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Abstract. In recent years, the electrical consumption of data centers
has increased considerably leading to a rise in the expenditure bill and
in greenhouse gas emissions. Several existing on/off algorithms reduce
energy consumption in data centers or Clouds by turning off unused (idle)
machines. However, the turning off/on of servers consumes a certain
amount of energy and also induces the wear and tear of disks. Based
on the data streaming paradigm which deals with large amount of data
on-line, we present in this paper MERCi-MIsS, a proposal whose aim is
to save energy in data centers and Clouds and tackle the above tradeoff
problems without degrading, as much as possible, the quality of services
of the system. MERCi-MIsS dynamically estimates the future workload
based on the recent past workload, deciding if servers should then be
turned either on or off. We have implemented MERCi-MIsS on top of
Twitter Storm. Evaluation results from experiments using real traces
from Grid’5000 confirm the effectiveness and efficiency of MERCi-MIsS
algorithm to save energy and avoid disk damage while the quality of
service is only slightly degraded.

1 Introduction

In a Cloud environment, the provider renders available a great number of re-
sources for clients to perform their tasks. Cloud computing has been presented
as a green approach in front of traditional data centers since their resources are
shared by a huge number of users, optimizing, thus, the use of the resources.

Although Cloud computing seems the correct approach for saving energy,
more effort must be made in order to design efficient Cloud data centers [1].
One particular characteristic of Clouds is that clients and providers have dif-
ferent responsibilities: the client is responsible for his/her application while the
provider is interested in adopting energy-aware and cost effective policies. Fur-
thermore, providers’ energy-aware solutions should deal with a large number of
applications. Therefore, based on a global view of the system, providers have
to apply energy saving techniques which will not interfere in aspects which are
responsibility of the clients.

One well-known approach to reduce energy consumption, called on/off algo-
rithm, consists in turning off unused (idle) machines [2,3], since the power of idle
machines is estimated between 25-60% of the peak power [4, 5] of data centers.
However, such an algorithm entails some negative impacts. The turning off/on
of servers consumes a certain amount of energy. Hence, a server should stay off



during a minimum period of time which compensates the energy in rebooting it
when compared with the energy of keeping it idle [3, 6]. Such a period of time
is denoted critical time. A second negative impact is that the reduction of the
number of available resources can degrade the quality of service (QoS) engaged
by the provider through the Service Level Agreement (SLA), i.e., an agreement
between the provider and the client which sets up the QoS that the provider
should guarantee. The non satisfaction of SLAs could result in penalization to
the provider. In this paper, we consider that the violation of SLA leads to mon-
etary charges to the provider, i.e., the latter must reimburse the client if some
service does not satisfy the SLA requirements. Finally, booting affects disk life-
time, i.e., the probability of disk damage, and thus replacement, increases with
the number of boots [2,7–11] . Thus, an energy saving solution should take into
account the costs of the wear and tear of disks.

Considering the above discussed points, this paper presents MERCi-MIsS
3, a streaming-based algorithm which dynamically decides about the number
of servers to turn on and off. MERCi-MIsS proposes an energy saving strategy
taking into account energy cost, disk wear and tear cost, and SLA penalties. To
our knowledge, no existing solution for saving energy considers all these three
aspects. MERCi-MIsS exploits a streaming data model which is able to process
great volume of data and, thus, decides on the fly about the number of servers
to turn on and off. It exploits global information of the system, in terms of the
number of required working, idle, off, turning on, and turning off servers. It also
dynamically estimates the minimum number of idle servers which the system
must keep in order to provide energy saving while ensuring the execution of
unexpected works and avoiding monetary charges due to SLA violations. We
have also extended the critical time in order to take into account the wear and
tear related to disk ignitions.

Performance evaluation experiments were conducted over traces concern-
ing the usage of French Grid’5000 platform (a scientific instrument designed
to support experiment-driven research (www.grid5000.fr)). Results confirm that
MERCi-MIsS outperforms some well-known energy saving algorithms found in
the literature in terms of energy cost. It also provides shorter average time delay
for processing clients’ works than these algorithms.

