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Abstract. Recent work has shown that the durability of large-scale stor-
age systems such as DHTs can be predicted using a Markov chain model.
However, accurate predictions are only possible if the model parameters
are also estimated accurately. We show that the Markov chain rates pro-
posed by other authors do not consider several aspects of the system’s
behavior, and produce unrealistic predictions. We present a new analyt-
ical expression for the chain rates that is condiderably more fine-grain
that previous estimations. Our experiments show that the loss rate pre-
dicted by our model is much more accurate than previous estimations.

1 Introduction

Large-scale distributed storage systems such as DHTs [1,3,4,2] can provide a
low-cost alternative to expensive persistent storage solutions such as Storage
Area Networks (SANs) and dedicated servers. DHTs guarantee persistence by
replicating the same data object on several nodes, and regenerating replicas
that are lost after a disk crash. However, unlike local-area storage systems, ob-
ject replicas in a DHT are usually stored on geographically dispersed nodes, so
communications between replicas have usually low bandwidth.

A low-bandwidth environment limits the rate at which lost replicas can be
regenerated. For instance, if each node stores 100 GB, has a 1 Mbit/s connection
to the Internet, and allocates one third of its total bandwidth to restore failed
replicas, then repairing a crashed hard disk will take approximately one month.
Long repair times, in turn, increase the probability of permanent data loss.
Assuming random failures, there’s a non-zero probability that all replicas of a
given object will fail within a short period of time. Since it takes so long to
restore the whole contents of a failed disk, the last replica of an object may be
lost before the system can restore at least one copy of it. Adding more replicas
decreases the probability of irrecoverable data loss, but can never completely
eliminate it.

In practice, the number of replicas per object is chosen so that the probability
of data survival is kept above a desired value. However, care must be taken when
choosing the replication factor. An excessively high value will reduce the usable
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storage capacity and increase the network overhead. Conversely, a low replication
factor may result in poor durability.

Recent work has shown that object durability can be predicted by modeling
the state of the system using a continuous-time Markov chain [6,7]. The chain
models the number of replicas of a given object that are present in the system
at a given time. Although this model is relatively simple, the difficulty resides
in estimating the chain’s transition rates accurately. Incorrect estimations of
these model parameters will result in the probability of data survival being
underestimated, or, worse, overestimated. This, in turn, will lead the system’s
designer into choosing a replication factor based on poor model predictions.

Although the failure rate may be estimated rather easily (using the disk
MTBF, for instance), modeling the repair rate is much more difficult, as this
depends on a myriad of factors such as the number of available replicas, the
amount of data per node, the available bandwidth, and even the failure rate.
In this paper we provide an analytical expression for system’s repair rate that
takes into account all these factors.

This paper makes the following contributions. First, it shows that estimating
the Markov chain repair rates to predict durability in DHTs is a hard prob-
lem, as these rates depend on a large number of factors. Second, it presents an
analytically-derived expression of the system’s repair rate that is much more
accurate than previous estimations. This increased accuracy directly translates
into a much better prediction of the probability of object loss in the system.

The rest of this paper is organized as follows. Section 2 lists our assumptions
and describes the Markov chain model. Section 3 discusses previous approxima-
tions of the chain repair rates, and presents our new analytical expression to
estimate these rates. Section 4 evaluates the model’s predictions through long-
term simulations, and Section 5 concludes the paper.

2 Model

2.1 Assumptions and Definitions

We consider a Distributed Hash Table composed of thousands of nodes con-
nected to the Internet by low-bandwidth links, e.g., 1 Mbit/s links. Each object
is associated with a unique key, and is replicated on k adjacent nodes which
are close to the key in the DHT address space. This is a common replication
scheme used by DHTs such as PAST [1] and OpenDHT [14]. We assume a ring
address space as this is the easiest to visualize, but our results also apply to
other geometries such as XOR [3] and d-torus [5]. We assume that each node
stores thousands of objects, and a capacity from tenths to hundreds of gigabytes
per node.

