Vancouver, BC, Canada, October 2004.

[5] G. Carvalho, R. Paes, R. Choren, P. Alencar, and C.
Lucena. Increasing Software Infrastructure
Dependability through a Law Enforcement Approach.
1st Int. Symposium on Normative Multiagent Systems
(NorMAS’2005), AISB’2005, U.K., April 2005.

[6] C. Castelfranchi. Dependence Relations in
Multi-Agent Systems. Decentralized Al, Elsevier, 1992.

[7] K. Decker, K. Sycara, and M. Williamson. Cloning for
Intelligent Adaptive Information Agents. ATAL’97,
LNAI, p. 63-75, Springer-Verlag, 1997.

[8] A. Fedoruk and R. Deters. Improving Fault-Tolerance
by Replicating Agents. AAMAS’2002, p. 737744,
2002.

[9] M. Gatti, C. Lucena, J.-P. Briot, and Z. Guessoum.
Towards a Fault-Tolerant Open Multi-Agent Platform
based on a Law-Governed Approach, Monografias em
Cliencia da Computagao, No 06/01, Dept. de
Informatica, PUC-Rio, Brazil, January 2006.

[10] R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons
from Designing and Implementing GARF.
Object-Based Parallel and Distributed Computation,
No 791, p. 238256, LNCS, Springer, 1995.

[11] R. Guerraoui and A. Schiper. Software-based
Replication for Fault Tolerance. IEEE Computer,
30(4):68-74, 1997.

[12] Z. Guessoum and J.-P. Briot. From Active Objects to
Autonomous Agents. IEEE Concurrency, 7(3):68-76,
July-September 1999.

[13] Z. Guessoum, J.-P. Briot, O. Marin, A. Hamel, and P.
Sens. Dynamic and Adaptive Replication for
Large-Scale Reliable Multi-Agent Systems. Software
Engineering for Large-Scale Multi-Agent Systems, No
2603, p. 182-198, LNCS, Springer, 2003.

[14] Z. Guessoum, N. Faci, and J.-P. Briot. Adaptive
Replication of Large-Scale Multi-Agent Systems -
Towards a Fault-Tolerant Multi-Agent Platform. ACM
Software Engineering Notes, 30(4):1-6, July 2005.

[15] S. Hagg. A Sentinel Approach to Fault Handling in
Multi-Agent Systems. Multi-Agent Systems,
Methodologies and Applications, No 1286, p. 190-195,
LNCS, Springer, 1997.

[16] B. Horling et al. The TAEMS White Paper, ISI, USC,
L.A., CA, USA, January 1999.

[17] B. Horling, B. Benyo, and V. Lesser. Using
Self-Diagnosis to Adapt Organizational Structures. 5th
Int. Conf. on Autonomous Agents, p. 529-536, 2001.

[18] G.A. Kaminka, D.V. Pynadath, and M. Tambe.
Monitoring Teams by Overhearing: A Multi-Agent
Plan-Recognition Approach. Journal of Intelligence
Artificial Research, 17:83-135, 2002.

[19] S. Kraus, V.S. Subrahmanian, and N. Cihan Tacs.
Probabilistically Survivable MASs. IJCAI’03, pages
789-795, 2003.

[20] G. Lacéte, J.-P. Briot, Z. Guessoum, and P. Sens.
Towards Fault-Tolerant Agents. Workshop on
Distributed Objects Programming Paradigms,
ECOOP’2000, Cannes, France, June 2000.

[21] O. Marin, M. Bertier, and P. Sens. DARX - a
Framework for the Fault-Tolerant Support of Agent
Software. 14th IEEE Int. Symposium on Software
Reliability Engineering (ISSRE’2003), p. 406417,
Denver, CO, USA, 2003.

[22] O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum.
Towards Adaptive Fault-Tolerance for Distributed
Multi-Agent Systems. Jth European Research Seminar
on Advances in Distributed Systems (ERSADS’2001),
p- 195-201, Bertinoro, Italy, 2001.

[23] R.G. Smith. The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver. IEEE Trans. Computers, 29(12):1104-1113,
1980.

[24] C.B. Weinstock, J.B. Goodenough, J.J. Hudak.
Dependability Cases. Technical Notes,
CMU/SEI-2004-TN-016, Software Engineering
Institute, CMU, Pittsburgh, PA, USA, 2004.