Roadmap. Firstly, in Section 2, we discuss the minimum time that a server
must be off in order to save energy boot (critical time). In Section 3, we present
MERCi-MIsS, how it predicts the workload, computes both the monetary cost
of non working servers and of disk wear and tear. Performance evaluation results
are presented in Section 4 while Section 5 discusses some related work. Finally,
Section 6 concludes the paper and proposes some future work.

2 Minimal period of time for off servers

The turning off and on of servers induces energy consumption. If we decide to
turn off a server, it must be off for at least a minimum period of time which
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compensates the energy spent in rebooting it. In [3], the authors denote such a
period of time the critical time (TS). They also propose how to evaluate it.

Eon→off energy cost of turning off (J) Pidle energy power of an idle server (W)
Eoff→on energy cost of turning on (J) Poff energy power of an off server (W)
δon→off time spent in turning off (sec) δtot time spent in turning off&on (sec)
δoff→on time spent in turning on (sec) δtot = δon→off + δoff→on

$E cost of the energy ($ / J) $B cost of a boot ($)

Table 1: Event parameters for a single server

Considering the parameters given in Table 1, the critical time TS is the
minimum period of time that a server is turning off which renders the energy
spent in booting a server equals to the energy in keeping it idle, i.e., TS such
that Eidle(TS) = Ereboot(TS), where the energy spent in TS seconds of an idle
server is Eidle(TS) = Pidle × TS while the energy for rebooting the server for
the same period is Ereboot(TS) = Eon→off + Poff × (TS − δtot) +Eoff→on, (the
energy spent for both turning off and on the server plus the energy to keep it
off). Hence, the critical time TS is:

TS =
Eon→off+Eoff→on−Poff×δtot

Pidle−Poff
(1)

For instance, Figure 1 shows an energy evaluation experiment conducted on
a Dell Power Edge R720 server. The energy spent in turning on and off the server
(green area in Fig. 1) is Eoff→on+Eon→off = 19, 749 J, which respectively takes
δoff→on + δon→off = 158 seconds. Considering that the average energy power
of an off server is Poff = 8W and of an idle server is Pidle = 97W , if a server
is switched off during TS seconds off (respectively, stays idle), Ereboot(TS) =
19, 749 + (TS − 158)× 8 (respectively, Eidle(TS) = TS × 97). Hence, if the server
keeps at least TS = 208 seconds off, the decision of turning it off is an efficient
one; otherwise, it is not worthwhile turning it off.

Pidle

PoffEon→off Eoff→on

δoff→onδon→off

Fig. 1: Energy consumption of different states. Real experiment in Grid’5000

In the same article [3], the authors argue that a TS must be increased with the
Tr factor which is related to the wear and tear with regard to the disk ignition.
However, they do not explain how to compute Tr.

We propose, therefore, in this article, an estimation for Tr. To this end, we
add to Ereboot(TS) the energy cost (in Joules) associated with disk damage due
to ignitions. Considering the cost of a new disk device (in money units) and the
number of ignitions that a disk support [8], the disk-cost of a boot (in money



units) is estimated as $B . By dividing it by the cost of the energy $E , ($B / $E),
it is possible to estimate the energy spent in Joules due to disk damage.

We have, then Ereboot(t) = Eon→off + Poff × (t − δtot) + Eoff→on + $B /
$E . Thus, the minimum critical time TS is:

TS =
Eon→off+Eoff→on−Poff×δtot

Pidle−Poff
+ $B

$E(Pidle−Poff )
(2)

In conclusion, an on/off algorithm must ensure this minimum critical time
in order to both save energy and the cost of disk replacement.

3 MERCi-MIsS

MERCi-MIsS is based on streaming over sliding window model. It is an on/off
algorithm that processes data on-the-fly, continuously producing an output. We
describe the MERCi-MIsS architecture in Section 3.1.

