
Implementation and performance evaluation of an adaptable failure detector

Marin BERTIER2

marin.bertier@lip6.fr

Olivier MARIN1;2

olivier.marin@univ-lehavre.fr

Pierre SENS2

pierre.sens@lip6.fr

1Laboratoire d’Informatique du Havre

University of Le Havre

25 rue Philippe Lebon

BP540 76058 Le Havre cedex

2Laboratoire d’Informatique de Paris 6

University Paris 6 - CNRS

4 place Jussieu

75252 Paris Cedex 05, France

Abstract

Chandra and Toueg introduced the concept of unreliable

failure detectors. They showed how, by adding these detec-

tors to an asynchronous system, it is possible to solve the

Consensus problem. In this paper, we propose a new im-

plementation of a failure detector. This implementation is a

variant of the heartbeat failure detector which is adaptable

and can support scalable applications. In this implementa-

tion we dissociate two aspects: a basic estimation of the ex-

pected arrival date to provide a short detection time, and an

adaptation of the quality of service according to application

needs. The latter is based on two principles: an adaptation

layer and a heuristic to adapt the sending period of “I am

alive” messages.

1 Introduction

Failure detectors are well-known as a basic building

block for fault-tolerant distributed systems. Chandra and

Toueg introduce in [4] the unreliable failure detector con-

cept. They show how, by adding these detectors to an asyn-

chronous system, it is possible to solve the Consensus prob-

lem. The Consensus is the “greatest common denominator”

of agreement problems such as atomic broadcast or atomic

commit. Fisher, Lynch, and Paterson [9] have shown that

consensus cannot be solved deterministically in an asyn-

chronous system that is subject to even a single crash fail-

ure. This impossibility results from the inherent difficulty

of determining whether a process has actually crashed or is

only “very slow”.

Failure detectors can be seen as one oracle per process.

An oracle provides a list of processes that it currently sus-

pects of having crashed. Many fault-tolerant algorithms

have been proposed [11, 8, 3] based on unreliable failure de-

tectors, but there are few papers about implementing these

detectors [13, 15, 6]. In this paper we investigate how to

implement and dynamically adapt failure detectors.

We propose a new implementation of failure detector.

This implementation is a variant of the heartbeat detector

which is adaptable and can support scalable applications.

Our algorithm is based on all-to-all communications where

each process periodically sends an “I am alive” message

to all processes using IP-Multicast capabilities. To provide

a short detection delay, we automatically adapt the failure

detection time as a function of previous receptions of “I am

alive” messages. Eventually Perfect failure detector (}P) is

reductible to our implementation in models of partial syn-

chrony [7, 17].

Failure detectors are designed to be used over long peri-

ods where the need for quality of detection alters according

to applications and systems evaluation. In practice, it is well

known that systems are subjected to variations between long

periods of instability and stability. We evaluate the maximal

quality of service that the network can support in terms of

detection time. Then we propose a heuristic to adapt the

sending period of “I am alive” messages as a function of

the network QoS and the application requirements.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly describe the Chandra-Toueg failure de-

tectors. In Section 3, we present the system model and we

discuss different approaches in order to implement failure

detectors. Section 4 describes the way we adapt the detec-

tion delays dynamically. In Section 5, we present the algo-

rithm of our failure detectors, and we prove its correctness.

Section 6 presents a performance evaluation of the failure

detector and compares our results with some related stud-

ies. In Section 8, we describe a real application we develop

on top of our failure detector. Finally, Section 10 concludes

the paper.

2 Unreliable failure detectors

In this section, we present a short description of failure

detectors and some metrics to compare their performances.

Each process has access to a local failure detector which

maintains a list of processes that it currently suspects of

having crashed. Since a failure detector is unreliable, it

may erroneously add in its list a process which is still run-

ning. But if the detector later believes that suspecting this

process is a mistake, it then removes the process from its

list. Thus, a detector can repeatedly add and remove a same

process from its list of suspect processes. Failure detectors

are characterized by two properties: completeness and ac-

curacy. Completeness characterizes the failure detector ca-

pability of suspecting every incorrect process permanently.

Accuracy characterizes the failure detector capability of not

suspecting correct processes. Two kinds of completeness

and four kinds of accuracy are defined in [4], which once

combined yield eight classes of failure detectors.

In this paper, we focus on the }P detector, named Even-

tually Perfect. This detector requires these characteristics:

� Strong completeness: there is a time after which ev-

ery process that crashes is permanently suspected by

every correct process.

� Eventual strong accuracy: there is a time after which

correct processes are not suspected by any correct pro-

cess.

The above properties must be satisfied by our detector. In

parallel, [5] proposes a set of metrics that can be used to

specify the Quality of Service (QoS) of a failure detector.

The QoS quantifies how fast a detector suspects a failure

and how well it avoids false detection.

� Detection time (T
D

): T
D

is the time that elapses from

p’s crash to the time when q starts suspecting p perma-

nently.

The next metrics are used to specify the accuracy of a

failure detector.

� Mistake recurrence time (T
MR

): this measures the

time between two consecutive mistakes.

� Mistake duration (T
M

): this measures the time it takes

the failure detector to correct a mistake.