The contents of a node may be lost due to a hard disk crash or a destructive
operating system reinstall. We make no difference between the two, and we
will use the terms node failure and crash to refer to the same event. We also
assume that failures are random and uncorrelated. We assume that failed hard
disks are replaced by an empty disk quickly after the crash (i.e., within a few
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hours). We ignore this replacement time as it is negligible compared to the time
needed to regenerate a disk’s contents. The node then starts regenerating the
objects it stored before the crash using the following repair procedure: first, since
replicas are stored on ring neighbors, the node determines which objects are to
be restored by querying its neighbors. Then, the node starts transferring the
objects sequentially from the remaining replicas. This is basically what existing
DHTs do to regenerate replicas after a crash.

We assume highly stable nodes, i.e., that the disconnection and churn rate
are low. Contrary to P2P file-sharing systems, which are characterized by high
churn [8,9], storage systems must rely on nodes which stay connected for long
periods of time (i.e., weeks or months) in order to guarantee data persistence [10].
These could be, for example, the workstations of a corporate network (in a
system that federates several networks), users who leave their P2P client running
continously, or residential set-top boxes equipped with hard disks and running
a P2P storage service. Because of this, churn and temporary disconnections will
not be considered in our current analysis. A more refined model that takes these
into account is left for future work. Also, since we assume high availability,
our analysis will only consider systems that use replication, rather than erasure
codes, as the former has been shown to be more efficient for highly available
nodes [16].

Finally, we list some important definitions that will be used throughout the
following sections:

– MTBF. Mean time between failures of a given node. This figure may be
smaller than the hardware failure rate of a disk because of destructive oper-
ating system reinstalls.

– b. Average number of bytes stored per node.
– bwmax. Maximum bandwidth per node allocated to regenerate lost replicas.

We assume symmetric upstream and downstream bandwidths.
– θ. The value of θ gives the ratio between the MTBF and the minimum time

needed to restore the contents of a hard disk. It is defined as follows:

θ =
MTBF

b/bwmax

θ is a key parameter of our model. High values of θ indicate that a node will
finish restoring its hard disk long before it crashes again, and that it only
spends a small fraction of its total uptime regenerating replicas lost after a
crash. Conversely, a small θ means that is likely that the node will fail again
shortly after it finishes restoring its disk from the previous crash, or even
before the disk is completely restored.

2.2 Markov Chains

In order to estimate data durability, we model the state of a data object using
a continuous-time Markov chain [6,7]. Each state in the chain represents the
number of replicas for a particular object that exist in the system at time t after
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Fig. 1. The number of live replicas of a given object is modeled using a continuous-time
Markov chain

its insertion into the DHT. Therefore, the chain has k + 1 states, 0 to k, where
k is the replication factor. Figure 1 shows the Markov chain for k = 5. State
transitions correspond to replicas being lost or restored. Once state 0 is reached,
there are no more copies left and the object is lost. The probability of being in
state i as a function of the time t can be obtained by solving a system of k + 1
linear differential equations. The probability of losing the object permanently is
simply the probability of reaching state 0 at time t.

Failure rates, i.e., transitions to lower states, are caused by hard disk crashes or
system reinstalls, so they can be approximated using the disk MTBF provided by
the manufacturer or the destructive reinstall rate observed on the real system.
As usual, we will assume that the time between failures of the same node is
exponentially distributed with mean MTBF= λ−1 [11,6,7]. Thus, if each disk
fails with MTBF, then the time between two failures in a set of i independent
disks becomes MTBF/i = (iλ)−1. This yields a failure rate iλ from state i to
state i − 1.

The repair rate μi, i.e., from state i to state i+1, is much harder to determine.
Intuitively, it corresponds to the inverse of the mean time needed by the system
to restore a single copy of the object when k − i replicas are missing. However,
the average time needed to regenerate one replica is not independent of the
number of replicas being repaired. As the number of failed replicas increases,
fewer sources become available to download from. This means that two or more
nodes may contact the same source, congesting its upstream link and decreasing
the average transfer rate.