On/Off algorithms turn on and off servers according to the needs of the
system and prediction of future workload. Usually, algorithms estimate future
workload based on previous one aiming at minimizing energy consumption as
well as satisfying unexpected works, i.e., works that arrive when the system has
not enough available servers. Thus, having a minimum number of idle servers
helps to solve some unexpected situations. We denote m0 such a minimum num-
ber of idle servers. In this case, at every time, the system can always process
a new work which needs at most m0 servers. Considering m0 idle servers and
the prediction of future workload based on the past workload, MERCi-MIsS de-
cides about the number of servers to turn off or on at a given time. Section 3.2
describes how MERCi-MIsS takes decisions.

In Section 3.3 we present how we evaluate the service maintainability cost
associated with the energy spent in turn on/off servers and disk replacement.

3.1 MERCi-MIsS architecture

We consider that time is discretized in seconds, i.e., at every second it is possible
to obtain the state of each server. At any time t, MERCi-MIsS needs the infor-
mation about the current number of required servers and the current state of
the system. While the former can be inferred from the workload with which the
scheduler has to deal, the latter depends on the current processing works and
might be affected by energy-aware policies. Figure 2 presents the architecture.

The number of required servers is predicted by MERCi-MIsS based on the
history of clients’ requests sent to the scheduler. Upon receiving a request to
execute some works, the scheduler decides when to execute them. Notice, that,
in some cases, clients must wait for their requests to be treated (e.g., the system
has not enough available servers). Hence, at any time t, the scheduler deduces the
number of required servers to satisfy clients requests and providing the history of
such a number to MERCi-MIsS, which stores it to predict future requirements.

Concerning the system state, MERCi-MIsS continuously receives information
about it (the current number of working servers, idle servers, and off servers),
producing as output the decisions about how many servers to turn off and on.
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Fig. 2: MERCi-MIsS interaction with scheduler and system

3.2 MERCi-MIsS turn on/off decisions

MERCi-MIsS exploits stream processing over sliding windows. As we have al-
ready discussed, the number of current required servers can be deduced by the
scheduler workload. To this end, MERCi-MIsS keeps a windowW with the most
recent number of required servers, informed by the scheduler. Concerning the
state of the system, at t, MERCi-MIsS receives as input 〈nw(t), nidle(t), noff (t)〉
and produces as output the decisions about how many servers to turn off don→off (t)
and how many servers to turn on doff→on(t). Tab. 2 summarizes our notations.

nw(t) nb. of working servers at t non→off (t) nb. of servers turning off at t
nidle(t) nb. of idle servers at t noff→on(t) nb. of servers turning on at t
non(t) nb. of power on servers at t

non(t) = nw(t) + nidle(t)
don→off (t) decision about the number of

servers of turn off at t
noff (t) nb. of power off servers at t doff→on(t) decision about the number of

servers of turn on at t

Table 2: Servers type and decisions at time t

One of the aim of MERCi-MIsS is to guarantee a minimum number, m0, of
idle servers at any time t. If some clients request more than m0 servers, some
servers must be turned on. On the other hand, when MERCi-MIsS decides to
turn off some servers, it ensures that at least m0 idle servers are on.

MERCi-MIsS, which decides either to turn on or off some servers, is described
in Algorithm 1. We point out that both actions can not be taken at the same time
since they are contradictory. If the system does not have a minimum of m0 idle
servers (lines 1- 3), a number of servers will be turned on in order to ensure m0

idle servers (at most we can turn on noff (t) servers). Otherwise, MERCi-MIsS
tries to turn off some servers (lines 4-9), aiming at saving energy.

According to the critical time TS , we can turn off all the servers which will not
be used in the next TS seconds (i.e. we need to estimate the maximum number
of working servers in the next TS seconds). However, the future workload is
not known. Hence, MERCi-MIsS exploits the outliers border given in boxplot.
The latter is a statistics graph where several descriptive values of a sample are
represented. It shows five values from a data set: the upper and lower extremes,
the upper and lower hinges (quartiles), and the median [12]. Values of the data set



Algorithm 1: MERCi-MIsS algorithm

Parameters: m0, minimum number of idle servers;
w, whisker length;
δoff→on, the time spends in turn on

