
The Performance of Independent Checkpointing in Distributed Systems

Pierre Sens

MASI Laboratory / CNRS 818, IBP, Université Paris VI
4, place Jussieu - 75252 Paris Cedex 05, France

email: sens@masi.ibp.fr

Abstract
This paper describes performance measurements of an

implementation of independent checkpointing in a
network of workstations. Independent checkpointing is a
simple technique for providing fault tolerance in distribu-
ted system. Because processes do not coordinate during
checkpointing, this technique has a low run-time
overhead. To avoid the classical domino effect, our
implementation relies on a message logging mechanism.

We have measured fault management overhead for
different kinds of parallel applications. The costs of
checkpointing are very low. However, message logging
introduces a sizeable overhead. We compare these
results to other works implementing different
checkpointing policies, and we show that independent
checkpointing is an efficient way to provide fault
tolerance for long-running distributed applications
composed of processes exchanging small stream of data.

1. Introduction

 Checkpointing and rollback recovery are well-known
techniques to provide fault tolerance in distributed
systems [2, 15, 16]. With independent checkpointing,
each process saves its state independently, and when a
fault is detected, the execution is rolled back and resumed
from earlier checkpoints. Because processes do not
coordinate, this method generally provides low run-time
overhead. However, since the set of checkpoints may not
define a consistent global state, the failure of one process
may lead to the rollback of other processes in a well-
known domino effect [6].

 Proc. of the 28th Hawaii International Conference on
Computer on System Sciences - Sofware Technology
Track, Maui, Hawaii, Januray 1995 (IEEE Computer
Press)

In this paper, we present the performance of an
implementation of independent checkpointing: STAR
[21]. STAR automatically recovers processes allocated on
faulty hosts. It uses a reliable message logging to avoid
the domino effect [22, 4].

We implemented our fault-tolerant facility on top of an
existing operating system. The operating system support,
UNIX, has been chosen for its widely distribution over the
world. However, this approach is more costly than using
fault tolerance designed with operating system
modifications or hardware support. Hardware support is
often used for critical fault tolerant applications but it is
specialized in given classes of applications and is
expensive.

We have evaluated the overhead of fault-tolerant
management. This overhead includes both the cost of
saving the checkpoint in stable storage and the cost of
message logging. Stable storage is provided by a
replicated file manager. A set of servers implementes this
reliable storage. The cost of checkpointing therefore
depends of accessing the file servers. The most important
factors affecting the checkpointing performance were the
amount of data saved with each checkpoint on stable
storage, and the latency in writing data. To reduce the
cost of checkpointing, two complementary techniques can
be applied: incremental methods, and the possibility for a
process to continue executing while its checkpoint is been
written to stable storage [9].

This paper is organized as follows. Section 2
describes system and application models; Section 3
presents our checkpointing scheme; Section 4 describes
the process recovery protocol and addresses the problem
of failure detection; Section 5 presents our
implementation of the stable storage using replicated
files; Section 6 reports and analyses our performance
measurements, and outlines some other similar works.
We conclude in Section 7.

2. Models

2.1. Execution model

An application program is a dynamic set of
communicating processes. A process may use any
resources of the network (CPU and files). The only way
to exchange information between processes is through
message passing. We make further assumptions that
processes involved in the parallel computation are
deterministic. The state of a process is determined by its
starting state and by the sequence of messages it has
received [Chandy 85]. This assumption is met by many
applications, but excludes all programs using the local
time.

2.2. Environment model

Our implementation runs on top of Unix, on a set of
workstations linked by a local area network (Ethernet). In
such environment the failure probability is low. Clark
and McMillin measured the average crash time on a local
area network to be once every 2.7 days [7]. Applications
concerned by a fault-tolerant management are long-
running such as high number factoring, VLSI
applications, images processing, or gaussian elimination.
Such applications may be executing for hours, days or
weeks. In that case, the failure probability becomes
significant, and the need for reliability is an important
concern.