3 Failure detection strategies

In this section, we present our target system model. We

describe two classical implementations of failure detector,

and then show why we have chosen the heartbeat failure

detector model.

3.1 System model

We consider a distributed system consisting of a finite

set of n processes � = fp

1

; p

2

; : : : ; p

n

g that are spread

throughout a local area network (LAN). These processes

communicate only by sending and receiving messages. Ev-

ery pair of processes is assumed to be connected by means

of a reliable communication channel. We suppose that all

the components in this system support IP-Multicast com-

munication.

Processes can fail by crashing only, and this crash is per-

manent. Our algorithm does not need synchronized clocks,

but there exist a know upper bound on the rate of drift of

local clocks.

For the proof, we consider the model of partial syn-

chrony proposed by Chandra and Toueg in [4]. This model

stipulates that, for every execution, there are bounds on pro-

cess speeds and on message transmission times. However,

these bounds are not known and they hold only after some

unknown time (called GST for Global Stabilization Time).

We denote by �

msg

the maximum time, after GST, between

the sending of a message and the delivery and processing by

its destination process, assuming that the destination pro-

cess has not failed.

3.2 The Heartbeat strategy

This implementation is the most popular strategy for im-

plementing failure detectors. Every process q periodically

sends an “I am alive” message to the processes in charge of

detecting its failure. If a process p does not receive such a

message from q after the expiration of a timeout, it adds q

to its list of suspected processes. If p later receives an “I

am alive” message from q, p then removes q from its list of

suspected processes.

This implementation is defined by two parameters:

� the heartbeat period �

i

: �
i

is the time between two

emissions of an “I am alive” message.

� the timeout delay �

to

: �

to

is the time between the

last reception of an “I am alive” message from q and

the time where p starts suspecting q, until an “I am

alive” message from q is received.

An amelioration of this classic heartbeat implementation

is proposed in [5]. In this new algorithm, in order to deter-

mine whether to suspect the process q, the process p uses

a sequence �
1

, �
2

, . . . of fixed time points, called freshness

points. The freshness point �
i

is an estimation of the arrival

date of the ith heartbeat message from q.

The advantage of this approach is that the detection time

is independent from the last heartbeat. This modification

increases the accuracy because it avoids premature timeout,

and outperforms the failure detection time.

3.3 The Pinging strategy

A process p monitors a process q by sending “Are you

alive ?” messages to q periodically. Upon reception of

2

such messages, the monitored process replies with an “I am

alive” message. If process p times out on process q, it adds

q to its list of suspected processes. If p later receives an “I

am alive” message from q, p then removes q from its list of

suspected processes.

This implementation is also defined by two parameters:

� the interrogation period �

i

: �
i

is the time between

two emissions of an “Are you alive ?” message.

� the timeout delay �

to

: �

to

is the time between the

emission of an “Are you alive ?” message by p to q,

and the time where p starts suspecting q, until p re-

ceives an “I am alive” message from q.

3.4 Strategies comparison

Heartbeat failure detectors have many advantages over

pinging failure detectors. The first advantage is that a heart-

beat failure detector sends half as many messages as a ping-

ing detector for the same detection quality.

The second advantage is the quality of the estimation for

the timeout delay �

to

. The heartbeat detector estimates

the transmission delay of “I am alive” messages, whereas

the pinging detector must estimate the transmission delay

of “Are you alive ?” messages, the reaction delay, and the

transmission delay of “I am alive” messages. Therefore it

is easy to make a better estimation with a heartbeat message

than by pinging another detector.

The pinging technique is often used in membership such

as DCOM from Microsoft [12] where, in the absence of re-

sponse to n successive “Are you alive ?” messages, the pro-

cess is regarded as having failed. This approach is different

from that of unreliable failure detectors, because here the

detection of a process failure is definite, whereas unreliable

failure detectors only suspect crashes: detected processes

may be freed from suspicion later on.

4 Adaptation of the delays

4.1 Arrival date estimation

We believe that the heartbeat strategy is obviously better

in order to implement failure detectors. In this section, we

study how to estimate the arrival time of a heartbeat mes-

sage. The QoS of the detection depends on the �

i

and �

to

parameters.

The timeout delay �

to

is important because it deter-

mines the detection time. The estimation for �
to

uses lo-

cal information that each host possesses. This information

is limited to the observation of heartbeat message arrival

dates and the interrogation period �

i

. On the other hand

the arrival time of heartbeat messages can be altered by the

network load and the host load.

In our solution the failure detector is structured into two

layers. The first layer makes an accurate estimation to opti-

mize the detection time. The second layer can modulate this

detection time with respect to the needs in terms of QoS. In

this part, we show how to estimate the arrival time as ac-

curately as possible without increasing the number of false

detections. For this purpose we compare three methods: the

first one is proposed in [5]. The second one is inspired by

Jacobson’s algorithm [10], which is used to calculate the

Round Trip Time (RTT) in the TCP protocol. The third

method is the one we propose: it combines both the above

mentioned techniques.

The three methods are compared with respect to the per-

formances in section 6.

4.1.1 Chen’s estimation

In [5], the authors propose several implementations relying

on clock synchronization and a probabilistic behaviour of

the system. The estimation presented here is carried out for

unsynchronized clocks.