Input: 〈nw(t), nidle(t), noff (t)〉, system state
Output: don→off (t), number of servers to turn off;

doff→on(t), number of servers to turn on
1 if nidle(t) < m0 then
2 don→off (t) = 0
3 doff→on(t) = min{noff (t),m0 − nidle(t)}
4 else
5 Q1← quartile(1,W)
6 Q3← quartile(3,W)
7 UE = Q3 + w (Q3−Q1)

8
don→off (t) = max{0,min{non(t)− UE,

nidle(t) + doff→on(t− δoff→on)−m0}}
9 doff→on(t) = 0

greater than the upper extreme are considered outliers. Hence, we can view the
upper extreme, UE, as a “normal” maximum bound of the data set. MERCi-
MIsS estimates the future maximum number of working servers as the upper
extreme value related to the number of working servers over the past history.

When the system has at least m0 idle nodes MERCi-MIsS algorithm calcu-
lates the number of servers to turn off (lines 4-9).

From an energy efficiency point of view, the number of servers to turn off
is the number of servers not used within at least the next TS seconds. In the
current time t, the maximum number of servers to be used in the next TS seconds
is given by nm(t) = max{nw(s) : s ∈ [t + 1, t + TS ]}. Thus, we can turn off all
the other servers which are on, i.e., non(t)− nm(t).

Note that we are considering that the number of future required servers,
nm(t), is known at t and, in this case, non(t)−nm(t) represents the most efficient
energy saving. However, this is not a realistic assumption since we can not foresee
the future. Therefore, it is necessary to estimate nm(t) based on previous history
of working servers. One first idea would be to use the maximum number of these
servers in the recent history. Nevertheless, such an approach could induce a bad
estimation if an unusual situation with high number of servers took place in
recent history. In order to avoid such a mistake, MERCi-MIsS uses UE, the
upper extreme value of boxplot, to estimate the number of working servers and
the decision about the servers to turn off is (1) don→off (t) = non(t)− UE. The
upper extreme value UE is based on the first and third quartile4 (respectively,
Q1 and Q3) as well as a parameter w, called whisker length (usually w = 1.5).

4 Quartiles are ranked statistics which split data set into four equal groups. First
quartile, Q1, is a value that is (equal or) greater that the 25% of the data values.
Second quartile (or median), Q2, that is (equal or) greater that the 50% of the data



The upper extreme value is, thus, computed as UE = Q3 + w (Q3−Q1). Note
that MERCi-MIsS computes quartiles over the sliding window W related to the
number of required servers.

On the other hand, in order to ensure m0 number of idle servers at time
t + 1, the maximum number of server to turn off at time t should be equal to
nidle(t+1)−m0. However, since nidle(t+1) is unknown, MERCi-MIsS estimates
the number of idle servers at time t+1 as the number of current idle servers plus
the number of servers that MERCi-MIsS decides to turn on at time t− δoff→on,
i.e., such servers will be on at time t+1. Hence, for guaranteeing m0 idle servers
at t+1, we have that the number of servers to turn off satisfies (2) don→off (t) =
nidle + doff→on(t− δoff→on)−m0

Taking into account both conditions, i.e., the number of servers not used
within at least the next TS seconds and m0 idle servers at time t+1, the number
of nodes to turn off at t is equal to the minimum of (1) and (2) (line 8).

Exploiting system information. In the estimation of m0 at t+1, MERCi-
MIsS considers that the number of working servers at time t+1 is the same as the
current number of working servers at t. However, there exist some cases where
the system could give more information about the number of working servers
and MERCi-MIsS could exploit it. For instance, if the workload was stored in
a queue that MERCi-MIsS could have access, the number of working servers at
time t+ 1 could be inferred (provided that the workload queue is not empty).

3.3 Service maintainability cost

Service cost is composed of two costs: the service performance cost, associated
with the clients’ works execution, and the service maintainability cost related to
the energy spent in turning on/off servers as well as disk replacement. One of
the main goal of on/off algorithms is to reduce service maintainability cost as
much as possible without degrading the quality of the service for the clients.