3 Analytical Expression for the Transitions Rates μi

3.1 Previous Estimations

Chun et al. [7] have presented a system for persistent data storage called Car-
bonite, in which they predict durability using the same model of Figure 1. They
suggest using a constant repair rate μi = μ′, and propose a simple approxima-
tion for μ′. Their estimation for the value of μ′ is as follows1: if each node stores
1 We refer to this value as μ′ to differentiate it from our estimation of μ which will be

presented in the next section.
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b bytes of data in its hard disk, and has allocated a maximum repair band-
width of bwmax bytes/sec, then the time needed to restore a crashed hard disk
is T ′

r = b/bwmax. Therefore, the model repair rates are:

μ′
i = μ′ =

1
T ′

r

=
bwmax

b
(1)

In a different approach, Ramabhadran et al. [6] suggest that the repair rate
μi grows with the number of missing replicas, and propose the following linear
expression:

μ′′
i = (k − i)μ (2)

However, the authors do not provide any expression for μ, as they consider it
to be a tunable system parameter, dependent on how aggressively the system
reacts to failures.

As we will see in the next sections, the expression for μ′ is too simple and
provides a poor estimation of the real mean repair rate. The expression for
μ′′ assumes a parametrable repair rate, but the authors do not provide any
expression for its maximum value.

3.2 Theoretical Analysis

In this section we present a new analytical expression for the mean repair rate
μ. The value of μ represents the rate at which, in average, one copy of a given
object is regenerated after a crash. We then use this value to approximate μi

using the linear equation 2 presented in Section 3.1.

Estimating μ. We define μ as the mean rate at which one object replica is
restored after a disk crash, or equivalently, as the inverse of the mean time tr
required to restore an object replica:

μ =
1
tr

(3)

To estimate tr, we start by noticing that each hard disk does not store a single
object of b bytes, but rather thousands of smaller objects. Thus, assuming that
the crash occurs at tcrash, that restoring the contents of the hard disk takes a
time Tr, and that the node does not crash again while the disk is being restored,
then each object i will be restored at some time tcrash + tr,i, with 0 < tr,i ≤ Tr.
Second, when more than one replica of the same object is missing, it becomes
highly likely that the remaining replicas will receive concurrent download re-
quests from several nodes. Since the uploader’s upstream bandwidth must be
shared by several downloaders, the effective bandwidth available to each restor-
ing node will be lower than the maximum bandwidth bwmax.

Finally, depending on the amount of data stored per node, the time needed to
restore a hard disk may not be negligible compared to the MTBF. In such cases
(i.e., for small values of θ), there is a small but non-zero probability that the same
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Fig. 2. A premature crash occurs when the node fails before it has finished restoring
its hard disk. As a result, the repair time for that object is significantly increased.

node will fail a second time before it has finished restoring the contents of its
hard disk, as shown in Figure 2. The probability of premature crashes depends
on the value of θ. For θ � 1, the hard disk restore time is negligible compared to
the mean time between failures, and premature crashes will be rare. In practice,
however, the system may exhibit values of θ for which premature crashes cannot
be ignored. For instance, Chun et at. show that storing 500 GB per node on
Planetlab nodes yields θ = 6.85 [7]. With this value of θ, the probability of a
premature crash is around 14%.

Analytical expression for tr. We now obtain an analytical expression for tr
by taking into account the issues described above. Our theoretical analysis is
based on the following key assumption: the nodes that are restoring their hard
disk consume a portion of the bandwidth allocated for replica regeneration.
Therefore, when a node contacts another node to transfer an object back to its
hard disk, the available bandwidth will be less than bwmax.

Before we detail our analysis, a few definitions are in order:
– Tr. Time required to restore the whole contents of a hard disk (i.e., b bytes),

assuming that no premature crashes occur during the restore process. This
is not simply b/bwmax, as the actual available bandwidth will be lower than
bwmax due to nodes downloading from the same sources concurrently.