This technique estimates the arrival time for heartbeat

messages (EA) and adds a constant safety margin. The ex-

pected arrival date is calculated as shown below, and the

safety margin is determined by a preliminary calculation

with respect to QoS requirements. In [6], the authors pro-

pose an implementation of this detector, yet their safety

margin is adjusted to the variations in the network condi-

tions (messages delays and losses).

Each process q considers the n most recent heartbeat

messages, denoted m

1

;m

2

; : : : ;m

n

. Let A
1

; A

2

; : : : ; A

n

be their receipt times according to q’s local clock. When

at least n messages have been received, EA
(k+1)

can be

estimated by:

EA

(k+1)

�

1

n

�

k

X

i=k�n

A

i

��

i

� i

�

+ (k + 1):�

i

The next timeout delay �

to

(which expires at the next

freshness point �
(k+1)

) is composed of EA and � the con-

stant safety margin. EA represents the theoretical arrival

date. The safety margin is added to avoid false detections

caused by transmission delay or processor overload.

�

(k+1)

= �

(k+1)

+EA

(k+1)

This technique provides a good estimation for the next

arrival time. However, it uses a constant safety margin be-

cause the authors assume that the model presents a proba-

bilistic behaviour.

4.1.2 Jacobson’s estimation

On the contrary to the first estimation, in which we sup-

pose that we can determine a constant safety margin �
(k+1)

3

beforehand, Jacobson’s estimation assumes less knowledge

about the system model. The original algorithm is used in

TCP to estimate the delay after which the transceiver re-

transmits its last message.

This estimation supposes that the behaviour of the sys-

tem is not constant. It adapts the safety margin each time

it receives a message. The adaptation of the margin � uses

the error in the last estimation. Parameter
 represents the

importance of the new measure with respect to the previ-

ous ones. delay represents the estimate margin, and var

estimates the magnitude between errors. � and � permit to

ponder the variance; typical values are � = 1 and � = 4.

The original algorithm is:

error

(k)

= A

k

�EA

(k)

� delay

(k)

delay

(k+1)

= delay

(k)

+
:error

(k)

var

(k+1)

= var

(k)

+
:(jerror

(k)

j � var

(k)

)

�

(k+1)

= �:delay

(k+1)

+ �:var

(k+1)

And �

(k+1)

= �

(k)

+�

i

+ �

(k+1)

This method constantly adapts the margin with respect

to the network state. However, it can take a long time to

converge and the estimation time is less accurate.

4.1.3 Our estimation

Our method is a combination of the two previous ones. We

estimate the arrival time with the first method and we eval-

uate the safety margin dynamically with Jacobson’s algo-

rithm.

Chen’s estimation of EA(k + 1) supposes that we com-

pute an average of n last arrival dates for each estimation,

but we can transform it into a recursive equation : until pro-

cess q receives at least n heartbeat messages from process

p, q estimates the next arrival time by:

U

(k+1)

=

A

k

k+1

:

k:U

(k)

k+1

the arrival date average

EA

(k+1)

= U

(k+1)

+

k+1

2

:�

i

with U

(1)

= A

0

And when process q has received more than n heartbeat

messages, it uses:

EA

(k+1)

= EA

(k)

+

1

n

(A

k

�A

(k�n�1)

)

The safety margin �

(k+1)

is calculated similarly to Ja-

cobson’s estimation. The next timeout �
to

(k+1)

, activated

by q when it receives m

k

, expires at the next freshness

point:

�

(k+1)

= EA

(k+1)

+ �

(k+1)

4.2 Dynamic adaptation of the interrogation delay

Failure detectors are designed to be used over long pe-

riods of time. The needs in terms of QoS are not constant,

they vary according to each application. To adapt the QoS,

we can change the interrogation delay �

i

. The other rea-

son for adapting the QoS of the detector is to adapt the

bandwidth required by detectors with respect to the network

load.

The idea is to allow the adaptation of �
i

during the exe-

cution. In order to achieve this, all the detectors must reach

a consensus over the new �

i

.

The reasons to make this change are: the deliberate in-

crease or decrease of the quality of detection, situations

where the network capacity cannot allow to maintain the

current quality of detection anymore, or where the network

capacity increases and allows to obtain a higher quality of

detection.

When a detector reaches one of the above situations, it

starts a consensus. The expression for the QoS used here is

the heartbeat emission frequency.

Each detector has a list of its client applications with an

estimation of their respective qualities of detection. Accord-

ing to this list each detector can evaluate a quality margin

that it may propose for the consensus. The quality margin

is composed of two values: namely the ability quality, and

the required quality.

The ability quality is obtained by means of a heuristic,

which evaluates the maximum quality of service that the

network can support. The required quality is obtained with

respect to the minimum quality of detection required by the

applications.

At the end of the consensus a margin is decided. The

new heartbeat sending interval �
i

is the minimum of the

two quality of service values.

5 Failure Detector Algorithm

5.1 Algorithm

We now present our algorithm for a failure detector of

class }P . Our implementation is composed of two layers.