Service performance cost is related to the energy consumed by working
servers. It is well-known that the energy spent by working servers depends on
the works that must be executed, i.e., the clients’ requests [13]. Estimating this
energy consumption is not a trivial task. However, we can consider that a server
which executes a given work spends the same energy regardless when the work
is executed. In other words, the energy consumed by working servers to pro-
cess a fixed workload is the same independently on the work that each server
performs. Consequently, the service performance cost does not depend on the
energy-aware policy. However, the turning on and off of servers introduces differ-
ent energy consumption and disk replacements. The cost associated with them
depends on the energy-aware policy and is considered as service maintainability
cost. In this section, we focus in describe the service maintainability cost.

Service maintainability cost, maintenance$, has two parts: 1) energy¬w,
monetary cost of energy of non-working servers (idle servers, off servers, and

values. Finally, third quartile, Q3, that is (equal or) greater that the 75% of the data
values.



turning on and off actions); and 2) the monetary cost to replace disks.

maintenance$ = $E × energy¬w + $replacementdisk (3)

At time t, the system has nw(t) working servers, nilde(t) servers, (i.e., non(t) =
nw(t) + nidle(t)), noff (t) off servers, turning off servers (don→off (t)), and turn-
ing on servers (doff→on(t)). Note that even if these values are related to time t,
the evaluation of energy consumption concerns the whole period of time during
which the system is running. In the cost of energy¬w, both idle and off states are
quite stable in terms of energy consumption. It is then possible to have represen-
tative average consumption values: Pidle and Poff power (Joules / sec) for idle
and off servers respectively while the energy cost to turn on (respectively, off)
a server is Eon→off (respectively, Eoff→on). Based on the energy parameters
of Table 1 and the notations of Table 2, the energy consumed by non working
servers, energy¬w, for the whole execution period of the system is given by:

energy¬w =
∑
t

(
Pidle × nidle(t) + Poff × noff (t)+
+Eon→off × don→off (t) + Eoff→on × doff→on(t)

) (4)

The money cost associated with disk damage has a direct relation with the
number of boots. As a boot is a turning off which will be eventually followed
by a turning on, we cannot consider non→off (·) + noff→on(·) as the number of
boots, otherwise, in the whole execution of the system, we would sum twice the
number of boots. As a consequence, we consider the number of boots as the
number of turning off non→off (·) (eventually turning off servers will be power
on). Hence, the disk money cost (in $) is given by Equation 5.

$replacementdisk =
∑
t $B × non→off (t) (5)

In Section 2, we defined TS as the minimal critical time for saving energy
which also includes the energy associated with disk replacement. Therefore, if
TS is respected, maintenance$ represents the minimum service maintainability
cost.

Besides the monetary cost, maintenance$, we must consider the time de-
lay to attend clients’ requests which affects the quality of service. We propose a
tradeoff metric based on the Energy-Delay product (EDP) [14], where the energy-
performance tradeoff is evaluated by multiplying the energy by the time delay.
To capture the disk damage we propose Energy&Disk-Delay product (EDDP)
in Eq. 6 as the product of the energy consumed in the whole experiment (energy
of non working servers plus disk replacement) by the average time delay to at-
tend clients’ requests. Minimizing EDDP is equivalent to maximizing its inverse
which represents the “performance-per-cost”, where performance is the inverse
of average time delay (service has low performance, if the time delay is high).

EDDP =

(
energy¬w +

$remplacementdisk

$E

)
× timedelay (6)

maintenance$ estimation and EDDP concern all servers in the system during
the whole experiment. However, considering just one server, we know that if it



stays off at least TS seconds, some energy is saved when compared to keeping it
idle. In fact, the longer the period of time the server is off, the higher the energy
saved. Hence, if a server keeps off ∆t time, the service maintainability saved cost,
denoted saving$, is given by Equation 7, where Etot = Eon→off + Eoff→on.

saving$(∆t) = $E ×
(
(Pidle − Poff )×∆t− Etot + Poff × δtot

)
− $B (7)

The minimum saving$ takes place at TS + 1, i.e., saving$(TS + 1) = $E ×
(Pidle − Poff ). Notice that, if a server is off TS + a, the service maintainability
saving is saving$(TS + a) = a× $E × (Pidle − Poff ).