2.3. Failure model

We make the following assumptions about the failure
model:

• The system is composed of fail-silent processors
[19], where the failed node simply stops and all the
processes on the node die. Viewed from the
communication network a faulty processor remains
silent and cannot receive or send message. Valid
processors are not automatically informed of the
failure.

• Only host failures are considered. A host is seen
failed if it is not accessible. Network partitioning is
not considered.

• Failures are uncommon events while very short
recovery delays are not required. Thus, we favour
solutions with a low overhead in normal functioning.

2.4. Basic architecture

The user’s applications rely on a fault-tolerant
software layer providing accesses to all external
components (processes and files). This layer also
provides global naming space for processes. Thus, the
process name is location independent and a process can
transparently migrate.

Our system has been developed on top of SunOS 4.1.3
(UNIX BSD) system. It consists of a set of servers and
provides a client library to user’s processes.

3. Checkpointing

3.1. Checkpointing a single process

The checkpoint of a single process is a snapshot of the
process’s address space at a given time. For reliability
reasons, each checkpoint is saved on stable storage. To
reduce the cost of checkpointing, two complementary
techniques can be applied: incremental methods, and the
possibility for a process to continue executing while its
checkpoint is written [9].

Incremental methods reduce the amount of data that
must be written. Only the pages of the address space that
have been modified since the last checkpoint are written
to stable storage. The most efficient way to implement
incremental checkpointing is to use internal operating
system mechanisms. In that case, the set of modified
pages is determined using the dirty bit in each page table
entry. This mechanism reduces the cost of checkpointing
in a sizeable way. However, it must be integrated in the
kernel; this is in contradiction with our portability
requirement. We have implemented an incremental
checkpointing outside the kernel. When a process does a
checkpoint, we keep in local memory a copy of its
address space. This copy is used at the next checkpoint to
find the data that have been modified.

The second method to reduce checkpoint cost allows
the process to continue executing while its checkpoint is
written on stable storage. However, if the process
modifies any of its pages during the checkpoint, the
resulting checkpoint may not represent a real state of the
process. Two techniques avoid this problem:

• The internal copy-on-write memory protection may
be used to protect pages during the checkpoint. At
the start of the checkpoint, the pages to be written

are write-protected. After writing each page to stable
storage, the checkpoint manager removes the
protection from the page. If a process attempts to
modify a protected page, the page is copied to a
newly allocated page, and the protection of the
original page is removed. The newly page is not
accessible by the process. It is only used by the
checkpoint manager to finish the checkpoint. In the
Manetho system [9], Elnozahy et al. have
implemented a copy-on-write method. They obtain
a significant improvement (between 4.7 times and
3.4 times faster checkpointing). However, like the
incremental methods, this technique is integrated in
the kernel.

• The second solution is the pre-copying method. At
checkpoint time, pages to be written are copied to a
separate area in memory and are then written from
there to the stable storage without interrupting the
process’s execution. This method is simple and can
be implemented outside the kernel.

Our checkpoint mechanism uses incremental and pre-
copying techniques. To locally copy the process’s
address space, we use the fork UNIX system call. This
routine creates a new process with the same address space
as the caller. At the checkpoint time, the process calls the
fork function, then the new created process performs its
context backup while the caller continues executing. The
newly process compares its address space with the space
of the process created at the previous checkpoint time and
it only saves data that have been modified. We show in
Section 6 that these techniques reduce the cost of
checkpointing in a sizeable way.

3.2. Checkpointing communicating processes

Numerous approaches to checkpointing and rollback
recovery have been proposed in the literature for parallel
systems. Checkpointing techniques can be divided into
two categories: consistent and independent checkpointing.

With consistent checkpointing, processes coordinate
their checkpointing actions such that the collection of
checkpoints represents a consistent state of the whole
system [6]. When a failure occurs, the system restarts
from these checkpoints. If we compare the results of [2]
and [9], the main drawback of this approach is that the
messages used for synchronizing a checkpoint were an
important source of overhead. Moreover, after a failure,
surviving processes may have to rollback to their latest
checkpoint in order to remain consistent with recovering
processes. Alternatively, Koo and Toueg [16] reduce the

number of processes to rollback, by analyzing the
interactions between processes.