In the first layer, we implement a basic failure detection ser-

vice, which provides an estimation for the arrival date of the

next heartbeat message optimized with respect to detection

time. This estimation is obtained from the expected arrival

date and a dynamic margin (see section 4.1). The aim of

this layer is not to avoid all false detections but to provide a

compromise between the number of false detections and the

accuracy of the detection time. Thus, the section 5.2 seeks

to demonstrate that the estimation agrees with the network

variations. The second layer adapts the detection service

provided by the first layer with respect to the application

needs (see section 7).

Figure 1 shows the whole algorithm of our failure detec-

tor. The second layer presented here (Task 3) allows us to

proove that we can obtain an eventually perfect failure de-

tector }P . This layer introduces �
p

(q), increased at each

premature timeout to avoid future timeouts.

4

Every process p 2 � executes :

Initialization:

suspe
t

p

 ;

for all q 2 �� fpg

�

p

(q) = 0

f�

p

(q) belongs to the second layer

and allows to moderate the detectiong

�

0

(q) = 0

f Initially, all process q will be suspected by process p g

EA

(0)

(q) = U

0

(q) = 0

delay

0

(q) = initial value

�

0

(q) = var

0

(q) = error

0

(q) = 0

A

(0)

(q) = 0

k(q) = �1

f k(q) keeps the largest sequence number

in all the messages p received from q so far g

Task 1:

at time i:�
i

, sends heartbeat m
i

to �� fpg

f�

i

is the detection intervalg

Task 2:

upon receive message m
j

at time t from q :

if j > k(q) then

f received a message with a higher sequence number g

k(q) j

error

k

(q) t� EA

(k)

(q)� delay

k

(q)

delay

(k+1)

(q) delay

k

(q) +
:error

k

(q)

var

(k+1)

(q) var

k

(q) +
:(jerror

k

j � var

k

(q))

�

(k+1)

(q) �:delay

(k+1)

(q) + �:var

(k+1)

(q)

if j < n then

U

(k+1)

=

t

k+1

�

k

k+1

U

k

EA

(k+1)

= U

(k+1)

+

k+1

2

:�

i

else

EA

(k+1)

= EA

(k)

+

1

k

:(t�A

(k�n�1)

(q))

endif

A

(k)

(q) t

f A(q) is an array which contains the n

last message arrival dates from qg

�

(k+1)

(q) EA

(k+1)

(q) + �

(k+1)

(q)

f set the next freshness point �
`+1

(q) g

if q 2 suspe
t

p

then

suspe
t

p

 suspe
t

p

� fqg

f trust q since m
k

(q) is still fresh at time t g

�

p

(q) �

p

(q) + 1

f increase the timeout period g

endif

Task 3:

upon �
k+1

(q) = the current time :

f if the current time reaches �
k+1

,

then none of the messages received is still fresh g

wait during �
p

(q) and if no message receive from q

f detection moderation g

suspe
t

p

 suspe
t

p

[fqg

f suspect q since no received message is still fresh at this time g

Figure 1. Implementation of FD 2 }P

The failure detector works as follows. In Task 1 each

process p periodically sends an “I am alive” message to all

processes.

Task 2 performed every time a process p receives an “I

am alive” message from a process q. It is the first layer of

our detector: process p estimates the expected arrival date

EA(q) and the safety margin � for the next “I am alive”

message from q. From these results, process p determines

the next freshness point �(q) for process q. If process p cur-

rently suspects q, then it stops suspecting it and increases its

moderator timeout �
p

(q) because p knows that its previous

timeout on q was premature.

Task 3 starts when process p does not receive an “I am

alive” message from q before the next freshness point �(q).

Process p waits again for a message from q during the mod-

erator timeout �
p

(q). If after this delay, it still does not

receive a message from q, it starts suspecting it.

5.2 Proof

We show here that the algorithm of figure 1 implements

a failure detector of class }P , on condition that the system

is in accordance with the system model defined in section

3.1.

Consider a partially synchronous system S. For every

run of S there is a Global Stabilisation Time (GST) after

which some bounds on relative process speeds and mes-

sage transmission times hold. The values of GST and these

bounds are not known.

A failure detector of class }P , must verify the two prop-

erties represented by the two Theorems 1 and 2.

Theorem 1 Strong completeness. Eventually every process

q that crashes is permanently suspected by every correct

process.

9 t

0

: 8t � t

0

;8p 2
orre
t(t); 8q 2
rashed; q 2

suspe
t

p

(t)

Theorem 2 Eventual strong accuracy. There is a time after

which the correct processes are not suspected by any correct

process.

9 t

bound

;8t � t

bound

;8p; q 2
orre
t(t); q 62 suspe
t

p

(t)

Strong Completeness

Theorem 1 is verified if Lemma 1 and 2 are verified. That

is if there is a time t
mute

after which no correct process p

receives heartbeat messages from the crashed process q, and

if there is a time t
timeout

k

after which all correct processes

p permanently suspect q.

Lemma 1 If process q crashes at t

rash

, then there is a time

t

mute

after which process p stops receiving messages from

q.

t

mute

� t

rash

+�

msg

5

Proof: All the time instants considered in the rest of this

section are assumed to be after GST. We also assume that,

at these instants, all the messages sent before GST have

already been delivered and processed. These assumptions

allow us to consider in the rest of the section, that the un-

known bounds on process speeds and on message transmis-

sion times hold.