4 Evaluation

In this section we firstly present the evaluation environment and input traces.
Then we give a brief description of some algorithms with which we compared
MERCi-MIsS, and finally, some comparative evaluation results are presented.

4.1 Evaluation Setup

MERCi-MIsS input (i.e., number of working servers) can be obtained by mon-
itoring the states of the nodes or by inferring from users’ reservation traces.
We used real traces from [15] corresponding to 6 months (from 1st Feb. 2009
to 27 February 2010) related to reservations in Grid’5000 (12,948 reservations).
Users made resource reservations indicating the submission time, the number of
requested nodes, and the maximum duration of the reservations (however, users
can cancel reservations before the ending time). Using the number of requested
servers, the starting time, and the ending time, the number of working servers
can be inferred. Assuming that the number of servers reserved by the users is
the number of working servers, although users cannot use some of them, we
assume that all the reserved servers must be on. Unfortunately, in the original
traces, the actual ending time is not provided. Hence, we simulate this value
considering the maximum duration as the actual duration. Energy values, cost,
and duration are summarizing in Tab. 3. Eoff→on, Eon→off , δoff→on, δon→off ,
Poff , and Pidle are obtained from a real experiment where 20 Grid’5000 servers
of Lyon site, which represent more than 20% of servers of the site, were booted
50 times (Lyon site has electrical consuming monitoring). The obtained results
are similar to the ones presented in [3]. The costs of a boot B$ and the cost of
energy E$ are taken from [8]. According to Sec. 2, the critical time TS=1457 sec.

Eoff→on 24,536.04J Eon→off 1,501J Poff 9.58W Pidle 150.16W
δoff→on 120sec δon→off 10sec $B 0.5 cents/boot $E 10 cents/KWH

Table 3: MERCi model parameters

MERCi-MIsS evaluation experiments were conducted using Petrel-Storm on
Grid’5000 platform. Storm [16] is an event processor to streams and Petrel-Storm
allows the entire implementation in Python. By exploiting Grid’5000 traces, the



input stream S = {Rt}t corresponds to a set of reservations R at time t. In the
simulation, the interaction with the system which provides information about
the system state (Sec. 3.1) does not take place. Instead, Storm operator main-
tains itself the system state (nw(t), nidle(t), noff (t)). Hence, for each time t, the
operator produces the decision about turning on doff→on(t) or off don→off (t).

Using the above stream approach, we have implemented:
Perfect prediction. An ideal on/off algorithm which always has enough

available servers and ensures the minimum maintenance$ cost. Thus, every ar-
riving work immediately starts executing without any delay. However, the perfect
prediction is only feasible provided the future workload is known.

Turn-Off algorithm. In this algorithm, idle servers are always turned off.
However, the algorithm does not ensure that a server stays off TS seconds. Fur-
thermore, the average time delay to satisfy clients’ requests can be greater com-
pared to other algorithms since the probability of having unexpected works which
can not be immediately executed is higher than in an algorithm which always
keeps some idle available servers.

EARI [3]. An on/off algorithm for reservation-based systems (users reserve
resources for a fixed time). EARI relies on the prediction of the next reservations.
It estimates the number of servers to turn off whenever there are no waiting
reservation request to be scheduled. Nevertheless, no policy about turning on
servers is described. Given M possible servers to turn off, EARI estimates the
next reservation R with arrival time t using n servers. If R arrives before TS
seconds, then n servers stay on during TS and M − n servers are turned off. If
after TS seconds no reservation arrives, the above n servers are released, i.e.,
they will be considered to belong to the pool of possible servers to turn off.
The estimation of reservation values (starting time t and number of servers n)
is based on the history of previous reservations. Basically, the predicted value
is the mean of the previous values (mean(N)) corrected with the mean of the
previous errors (mean(EN )). Basically, the predicted value is the mean of the 5
previous values corrected with the mean of the 3 previous errors.