In the second approach, each process independently
saves its state with no synchronization with the others.
This technique is simple, but since the set of checkpoints
may not define a consistent global state, the failure of one
process leads to the rollback of other processes. A
reliable message logging [14, 23] avoids this classical
domino effect. Logging methods fall into two classes:
pessimistic and optimistic. Pessimistic message logging
suppresses additional rollback by synchronously logging
messages [18, 4], i.e., the receiver is blocked until the
message is logged on stable storage. In this way, all sent
messages are logged, and a process in its recovered
execution will directly access to the log to receive again
messages. Optimistic message logging reduces failure-
free overhead by logging recovery information
asynchronously [22, 15]. Several messages can be
grouped together and written to the stable storage in a
single operation to reduce the logging overhead.
However, processes that survive a failure may be rolled
back.

We adopt independent checkpointing with pessimistic
message logging. This logging is particularly adapted for
application composed of processes exchanging small
streams of data. In that case the message logging
overhead becomes low. The cost of the logging is
proportional to the number of messages. This method has
the following advantages:

• elimination of the domino-effect,
• checkpoint operation can be performed unilaterally

by each process and any checkpointing policy may
be used,

• only one checkpoint is associated with each process,
• checkpoint cost is lower than in consistent

checkpointing and recovery is implemented
efficiently because all interprocess communications
need not be replayed.

The benefits listed above are gained at the expense of
the space that is required for storing the message logs and
the time to log messages. The space overhead is
reasonable given the large disk capacity.

To avoid the domino effect, our communication
protocol relies on the confining principle: “a recovered
process has no interaction with the others until it reaches
the last state before the failure.” All communications
done between the checkpoint and fault point are locally

simulated. To respect this principle, we use the following
techniques:

• Each process reliably saves all received messages.
A recovered process refers to this backup to access
to old messages. Thus, old valid senders are not
concerned by the recovery of a process. All requests
to receive messages are transmitted to the local
fault-tolerance layer. This layer directly accesses to
the backup or waits for messages according to the
user’s process state (recovered or not). At the
process level there is no difference between a
message reception from the network or from the
backup.

• Because processes are deterministic, a recovered
process sends again messages since its last
checkpoint. A stamp on each message allows to
detect these retransmissions. Each message has a
unique stamp and is retransmitted with the same
stamp in case of failure. The fault-tolerant layer
detects the retransmission by comparing the stamp
of the message with the stamp of the last transmitted
message. This method avoids the reception of an
old message from a recovered process.

Message logs are replicated on several hosts. We
show in the performance section that the time of message
logging linearly depends on the replication degree. For a
replication degree of two, a message takes 1.5 more time
to be delivered than the same message sent without
backup. This is the main drawback of our system.

4. Failure recovery

The failure management requires two essential
mechanims: failure detection and process recovery.

4.1. Failure detection

A straightforward method for software host crash
detection is to wait for a normal host access failure. This
detection method has no overhead but the failure
treatment can only occur when one needs to use the faulty
host. Thus, the failure recovery time can be very high
because it directly depends on the network traffic. At
worst, if no process communicates with a given host, this
latter crash will never be detected. For this reason, such a
method is not adapted to an efficient failure processing.

A second detection method is to periodically check the
hosts states. The recovery is invoked as soon as a host
does not respond to the checker. This technique provides

a good recovery time but introduces an overhead in the
network traffic depending on the check period.

We use a combination of the two previous methods.
The normal traffic is used as in the first method, but when
the traffic is too low between two hosts, we generate
detection messages. An obvious software method is for
each host to check all other ones. This solution leads to a
big number of detection messages. It is not suitable for
complex systems including many hosts where the
network would become rapidly overcrowded by detection
messages. A better solution is for one host to check the
validity of only one other. For this reason, we organize
hosts in a logical ring of detection. Each host
independently scans its immediate successor in the ring.
The checking process is straightforward and the cost in
messages is relatively low. However, a ring
reconfiguration protocol must be executed when adding
or removing a host [4]. To perform an efficient
reconfiguration protocol, each has a global view of the
ring. Host insertion in the ring is done in three steps:
broadcasting of an insertion message, updating of the
global knowledge and transmission of the knowledge to
the new host.