9 t

GST

: 8m

k

j t

s

k

� t

GST

: (t

r

k

� t

s

k

) < �

msg

(1)

t

s

k

is the time when q sends m
k

and t
r

k

is the time when p

receives m
k

Suppose a process q crashed at t

rash

. Then q stops

sending “I am alive” messages.

6 9 m

k

j t

s

k

� t

rash

(2)

The process p cannot receive message k from process

q after t
r

k

+ �

msg

. Hence process p cannot receive any

message from process q after t

rash

+�

msg

. �

Lemma 2 For any sequence of k messages received by pro-

cess p from q, there is a time �
k

after which process p starts

suspecting process q if it does not receive any message from

q.

Proof: From Task 2, when the process p receive a message

m

(k�1)

from process q, it calculates a new �

k

after which

it starts suspecting process q. We must prove that the �
k

is

always bounded. The �

k

is calculated as follows (Task 2

and 3):

�

k

= (EA

k

+ �) + �

p

(q)

In Task 2, if k > n, EA
k

is equivalent at:

EA

k

=

1

n

�

k

X

i=k�n

t

r

i

��

i

� i

�

+ k:�

i

from our model (3)

EA

k

<

1

n

�

k

X

i=k�n

(t

s

i

+�

msg

)��

i

� i

�

+ k:�

i

as t

s

i

= t

s

(i�1)

+�

i

then (4)

EA

k

< t

s

0

+�

msg

+ k:�

i

Partial result 1 The expected arrival date of the m
k

mes-

sage is bounded by:

t

s

k

< EA

k

� t

s

k

+�

msg

In Task 2, the safety margin �
k

is obtained:
8

>

>

<

>

>

:

error

k

= t

r

(k�1)

�EA

(k�1)

� delay

(k�1)

delay

k

= delay

(k�1)

+
:error

(k�1)

var

k

= var

(k�1

) +
(jerror

(k�1)

j � var

(k�1

)

�

k

= �:delay

k

+ �:var

k

(5)

From partial result 1 and partially synchronous system,

we can bound error by:

��

msg

� delay

(k�1)

� error

k

� �

msg

� delay

(k�1)

Therefore, we can deduce:

delay

k

� (1�
):delay

(k�1)

+
:�

msg

delay

k

� (1�
)

k

delay

0

+
:�

msg

k�1

X

i=0

(1�
)

i

As

8

>

<

>

:

P

(k�1)

i=0

(1�
)

i

=

1�[1�
℄

k

and
 2℄0; 1[=) 1�
 � 1

then 8k 2 N j (1�
)

k

< 1

Then in the worst case, delay is bounded by:

0 � delay

k

� delay

0

+�

msg

We can apply the same reasoning to var:

If �

msg

> delay

0

:

var

k

� (1�
)

k

+
(2�

msg

� delay

0

)

P

k�1

i=0

(1�
)

i

We can conclude that var, in the worst case (note that this

case is not compatible with the worst of case for delay), is

bounded by:

0 � var

k

� 1 + 2�

msg

� delay

0

(6)

Partial result 2 From intermediate results, if delay and

var are bounded, we can conclude that � is also bounded

by:

0 < �

k

� �(delay

0

+�

msg

) + �(1 + 2�

msg

� delay

0

)

Partial result 3 From task 3, every time where p times out

and q is correct then �

p

(q) is increased. There is a time

t

bound

where �

p

(q) is large enough to avoid false detec-

tion and stops increasing. When �

p

(q) becomes upper than

�

msg

then no false detection can happened.

9 t

bound

;8t � t

bound

; �

p

(q)(t) � �

msg

and �

p

(q)(t) = �

p

(q)(t + 1)

In Partial result 1, we show that the expected arrival date

for any message m
k

is bounded, in result 2, � is bounded

and in result 3, �
p

(q) is bounded. All components of �
k

are bounded then we can deduce that �
k

is bounded. If for

each message m

(k�1)

received from process q, process p

activates a bound timeout, then there is a time after which p

suspects q, if it receives no new message from q. The strong

completness is proved. �

Eventual Strong Accuracy

The Theorem 2 is verified if the �
k

(q) of process p is large

enough to avoid that process p wrongly suspects process q.

From our model, if the lemma 3 is verified then the Theorem

2 is a direct deduction.

6

Lemma 3 There is a time after which �

k

is greater than

(t

s

k

+�

msg

).

9t

bound

;8t � t

bound

; �

k

� t

s

k

+�

msg

Proof: From partial results 1, 2 and 3 we can say that:

8m

k

�

t

s

k

< EA

k

0 � �

k

9 t

bound

;8t > t

bound

�

msg

� �

p

(q)(t)

(7)

We can conclude that:

9t

bound

;8t > t

bound

; �

k

> t

s

k

+�

msg

(8)

The Theorem 2 is verified because if �
k

is larger than

(t

s

k

+�

msg

) then process q cannot be considered as having

failed by process p. �

6 Performances

This section is dedicated to studying the behaviour of our

failure detector and of its underlying estimation method. It

is important to note that these measures are focused on the

first layer of our detector, the aim of which is to smooth the

detector observation.