MERCi-MIsS. For performance evaluation, we consider a time-based slid-
ing window of size 5min, slide of 3min, and the whisker length w = 1.5. While
MERCi-MIsS bases its estimation on recent time (the last 5 minutes), EARI
uses the last (5) reservation values. Notice that we could consider a longer time
interval (till 3h) in EARI which would correspond to a much higher number of
reservations. However, the risk of loosing the correlation between time and the
number of reservations could greatly increase.

4.2 Evaluation results

In this Section, we present a comparative of the above algorithm by evaluating:
(1) the tradeoff between the service maintainability cost and the average time
delay to attend clients’s requests; (2) the service maintainability cost; (3) the
impact on the time delay and the number of delayed reservations; and (4) the
processing time to take decisions.

Tradeoff between maintainability cost and time delay. Energy-aware
policies must try to reduce service maintainability cost without increasing time



delay for processing clients work which degrades quality of services. Fig. 3a shows
the average time delay versus the service maintainability cost. The closer to the
point (0,0), the lower the time delay and the service maintainability cost (better
energy-aware policy). EARI has higher service maintainability cost and time
delay than MERCi-MIsS. MERCi-MIsS has also lower time delay than Turn-Off
policy. However, MERCi-MIsS has a slightly higher service maintainability cost
than the latter. The results of Fig. 3b also confirm that MERCi-MIsS presents
the smallest EDDP (see Sec. 3.3). From both results, MERCi-MIsS has the best
tradeoff between energy of non working servers, disk replacement, and time delay.

Service maintainability cost. Fig. 3c shows such a cost ($) for each al-
gorithm. Blue and green portions of the bars are, resp., the cost related to the
energy spent by non-working servers energy¬w and disk replacement. Turn-Off
is the best for monetary cost, but, it degrades the time delay as discussed later.

In order to understand deeper the service maintainability cost, we show dif-
ferent aspects: (1) Fig. 3e concerns energy consumption of non working servers;
(2) Fig. 3f is related to the number of boots (disk damage); and, (3) Fig. 3g
shows the average number of idle servers per second.

The energy bars in Fig. 3e are the energy consumed in the service maintain-
ability divided by the energy in the perfect prediction algorithm. Three differ-
ent colors make distinguishable the fraction of energy spent in different states
(boot, off, and idle). As expected, Turn-Off algorithm consumes less energy in
idle servers (the number of idle servers is close to 0 in Figure 3g). It is, thus, the
best algorithm for saving energy. Notice that the number of idle servers in the
perfect prediction is very low (0.62 server per second in average). On the other
hand, MERCi-MIsS consumes 29% less energy than EARI. Fig. 3g confirms that
such a reduction is due to idle servers.

The boot bars in Fig. 3f represent the number of boots with regard to the
perfect prediction. As expected, Turn-off performs the greater number of boots
which is almost twice the number of boots of the perfect prediction algorithm. In
both Turn-off and EARI, the boot rate is higher than in the perfect prediction
algorithm, contrarily to MERCi-MIsS, which presents lower boot rate than the
latter (the ratio is smaller than 1).

Fig. 3g, which shows the average number of idle servers per second, allows
a better understanding of the different energy-aware policies. Turn-Off has a
number of idle servers per second close to 0 (not 0 because a server must be in
idle state to be turned off) while EARI has higher number of idle servers per
second than MERCi-MIsS (2.4 times). Observing Fig. 3e-3g, we conclude that,
during some periods, EARI maintains a large number of idle servers which are
not required (EARI fails in the future workload prediction).

Reservation delay. Keeping servers in the off state has an impact on the
quality of services. Fig. 3d shows two results: 1) in the left side (blue), the
average time delay for reservation; and 2) in the right side (green), the percent
of delayed reservations. As expected, Turn-Off has a large number of delayed
reservations (almost the whole reservation set) and the largest time delay. The
impact of off servers on the quality of services in the MERCi-MIsS is lower than
in the EARI (shorter time delay and smaller number of delayed reservations).
Therefore, in MERCi-MIsS, the number of off servers induces less degradation
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Fig. 3: Turn Off, EARI and MERCi-MIsS performace

of the quality of services than in the other algorithms. Such a result strengthens
the previous one which concludes that MERCi-MIsS provides a better prediction
of the future workload than the other algorithms. Comparing to the latter, it
presents shorter time delay while using fewer resources which implies in smaller
service maintainability cost.