– be. Average amount of bytes transferred per node between two successive
crashes. For θ � 1, we have be ≈ b. However, for smaller values of θ we have
be < b due to the effect of premature crashes. In fact, when a premature
crash occurs, the amount of bytes transferred between those two crashes will
be less than b (e.g., between tcrash1 and tcrash2 in Figure 2), resulting in an
average value which is lower than b.

– bwb. Average background bandwidth consumed by each node due to replica
regeneration. This is simply the average amount of bytes be transferred be-
tween crashes, divided by the MTBF:

bwb =
be

MTBF
(4)

– bwr. Effective bandwidth available to each node for replica regeneration.
This is obtained by substracting the background bandwidth bwb consumed
by other nodes from the maximum repair bandwidth bwmax:

bwr = bwmax − bwb (5)
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– X . Random variable representing the time between two successive crashes of
the same node. X follows an exponential distribution with mean MTBF=λ−1:

fX(x) = λe−λx for x ≥ 0

The following analysis contains two parts. First, we find the value of Tr as
a function of the system parameters b, bwmax, MTBF. Second, we obtain an
expression for tr as a function of Tr.

Let Z = τ(X) be the time that the node spends downloading objects between
two successive crashes separated by a time X . We then have:

Z = τ(X) =
{

X for X < Tr

Tr for X > Tr

Clearly, if X < Tr then a premature crash has occurred, so the time spent
downloading objects is equal to the time between the two crashes. Conversely,
for X > Tr the hard disk is completely restored in a time Tr, after which the
node remains idle until the next crash.

Since X is exponentially distributed with parameter λ, the expected value of
Z, which we will call Te, is:

Te =
∫ ∞

0
τ(x)fX(x)dx =

∫ Tr

0
xλe−λxdx +

∫ ∞

Tr

Trλe−λxdx =
1 − e−λTr

λ
(6)

The value of Te can be interpreted as the average time a node spends transferring
objects between two consecutive crashes, taking into account the probability of
premature crashes. Notice from equation 6 that Te depends on Tr, which is not
known yet.

We then notice that be is the amount of bytes transferred during the time
interval Te using a repair bandwidth bwr. Similarly, a node will transfer b bytes
during a time Tr using a bandwidth bwr. Therefore, we have:

bwr =
be

Te
=

b

Tr
=⇒ be =

Te

Tr
b (7)

Combining equations 4, 5 and 7 we have the following two equations:

bwb =
be

MTBF
=

Te

Tr

b

MTBF
(8)

Tr =
b

bwr
=

b

bwmax − bwb
(9)

Notice that in equations 6, 8 and 9 the only unknown variables are Te, bwb and
Tr (b, bwmax, and MTBF are known). Therefore, we can find their values by
solving a system of three equations. This can only be done numerically, as Tr

appears in the exponent of equation 6.
From this point we will assume that the value of Tr is known (as it can be

computed numerically from the system of equations we just described). We will
now use Tr to find an expression for tr.
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Let Y be a random variable representing the time at which a given object is
restored after a given crash. According to this definition, the mean object repair
time tr is simply the expected value of Y , i.e., tr = E[Y ].

In order to find E[Y ], we must consider several cases:

1. The node finishes restoring its disk before the next crash occurs, i.e., X > Tr.
In this case, the object will be restored at some time y with 0 < y < Tr.
Assuming that the variable Y is uniformly distributed in the interval [0, Tr],
the average object restore time for this case is:

tr1(x) = E[Y |X = x, x > Tr] =
Tr

2

2. A premature crash occurs, i.e., X < Tr. We must distinguish between two
more cases:
(a) The object is restored before the node crashes again, i.e., Y < X . The

probability of this occuring, given that a premature crash has taken place
at t = x, is:

p2a(x) = P (Y < X |X = x, x < Tr ∧ x > Y ) =
x

Tr

In this case, the average object repair time will be uniformly distributed
in the interval [0, x]. Thus, we have:

tr2a(x) = E[Y |X = x, x < Tr ∧ x > Y ] =
x

2

(b) The node crashes again before the object is restored, i.e., Y > X . As
before, we obtain the probability that this occurs:

p2b(x) = P (Y > X |X = x, x < Tr ∧ x < Y )