4.2. Processes recovery

Our recovery scheme is composed of three main steps.
First, we identify processes that were running on faulty
hosts. This step requires global knowledge of all
processes locations. In STAR, each host has a local copy
of all locations. The set of copies is updated each time a
process is created, moved or terminated.

The second step allocates new processes on a valid
host, usually the host which has detected the failure. This
may overload the detecting host if a big number of
processes were running on a faulty host, or if the same
host detects successively several failures. The successor
of STAR integrates a load balancing facility for dynamic
allocation of processes when recovered [11]. This
integration is described in [12].

Finally, the last step consists in restoring process
context from their checkpoints. Then, executions are
replayed from the checkpoint time to the crash time.
During this period, communications are locally simulated
(see Section 3).

5. Stable storage

The stable storage is implemented using standard
UNIX files. To ensure fault-tolerant file accesses, files
are duplicated on several disks belonging to different
hosts. For user’s processes, replicated files are necessary
but not sufficient. When a process rolls back to its last
checkpoint, it needs to see used files at the state of the
checkpoint time. To solve this problem, we manage
versions of duplicated files: each file in use has an old
version (also replicated) corresponding to the last
checkpoint of the process.

All accesses to the storage are achieved through a
specific file manager. This manager has the following
properties:

• fault tolerance: each file is duplicated on separate
disks,

• consistency: file copies are kept identical,
• version management.

To improve the fault tolerance degree, all copies of a
same file are kept identical. If there are N file copies, then
N-1 simultaneous failures are tolerated. To ensure the
equality of each copy, the file manager performs a
reliable broadcast protocol [3]. This solution can appear
greedy but failures are assumed as uncommon events,
only a small number of copies is necessary (most of the
time 2 copies are enough). The number of copies
depends on the environment: the number of hosts and the
crash probability. This number is given by the network
administrator when he starts the STAR servers. An
application designer may change this value according to
his fault tolerance and performance needs.

The file manager also manages versions of duplicated
files. Since each process needs only one checkpoint, only
one old version is needed for each file in use. When a
process rolls back, old versions of all files in use replace
the current ones. In the current version of STAR, we
consider that files are not shared. The management of
shared files is a complex problem, and requires a
distributed database manager. A future extension would
integrate an existing and open log manager as Camelot
[8], Clio [10] or KitLog [20].

The file manager is implemented as a set of file
servers. A file server is associated with each copy. The
file functions of the user's library coordinate accesses to
file servers to keep the consistency property.

6. Performances

In this section, we present the performance of our
implementation of independent checkpointing. All
measurements have been done on a set of Sparc Station 1
with 24 Mb of memory connected by Ethernet. The
environment has not been modified (usual demons were
running). All results presented in this paper are averages
over a number of trials.

6.1. Application Programs

We chose three long-running, compute-intensive
applications representing different memory usage and
communications patterns:

• The gauss application performs gaussian elimination
with partial pivoting on a 1024 x 1024 matrix. The
matrix is distributed among several processes. At
each iteration of the reduction, the process which
holds the pivot sends the pivot column to all other
processes.

• The multiplication application multiplies two square
matrixes of size 1024 x 1024. The computation is
distributed among several processes. No
communication is required other than reporting the
final solution.

• The fft application computes the Fast Fourier
Transform of 32768 data points. The problem is
distributed by assigning each process an equal range
of data points. Like the previous application, no
communication is required other than reporting the
final solution.

6.2. Applications requirements

Table 1 presents running time, communication, and
memory requirements for the three applications when run
without fault-tolerant management (without
checkpointing and message logging). In all applications
the computation has been distributed among four
processes. Moreover, a specific process, the master,
coordinates computing processes. Thus, each application
is composed of five processes distributed on five hosts.

Gauss and matrix multiplication require a sizeable
amount of data stressing the checkpoint and state
restoration mechanisms. Moreover, the gauss application
exhibits a large amount of communications especially
stressing the message logging. The fft application is
long-running and requires a medium amount of data.