Time for decision processing. On/Off algorithms should present a perfor-
mance which allows the respective implementation in real environments. Tab. 4
summarizes the time spent to decide about the turn on/off actions. Obviously,
the Turn-Off is the fastest one since no information is processed to take such a
decision. EARI has a time processing close to Turn-Off due to the size of the
processed information which is quite small (the last 5 reservations). MERCi-
MIsS has the largest time processing because it considers the number of working
servers of the last 5 minutes. However, we should emphasize that MERCi-MIsS
time processing is feasible, i.e., 197 micro-sec while the time step is 1 sec. Hence,
the three policies have time processing which are suitable for real environments.

Turn-off EARI MERCi-MIsS

3.09 5.22 169.91

Table 4: Decision time processing in microseconds



5 Related work

In [17], authors present a survey on techniques for improving the energy efficiency
of large-scale distributed systems. A taxonomy and survey of energy-efficient
data centers and cloud computing systems can be found in [18].

The first on/off algorithm which considers disk damage was proposed in
[2] where authors presented Muse, an operating system for a hosting center.
The prediction approach focuses on estimating the resource demand of each
customer considering her/his current request load level, contrarily to MERCi-
MIsS algorithm, which characterizes the system load based on client demands,
being, thus, more suitable for environments with a huge number of clients or
with a dynamic set of users.

The concept of critical time, the minimum period of time which a server
must be off to save energy, was introduced in [3]. The article then proposes the
EARI algorithm for reservations-based environments such as Grid’5000, on top
of which they conducted some evaluation experiments. We have extended their
critical time concept with the time corresponding to the fraction that must be
added to the former in order to consider the energy spent due to disk damage.

[19] presents two algorithms (online and offline) to turn off content delivery
networks during periods of low load. The algorithms have three goals: max-
imize energy reduction, minimize the impact on client-perceived service avail-
ability, and reduce the wear-and-tear on hardware reliability. However, they have
been designed to content delivery networks which operate as application service
providers and can not be applied in other context such as infrastructure as a
software (IaaS) or infrastructure as a service (SaaS).

The article [11] presents an online algorithm based on the number of active
servers xt at any time t. It uses a function cost to minimize some costs such as
energy cost, cost related with network delay, and the cost of booting (includ-
ing delay, mitigation, and disk damage). Nevertheless, as we have discussed in
previous sections, the number of active working servers are not sufficient to com-
pute the total energy cost because turning on and off servers consumes energy
(as well as power off servers). Therefore, an energy cost function must consider
other server states than just active state. Concretely, the cost related to the
disk damage is a linear function of the difference in consecutive times xt−xt−1.
Hence, it is not fair to take into account just active servers such as in scenarios
where, whenever one server concludes its turning on, the system decides to turn
off one server. In this case, the number of active servers is always xt − xt−1 = 0
and the model does not consider any disk damage.

A different approach of on/off algorithms is based on processor dynamic
voltage/frequency scaling [8,20]. However, processors consist of a small fraction
of the total server power [21], entailing a moderate energy savings [22]. In [8], the
authors consider disk damage to the dynamic voltage/frequency scaling strategy.

6 Conclusions and Future work

We have presented MERCi-MIsS whose aim is to reduce energy consumption in
data centers without degrading the quality of services. MERCi-MIsS takes into



account the energy spent by servers and disk damage due to wear-and-tear of
ignitions and continuously decides how many servers to power off or on. We have
conducted some simulation experiments based on real traces. The results related
to the Energy&Disk-Delay product (EDDP) metric, which expresses the above
three aspects, confirm that MERCi-MIsS reduces in more than 39% the value of
this metric when compared to other algorithms.

As future work, we plan to evaluate heterogeneous system by grouping servers
according to their respective critical time and then applying MERCi-MIsS on
each group. We will also evaluate the performance over other workloads.
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