First, we describe the experimentations environment,

then we compare different estimation techniques presented

in Section 3. We show how parameters influence the behav-

ior of our strategy.

6.1 Environment

The experiment described in this section was performed

on a non decticated cluster of six PCs. We consider

a heterogeneous network composed of four Pentium III

600 MHz and two Pentium IV 1400 MHz linked by a

100 Mbit=s Ethernet. This network is compatible with the

IP-Multicast communication protocol. The algorithms were

implemented in Java (Sun’s JDK 1.3) on top of a 2.4 Linux

kernel.

We consider crash failures only. All disruptions in these

experiments are due to processor load and transmission de-

lay. For this experiment, the interrogation interval adapta-

tion is disabled so as not to interfere with the observation.

All experimentations are parameterized as follows:

�

i

= 5000ms,
 = 0:1, � = 1 and � = 2, n = 1000.

The following graphic representations show how host

1

perceives host
2

. For this purpose, each graphic compares

the real interval between two successive heartbeat message

receptions (t
r

(k+1)

� t

r

k

) with the results from the dif-

ferent estimation techniques: that is the interval between

the arrival date of the last heartbeat message and the esti-

mation for the arrival date of the next heartbeat message

(�
(k+1)

�t

r

k

). False detections are brought to the fore when

the plot for the real interval is above the plot for the estima-

tions.

6.2 Initialization

This scenario illustrates the evolution of the delay when

the service starts. Figure 2 presents a representative exam-

ple from the detector on host
1

.

Here the initial �

to

is equal to 5700 ms, meaning

delay = 700 ms and var = 0. The detector must then

adapt the margin to optimize the detection time.

4950

5050

5150

5250

5350

5450

5550

5650

5750

5850

1 16 31 46 61 76 91 106 121 136 151 166 181 196

message number

d
e

la
y

 (
m

s
)

Real delay

Dynamic estimation

Chen

RTT

Figure 2. �
to

evolution at detector initializa­
tion

Figure 2 illustrates the initialization of a failure detector

which monitors another host amongst the five in the system.

We can observe the evolution of �

to

with respect to the

received message number for each estimation method.

The real delay between two receptions of heartbeat mes-

sages is nearly constant. In spite of this Chen’s estimation

is not a dynamic method so the �
to

is almost constant (con-

trary to [6]); the two other methods converge to the �

i

in-

terval (5000ms). These latter methods retain a small safety

margin which, as observed in our estimation (Dynamic es-

timation), is always higher than the RTT estimation. This

comes from the fact that our expected time evaluation is

obtained with the real arrival dates average, and the real de-

viations are most often positive.

6.3 Punctual overload

The aim of this experimentation is to show how failure

detectors react when there is a punctual deviation of the

sending period. This deviation is obtained by the creation

and destruction of 100 threads in the J.V.M. of the send-

ing host which initializes many variables and activates the

garbage collector. Figure 3 illustrates the evolution of �
to

in this situation. In this scenario, the initial value of �
to

is

equal to 5100 ms: delay = 100 ms and var = 0 ms. The

garbage collector is activated after the emission of the 38

th

and the 195

th heartbeat messages.

The shape of the delay deviation is due to the load on the

transmitting host: every negative deviation is instantly fol-

lowed by an equivalent positive deviation. Indeed this load

7

4970

5170

5370

5570

5770

5970

6170

6370

6570

1 31 61 91 121 151 181 211 241 271
message number

d
e

la
y

 (
m

s
)

Real delay

Dynamic estimation

Chen

RTT

Figure 3.�
to

evolution with punctual overload

slows the execution of the heartbeat process; when the pro-

cess resumes, it compensates this interruption by sending

consecutive heartbeat messages.

We observe that Chen’s estimation increases lightly �

to

,

because the last deviation has the same weight as all the pre-

vious delays in the �
to

calculation. Whereas in the RTT es-

timation, as the last delay is more important than the others,

the estimation is more reactive, in proportion to parameter

. For our estimation, this deviation has consequences on

the calculation of the expected date and the safety margin.

It has the same reaction as the RTT estimation in the

short term and the same reaction as Chen’s estimation in

the medium term.

This scenario is not very adequate for a dynamic estima-

tion because the deviations due to overload are too spaced

out. However, it illustrates the reaction of failure detectors;

the adaptation layer algorithm ought to be more suited to

deal with such deviations.

6.4 Constant overload

A constant overload implies that the emission periods of

heartbeat messages are very irregular. This scenario shows

how failure detectors can avoid false detection while up-

holding a correct detection time.

This load is generated by an external program on the

sending host which periodically creates and destroies 100

processes. The initial configuration is: �

to

= 5700 ms,

delay = 700 ms and var = 0 ms.

This experimentation shows that our estimation allows to

avoid more false detections than the RTT estimation, and at

the same time upholds a better detection time than Chen’s

estimation. This experimentation is summarized in figure 5.

To complete this comparison, figure 6 summarizes an ex-

perimentation performed over two days. The hosts which

take part in the detection are submitted to a normal use by

the laboratory staff.