= 1 − P (Y < X |X = x, x < Tr ∧ x > Y ) = 1 − x

Tr

In this case, however, the node crashes again before the object is repaired,
and restarts a new repair procedure from stratch. All we can say is that
the object will be repaired after some average time tr = E[Y ] from the
beginning of this new repair procedure. Thus, in this case we have:

tr2b(x) = E[Y |X = x, x < Tr ∧ x < Y ] = x + tr

Finally, the mean object repair time tr is obtained as the expected value of Y :

tr = E[Y ] =
∫ ∞

0
E[Y |X = x]fX(x)dx

=
∫ Tr

0

[
tr2a(x)p2a(x) + tr2b(x)p2b(x)

]
fX(x)dx +

∫ ∞

Tr

tr1(x)fX(x)dx

=
∫ Tr

0

[
x

2
x

Tr
+ (x + tr)(1 − x

Tr
)
]
λe−λxdx +

∫ ∞

Tr

Tr

2
λe−λxdx
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Fig. 3. Mean repair time predicted by our expression, as well as Carbonite’s, for dif-
ferent values of the MTBF

After computing the integrals, we obtain tr as a function of λ and Tr:

tr =
1
μ

=
1 + eλTr (λTr − 1)

λ(eλTr − 1)
(10)

Figure 3 shows the variation of the mean repair time (i.e., tr = 1/μ) as a
function of the MTBF for a system storing 300 GB per node and allocating 1
MBit/s per node as maximum repair bandwidth bwmax. Notice that Carbonite’s
expression for μ does not depend on the MTBF (cf. equation 1), thus resulting
in the constant value shown in Figure 3.

First-order approximation of μi. Although we have obtained an analytical
expression for the value of μ, the Markov chain requires k − 1 repair rates,
one for each state i in the chain, with 0 < i < k. As a first approximation,
we will consider that μi increases linearly with each state, i.e., μi = (k − i)μ.
Notice that this linear form has already been suggested by other authors (cf.
equation 2). However, their model lacked a general expression for μ, considering
it as a tunable parameter. As we will see in the next section, simulations show
that a linear expression provides a good approximation of the real μi when the
system uses a small number of replicas (i.e., k = 3).

4 Validation

In order to evaluate the expressions of Section 3, we use a discrete-event simulator
that implements a simplified version of the PAST protocol [1]. Each node has a
unique identifier in the integer interval [0, 2160], thus adopting a ring geometry.
Data objects are replicated on the k nodes which are closest to the object key.

We assume a symmetric repair bandwidth of 1.5 Mbit/s, as was previously
done by other authors [7]. Each node stores b bytes, which can vary from tenths
to hundreds of gigabytes of data, according to the experiment. In all cases the
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data stored by each node is divided into 1000 objects, so each object has a size
b/1000 bytes. We assume high node availability (cf. Section 2.1), so temporary
node disconnections are ignored by our simulator.

All our simulations use a DHT of 100 nodes, as our simulations show that
increasing the network size does not qualitatively change the results. The rea-
son is that objects are replicated on adjacent nodes on the ring, so restoring a
node’s hard disk only affects a small number of other nodes. We generate syn-
thetic traces of failures by obtaining node inter-failure times from an exponential
distribution of mean MTBF [7]. Whenever the last replica of an object is lost,
the simulator logs the time elapsed since the insertion of that object into the
DHT, and inserts a new object of the same size. This ensures that the amount
data in the DHT remains constant during the experiment.