Application programs Running Time
(seconds)

Per Process Memory
(Kbytes)

Per Process communication
(Kbytes)

gauss 344 1704 2700

matrix multiplication 723 2688 0.06

fft 1177 1200 0.06

Table 1: Application requirements

6.3. Checkpointing overhead

This section presents the running times of the
applications programs when run with independent
checkpointing with a 2-minutes checkpointing interval.
This interval seems quite low. In practice, longer
intervals should be used. In that sense, we overestimate
the cost of checkpointing. The periodic checkpointing
routine is implemented as the interrupt service routine for
UNIX alarm(T) system call, where T is the checkpoint
interval.

We evaluate the cost of the three checkpointing
policies with two different replication degrees of the
stable storage: one (i.e., each backup is composed of one
UNIX file) and two (i.e., each backup is composed of two
identical UNIX files). Checkpoints and message logs are
stored on Sparc Station 10 with 32 Mb of memory.

Full checkpointing. Table 2 presents the running
times for the basic checkpointing policy. All data are
written in the stable storage and the process is blocked
until the checkpoint is over.

Low communicating applications (matrix
multiplication and fft) have a relatively low overhead.
On the other hand, the intensive communicating
application (gaussian elimination) has a very high
overhead. This result is the direct consequence of the
message logging cost.

Pre-copy checkpointing. We use pre-copy to avoid
blocking the processes while the checkpoint is written on
the stable storage. Table 3 presents the running time with
pre-copy checkpointing.

With full checkpointing, the performance degradation
is dependent of the amount of data to be saved, due to the
latency in accessing file servers. For applications with a
large address space, pre-copy provides an important
reduction. For instance, the overhead of gauss and matrix
multiplication applications respectively decreases of
18.12 % and 10.45 % with a replication of two degrees.
For the application with a smaller address space such as
fft, we obtain no measurable overhead reduction.

Applications programs
One replication degree Two replication degree

Running Time
(seconds)

Percentage of
overhead

Running Time
(seconds)

Percentage of
overhead

gauss 445 29.36 567 64.92

matrix multiplication 750 3.78 844 16.79

fft 1223 3.94 1244 5.75

Table 2: Full checkpoint overhead

Applications programs One replication degree Two replication degree

Running Time
(seconds)

Percentage of
overhead

Running Time
(seconds)

Percentage of
overhead

gauss 427 24.32 505 46.80

matrix multiplication 758 4.96 768 6.34

fft 1220 3.74 1228 4.36

Table 3: Pre-copy checkpoint overhead

Incremental checkpointing. We see that pre-copy
significantly reduces the cost of checkpointing. However,
the amount of data written on stable storage is important
whereas a small part of the data change between two
checkpoints. The goal of incremental checkpointing is to
reduce the amount of data to be written. The table 4
indicates the overhead obtained with incremental
checkpointing.

For the three applications, incremental checkpointing
provides a sizeable reduction of the overhead.
Comparing to the pre-copy checkpointing, we obtain a
reduction of the overhead from 24% to 256% with one
replication degree and from 42% to 190% with two
replication degree. Applications can be divided into two
categories: applications with an address space that is
modified with high locally (matrix multiplication and fft
applications) and applications with an address space that
is modified almost entirely between any two checkpoints
(gauss application). For the applications in the first
category, incremental checkpointing is very successful
(more than 77 % of reduction for matrix multiplication
and 190 % of reduction for fft with a replication of two
degrees). For the applications in the last category,
incremental checkpointing is less effective (about 42 % of
reduction for the gauss application with a replication of
two degrees).

6.4. Message logging overhead

We have evaluated the cost of message logging for the
intensive communicating application. The overhead of
message logging for the gauss application is about 6.83 %
for a replication of one degree and 14.53 % for a
replication of two degrees. The cost of message logging
represents about a third of the global overhead.

More generally, we have evaluated the cost of the
STAR communication protocol according to the
replication degree of the log. The cost to send one
message with one backup is 1.2 times slower than without
backup. It is 1.5 times slower for two backups, 2 times
slower for three backups, and 2.4 times slower for four
backups.