This experimentation is in accordance with the previous

result: our estimation is a compromise between a good de-

tection time and the need to avoid false detections.

4985

5005

5025

5045

5065

5085

5105

1 31 61 91
message number

d
e

la
y

 (
m

s
)

Real delay

Dynamic estimation

RTT

Chen

Figure 4. �
to

evolution with constant load

Dynamic RTT Chen’s

estimation estimation estimation

number of false

detections
0 4 0

Detection Time

average (ms)
5016; 6 5011; 9 5089; 9

Figure 5. Summary of constant load ex­

periement.

Dynamic RTT Chen’s

estimation estimation estimation

number of false

detections
24 51 19

Mistake duration

average (ms)
76; 6 25; 23 51; 61

Detection Time

average (ms)
5152; 6 5081; 49 5672; 53

Figure 6. Summary of the “real” experiement

6.5 Impact of parameters

Our estimation uses many parameters; these parameters

do not have the same influence on the failure detector be-

haviour. For example the initial delay and var values are

not important overall because the aim of this estimation is

to adapt those values to the environment. The important pa-

rameters are those for the margin calculation: (
) and for

the expected arrival date estimation: (n).

 allows to adjust the influence of the last delay in re-

lation to the previous results and n is the number of mes-

sages which take part in the calculation. These parameters

allow to adjust the memory of the estimation. Therefore,

the higher their values, the less dynamic the expected ar-

rival date becomes, as seen in the previous experimenta-

tions. However, if the values are too small, the expected

arrival date is indeed dynamic but it is not that interesting

because we already have a short-term dynamic safety mar-

gin. Figure 7, illustrates the influence of parameter n with

8

an unique false detection in our dynamic estimation tech-

nique.

4980

5000

5020

5040

5060

5080

5100

5120

1 11 21 31 41 51 61 71 81

message number

d
e
la

y
 (

m
s
)

Real delay

estimation with n=10

estimation with n=100

estimation with n=1000

Figure 7. the n last messages influence on
Dynamic estimation

7 Adaptation layer

The current functional architecture we propose includes

an adaptation layer between the basic failure detection layer

and the user application. Adaptors provide higher-level al-

gorithms to enhance the characteristics of the failure detec-

tors. There are two motives for this adaptation layer.

Firstly, it is a simple means of improving the quality of

the detection. In the context of this article, the developed

adaptor guarantees that the supplied detection satisfies the

}P requirements. Moreover, the number of false detections

is memorized in order to evaluate the degree of reliability

associated to the detector. This degree is then included in

the calculation to determine the most suitable value for the

new detection delay.

Secondly, the adaptation layer guarantees the adequacy

of the detection: it allows to adjust the provided quality of

service to the needs of each application. By maintaining

statistics such as the meantime between failures or the rate

of false detections, as well as by exchanging information

with the adaptation layer from other nodes, an application-

specific failure detection service can be achieved.

Adapting the failure detection isn’t left entirely to the

responsibility of the client software developer for several

reasons. Typically, application overheads might be cut by

piggybacking some messages on the communications ex-

changed between detectors. The conception of the piggy-

backing mechanism is sure to be simpler as part of the rel-

evant adaptor. An implementation of this example is de-

tailed in the next section. In addition, the adaptation layer

provides a simple way of defining various qualities of ser-

vice, each of them embodied in a corresponding adaptor,

for the same application. Furthermore, the adaptation layer

enables several applications with very dissimilar needs and

constraints to rely on the same failure detector through their

specific adaptor.

8 Application

The failure detector implementation presented in this ar-

ticle is part of the DARX (Dynamic Agent Replication eX-

tension) project [14]. The goal of this project is to provide

a framework for designing large-scale agent systems. Such

systems theoretically comprise thousands of agents; in gen-

eral, they are developed in the field of distributed artificial

intelligence. Many multi-agent platforms [2, 1, 16] propose

solutions to deploy agent applications over networks. How-

ever, to our knowledge no platform provides the required

characteristics for massive agent organisations running over

asynchronous systems such as the world wide web.

As part of the means to supply adequate support for

large-scale agent applications, the DARX platform includes

a hierarchical, fault-tolerant naming service. In order to

provide a synchronous abstraction of the underlying net-

work, this distributed service is mapped upon the failure

detection service through the adaptation layer presented in

section 7. Eventually strong accuracy is required for the

naming service to be fully functional, thus justifying }P

detection as }S wouldn’t suffice. With a view to support-

ing large-scale integration, the naming service comprehends

two levels: a local and a global one.

The system is composed of local groups bound together

by a global group. Every local group elects exactly one

leader which will participate to the global group. At the

global level, each name server maintains a list of the known

agents within the application. This information is shared

and kept up-to-date through a consensus algorithm implying

all the global name servers. When a new agent is created, it

is registered locally and the information is passed on to the

group leader; likewise in the case of an unregistration.

This organization supposes that two different failure de-

tector types are distinguished. This distinction is important,

since a failure does not have the same interpretation in the

local context as in the global one. A local failure corre-

sponds to the crash of a host, whereas in the global context

a failure represents the crash of an entire local group. In this

situation, the ability to provide different qualities of service

to the local and the global detectors is a major asset of our

implementation.