Unless otherwise noted, we use an MTBF of two months. Although this is
small for a hardware failure rate, it is not far from the failure rate observed
in a study conducted on Planetlab nodes [12]. Also, the durability of a system
depends on the key parameter θ, i.e., the ratio between the MTBF and the node
capacity. For instance, a system with θ = 10 will exhibit the same durability
whether it stores 100 GB per node with a MTBF of 2 months, 500 GB per
node with an MTBF of 10 months, or any other equivalent combination of b
and MTBF. By choosing a MTBF of 2 months and varying the node capacity b
between 50 and 500 GB per node, we can test our model for 2 ≤ θ ≤ 20, thus
covering the configurations most likely found in real systems.

4.1 Mean Repair Rate μ

In this experiment we measure the mean repair rate μ and compare it to that ob-
tained through the analytical expression of Section 3.2. Each time a node crashes,
we measure the time tr it takes for each lost object replica to be recreated. Since
transfers are serialized, some objects will be recreated shortly after the crash,
whereas other will be pending until almost the end of the restore process of that
node. We measure μ as the inverse of the average of all repair times tr for all ob-
jects restored in the system. We use a constant MTBF of two months, and we vary
the amount of data per node b from 50 GB (θ = 20) to 500 GB (θ = 2).

Figure 4 shows the mean object repair time tr = 1/μ measured by the sim-
ulator for k = 3 and k = 7, that obtained with our analytical expression, and
the one produced by Carbonite’s expression (cf. equation 1). The repair time in-
crease with smaller values of θ, as this corresponds to a higher storage capacity
per node. The figure also shows the error between the measured and predicted
values. Our expression stays always within 20% of the measured μ, and in most
cases within 5%. Conversely, Carbonite’s value deviates considerably from the
measured μ for large values of θ.

4.2 Probability of Object Loss

In Section 3.2 we suggested using the linear approximation μi = (k − i)μ, where
μ is the value produced by our analytical expression. To evaluate the accuracy
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chain

of this approximation, we measure the probability of object loss predicted by
the Markov chain, and compare it with the loss rate observed on the simulator.

The loss rate predicted by the Markov chain is obtained by solving a system
of k + 1 differential equations. For simplicity, we find a numerical solution using
Mathematica’s NDSolve [13]. The loss probability measured by simulation is ob-
tained by counting the percentage of objects that are lost at time t after their
insertion. In order to smooth the curve we run 5 simulations and average the re-
sults.

Figure 5 shows the probability of object loss over time, using k = 3 and two
values of θ. Our linear approximation μi = (k−i)μ produces a good prediction of
the probability of object loss over time. Conversely, using the value μ′ suggested
in the Carbonite paper [7] overestimates the probability of object loss, regardless
of the approximation used to obtain μi (linear or constant). The error when using
μ′ is higher for the higher value of θ, which is consistent with Figure 4.

Unfortunately, for larger values of k (i.e., k > 3) the predicted loss rate is no
longer accurate (the curves are not shown for space reasons). This is not due to
our analytical estimation of μ, but to the first-order approximation of μi, which
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produces poor results for k > 3. In fact, our measurements show that the values
of μi grow sublinearly with i. We are currently working on deriving an analytical
expression for the values of μi, which will prove useful for k > 3.

5 Conclusions and Future Work

In this paper we have focused on finding an accurate prediction of data durability
in DHTs. Recent work has suggested that this can be achieved by modeling the
system’s behavior using Markov chains. However, our experiments show that the
repair rates suggested previously produce inaccurate predictions of the object
loss probability. We have presented a new analytical estimation for the mean
repair rate which produces much more accurate results. We have also shown that
a first-order approximation of the chain’s repair rates yields good predictions for
a small replication factor (i.e., k = 3). For higher values of k, a higher-order
approximation must be found to produce accurate predictions of the system’s
durability. Future work will include considering the impact of churn, as well as
deriving an analytical expression for all repair rates of the chain.
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