6.5. Related work

A substantial body of work has been published
regarding fault tolerance by means of checkpointing. The
main issues that have been covered are reducing the
number of messages required to synchronize a checkpoint
[2, 9, 17, 24], limiting the number of hosts that have to
participate in taking the checkpoint or in rolling back [1,
13, 16], or using message logging [4, 14, 23]. However,
there are very few studies on performances of
checkpointing.

Applications programs One replication degree Two replication degree

Running Time
(seconds)

Percentage of
overhead

Running Time
(seconds)

Percentage of
overhead

gauss 411 19.62 457 32.85

matrix multiplication 744 3.00 748 3.57

fft 1189 1.05 1194 1.50

Table 4: Incremental checkpoint overhead

Bhargava et al. [2] give some performance
measurements of consistent checkpointing. In their
environment, the messages needed for synchronizing a
checkpoint implied an important overhead. Authors have
limited their study to small size of programs (4 to 48
kilobytes).

Elnozahy et al. [9] have implemented consistent
checkpointing on an Ethernet network of Sun 3/60
workstations. They measured the cost of synchronized
checkpointing for different distributed applications and
obtained good results. With a 2 minutes checkpoint
interval, their checkpointing increased the running time of
application by about 1 %. The worst overhead measured
was 5.8 %. However, Manetho has been designed inside
the V-System and cannot be easily distributed.

Borg et al. [4] has implemented a fault-tolerant version
of UNIX based on three-way atomic message
transmission: the TARGON/32 system. This system is
specific to a hardware architecture. They measured the
performance on only two machines. In that case, the
performance turns out to be 1.6 times slower than a
standard UNIX. The recovery time for a process is 5-15
seconds.

8. Conclusion

We have presented an implementation of independent
checkpointing. A reliable storage of messages avoids the
well-known domino effect. The reliable storage is
achieved through a replicated file manager. Our system
provides an efficient host crash detection with a logical
structuring of host in a ring.

We have developed on a set of Sparc stations
connected by Ethernet. We gave some performance
measures that show the efficiency of our system and we
showed that a fault tolerant system is viable for a
workstation model. These measures showed that the total
cost of our fault management is low for long-running
applications with small message exchanges.

It appears from other works and our experience, that
some optimization methods are very important: pre-copy
checkpointing and incremental checkpointing [9]. Pre-
copy checkpointing avoids to block the process while the
checkpoint is written on stable storage. For applications
with a large address space, it decreases the overhead from
18% to 10%. Incremental checkpointing reduces the

amount data written on stable storage during each
checkpoint. Comparing to pre-copy, it decreases the
overhead from 14% to 2.8 %.

We currently develop a new version to take benefit of
a load balancing manager (the GATOS System [11]
developed at the MASI Lab). GATOS allows to use
efficiently all the available processing power. STAR uses
GATOS placement algorithms to choose the best host to
restart faulty processes [5]. GATOS uses detection
messages of the logical ring to exchange load
information. It also takes advantage of the STAR
checkpoint/rollback mechanism to migrate processes
located on overloaded hosts.

9. References

[1] M. Ahamad and L. Lin. Using Checkpoints to Localize
the Effects of Faults in Distributed Systems. In Proc. of
the 8th Symposium on Reliable Distributed Systems, pp.
1-11, October 1989.

[2] B. Bhargava, S-R. Lian, and P-J. Leu. Experimental
Evaluation of Concurrent Checkpointing and Rollback-
Recovery Algorithms. In Proc. of the International
Conference on Data Engineering, pp. 182-189, March
1990.

[3] K.P. Birman and T. Joseph. Reliable Communication in
the Presence of Failures. ACM Transactions on
Computer Systems, 5:47-76, February 1987.

[4] A. Borg, W. Blau, W. Craetsch, F. Herrmann, and W.
Oberle. Fault Tolerance under Unix. ACM Transactions
on Computer Systems, 7(1):1-24, February 1989.