Figure 8 details the integration of each failure detector

within the naming service. The information is exchanged

between name servers via piggybacking on the failure de-

tection messages, that is the “I am alive” notifications. The

local lists of processes which are suspected to be faulty are

directly reused to maintain the global view of the applica-

tion. In the DARX context, this means that the list of agents

present in the system is systematically updated. When a

9

failure

detector

Piggy−backing

processes
list

Network

Name Server

messages

to send

failed received

Local / Global

messages

Figure 8. Usage of the failure detector by the
name server

DARX server is considered as having crashed, all the agents

it hosted are removed from the list and replaced by replicas

located on other hosts.

9 Acknowledgments

We would like to thank M. Aguilera, S. Toueg, W. Chen

and the anonymous referees for their helpful comments.

10 Conclusion

In this paper, we have presented a new failure detector

implementation. This notion is based on considering failure

detection as a shared service between several applications.

We dissociate two layers: the first layer, called the basic

layer, provides a basic estimation of the timeout delay �

to

and the second layer, called the adaptation layer, adapts

the information provided by the first layer to the application

needs.

We have studied the impact of different estimation algo-

rithms on the QoS of the detection provided by the basic

layer, and we have seen that our algorithm provides a good

compromise between the optimization of the detection time

and the need to avoid false detections. Build upon this ba-

sic layer, we prove that it is possible to obtain an Eventu-

ally Perfect failure detector }P given a specific adaptation

layer, although the first aim of this layer is to adapt the QoS

to the application needs. Therefore, this layer is specific to

the application and it’s possible to use several implementa-

tions which can provide different visions of the same envi-

ronment.

The main characterics of our implementation of the hear-

beat failure detector whose are to be adaptive as well as

dynamic, with a detection delay �

to

composed of a short-

term dynamic safety margin and a medium-term dynamic

expected arrival date. This failure detector can also change

its interrogation delay �

i

to adapt its adequacy in terms of

network load to the application needs and the network ca-

pacities. It is particularly adapted for large-scale applica-

tions using a detection group division and a hierachical or-

ganisation. The use of IP-Multicast and the capacity to use

piggybacking on heartbeat messages confirm this ability.

References

[1] IBM Aglets homepage. http://www.trl.ibm.com/aglets/.
[2] ObjectSpace Voyager 4.0. www.objectspace.com.
[3] M. Aguilera, W. Chen, and S. Toueg. Using the heartbeat

failure detector for quiescent reliable communication and

consensus in partitionable networks. TCS: Theoretical Com-

puter Science, 220, 1999.
[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM, 1996.
[5] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of

service of failure detectors. In Proc. of the First Int’l Conf.

on Dependable Systems and Networks, 2000.
[6] B. Devianov and S. Toueg. Failure detector service for de-

pendable computing. In Proc. of the First Int’l Conf. on

Dependable Systems and Networks, pages 14–15, juin 2000.
[7] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal

synchronism needed for distributed consensus. Journal of

the ACM, 34(1):77–97, 1987.
[8] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure de-

tectors in omission failure environments. In Symp. on Prin-

ciples of Distributed Computing, page 286, 1997.
[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility

of distributed consensus with one faulty process. Journal of

the ACM, 32(2):374–382, apr 1985.
[10] N. W. Group. Rfc 2988 : Computing tcp’s retransmission.

http://www.rfc-editor.org/rfc/rfc2988.txt, 2000.
[11] R. Guerraoui, M. Larrea, and A. Schiper. Non block-

ing atomic commitment with an unreliable failure detector.

Technical report, ESPRIT Basic Research Project BROAD-

CAST, June 1995.
[12] M. H. M. M. Kirtland. The distributed component ob-

ject model architecture. http://msdn.microsoft.com/ library/

backgrnd/html/ msdn dcomarch.htm, July 1997.
[13] M. Larrea, A. Fernández, and S. Arévalo. Optimal imple-

mentation of the weakest failure detector for solving consen-

sus. In Proc. of the 19th Annual ACM Symposium on Princi-

ples of Distributed Computing (PODC-00), pages 334–334,

NY, July 16–19 2000. ACM Press.
[14] O. Marin, J.-P. B. P. Sens, and Z. Guessoum. Towards adap-

tive fault-tolerance for distributed multi-agent systems. In

Proc. of European Research Seminar on Advances in Dis-

tributed Systems, pages 195–201, May 2001.
[15] I. Sotoma and E. Madeira. Adaptation - algorithms to adap-

tative fault monitoring and their implementation on corba.

In Proc. of the IEEE 3rd Int’l Symp. on Distributed Objects

and Applications, pages 219–228, september 2001.
[16] M. Strasser, J. Baumann, and M. Schwehm. An agent-based

framework for the transparent distribution of computations.

In Arabnia (ed.), Proc. of Parallel and Distributed Process-

ing Techniques and Applications, 1999.
[17] P. Verissimo, A. Casimiro, and C. Fetzer. The timely com-

puting base: Timely actions in the presence of uncertain

timeliness. In Proc. of the Int’l Conf. on Dependable Sys-

tems and Networks, pages 533–542, New York City, USA,

june 2000. IEEE Computer Society Press.

10