[5] R. Boutaba and B. Folliot. Load Balancing in Local Area
Networks. In Proc. of the Networks’92 International
Conference on Computer Networks, Architecture and
Applications, Trivandrum, India, pp. 73-89, October
1992.

[6] K.M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. ACM
Transactions on Computer Systems, 3(1):63-75, February
1985.

[7] H. Clark and B. McMillin. DAWGS - A Distributed
Compute Server Utilizing Idle Workstations. Journal of
Parallel and Distributed Computing, 14:175-186,
February 1992.

[8] D.S. Daniels. Distributed Logging for Transaction
Processing. PhD Thesis, Technical Report CMU-CS-89-
114, Carnegie-Mellon University, Pittsburg, PA (USA),
December 1988.

[9] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The
Performance of Consistent Checkpointing. In Proc. of
the 11th Symposium on Reliable Distributed Systems,
October 1992.

[10] R.S. Finlayson. A Log File Service Exploiting Write-
once Storage. PhD Thesis, Technical Report STAN-CS-
89-1272, Stanford University, Stanford, CA (USA), July
1989.

[11] B. Folliot. Distributed Applications in Heterogeneous
Environments. In Proc. of the European Forum for Open
Systems, Tromsø, Norway, pp. 149-159, May 1991.

[12] B. Folliot and P. Sens. GATOSTAR: A Fault-tolerant
Load Sharing Facility for Parallel Applications. In Proc.
of the First European Dependable Computing
Conference, Berlin, Germany, October 1994. Lecture
Notes on Computer Science, Springer-Verlag.

[13] S. Israel and D. Morris. A Non-intrusive Checkpointing
Protocol. In Proc. of the Phoenix Conference on
Communications and Computers, pp. 413-421, 1989.

[14] D.B. Johnson and W. Zwaenepoel. Sender-based
Message Logging. In Proc. of the 7th Symposium on
Fault Tolerant Computing Systems, pp. 97-104, June
1990.

[15] D.B. Johnson and W. Zwaenepoel. Recovery in
Distributed Systems Using Optimistic Message Logging
and Checkpointing. Journal of Algorithms, 11(3):462-
491, September 1990.

[16] R. Koo and S. Toueg. Checkpointing and Rollback-
Recovery for Distributed Systems. IEEE Transactions on
Software Engineering, SE-13(1):23-21, January 1987.

[17] T.H. Lai and T.H. Yang. On Distributed Snapshots.
Information Processing Letters, 25:153-158, May 1987.

[18] M.L. Powell and D.L. Presotto. Publishing: A Reliable
Broadcast Communication Mechanism. In Proc. of the
9th ACM Symposium on Operating Systems Principles,
pp. 100-109, 1983.

[19] D. Powell, G. Bonn, D. Seaton, P. Verissimo, F.
Waeselynck. The Delta-4 Approach to Dependability in
Open Distributed Computing Systems. In Proc. of the
18th International Symposium on Fault-Tolerant
Computing Systems, Tokyo, Japan, pp. 246-251, 1988.

[20] M. Ruffin. KITLOG: a Generic Logging Service. In
Proc. of the 11h Symposium on Reliable Distributed
Systems, Houston, Texas, pp. 139-146, October 1992.

[21] P. Sens and B. Folliot. Star: A Fault Tolerant System for
Distributed Applications. In Proc of the 5th IEEE
Symposium on Parallel and Distributed Processing,
Dallas, Texas, pp. 656-660, December 1993.

[22] A.P. Sistla and J.L. Welch. Efficient Distributed
Recovery Using Message Logging. In Proc. of the 8th
Annual ACM Symposium on Principles of Distributed
Computing, August 1989.

[23] R.E. Strom and S.A. Yemini. Optimistic Recovery in
Distributed Systems. ACM Transactions on Computer
Systems, 3(3):204-226, August 1985.

[24] Z. Tong, R.Y. Kain, and W.T. Tsai. A Lower Overhead
Checkpointing and Rollback Recovery Scheme for
Distributed Systems. In Proc. of the 8th Symposium on
Reliable Distributed Systems, pp. 12-20, October 1989.

