
A distributed convergecast algorithm for dynamic
mobile networks

Aymeric Agon-Rambosson, Jonathan Lejeune, Julien Sopena and Pierre Sens
Sorbonne Université, CNRS, LIP6, DELYS

F-75005 Paris, France
firstname.lastname@lip6.fr

Abstract—Some applications, like round-based consensus algo-
rithms, require all the nodes from a system to send a message
to the same node (the leader) at the same time. In a Mobile
Ad-Hoc Network (MANET), this situation is likely to cause
collisions and the loss of the messages converging to the leader.
The loss of messages is critical in such a situation, since the leader
needs to receive a quorum of messages to make a decision. This
pattern of communications, called convergecast, can be trivially
implemented with a unicast primitive. However, we show that
a popular MANET unicast algorithm like Optimized Link State
Routing (OLSR) loses a lot of messages, even in the presence
of MAC-level collision avoidance mechanisms like CSMA/CA.
We propose a new convergecast algorithm that locally schedules
answers to a query in a fully distributed manner, in order to avoid
their colliding with each other, and that aggregates these answers
in order to further decrease the probability of collisions. We show
that our algorithm creates far fewer collisions and retries than
OLSR, allowing applications like consensus algorithms to reach
their quorum sooner.

Index Terms—MANET, Convergecast, Message aggregation,
OLSR, Consensus, Paxos

I. INTRODUCTION

A Mobile Ad-Hoc Network (MANET) consists of hetero-
geneous mobile nodes communicating wirelessly directly with
each other. This network paradigm developed at the end of the
1990s can accurately model edge computing environments,
meshnets, wireless sensor networks, as well as networking
situations consistent with IoT applications.

Since this paradigm assumes no preexisting network in-
frastructure, the nodes have to act as relays for packets not
intended for them. Wireless communications are subject to
faults, particularly collisions: a node inside the intersection
of the covered areas of two other nodes transmitting at the
same time will receive neither message correctly. In the case
of wireless communications, these collisions are impossible
to detect, impractical to avoid, and costly to address [1]. This
problem is particularly acute for the convergecast operation,
which is the communication pattern where a (generally large)
subset of nodes of the network all send a (different) message
to the same node. This operation creates a lot of situations in
which a node is likely to receive messages from several of its
neighbors at the same time, without the sending neighbors be-
ing capable of hearing each other, thus defeating any potential
Channel Sensing Multiple Access with Collision Avoidance

This paper is funded by the French ANR project SeMaFoR

(CSMA/CA) [2] transmission delaying mechanism present at
MAC level.

Convergecast can be seen as a special case of unicast (the
operation by which a node sends a message to another node),
in which the destination is the same for everyone, and the
messages are all sent at roughly the same time. It is therefore
possible to trivially implement convergecast on top of a unicast
algorithm. We show however that when we try to implement
convergecast on top of Optimized Link State Routing (OLSR)
[3, 4, 5], a popular unicast algorithm for MANETs, we lose
a lot of messages due to collisions. The retry mechanisms
included in CSMA/CA allow to partly alleviate the problem,
but at a huge cost in extra messages.

Convergecast has been an interest of the Wireless Sen-
sor Networks (WSN) [6], in which a set of small, power-
constrained nodes must regularly forward information to a base
station, to which they are not necessarily directly connected.
WSNs assume a fixed topology, perfect information on the
network and synchronized clocks. For this reason, papers
like [7, 8, 9, 10] present algorithms that are unsuitable for
MANETs.

Contributions. We address this problem by proposing a
distributed convergecast algorithm that strives to be:

• effective, by achieving a high reception rate at the desti-
nation,

• efficient, diminishing the amount of bytes sent and re-
ceived by each antenna as much as possible, thereby
decreasing energy consumption,

• low-latency, by drastically reducing the amount of retries
needed.

This algorithm is designed for the query-response pattern,
in which a node will broadcast a request to the entire network,
and every other node will have to respond. This pattern of com-
munications is typical of round-based consensus algorithms
like [11] or other information gathering applications. Our al-
gorithm is built on two mechanisms, namely a distributed and
local scheduling of the response messages, and the aggregation
of those response messages on the way back to the requester.
We target generic MANETs, where no global information on
the network is available to any node, and possible mobility
makes long-term centralized construction of spanning trees
impractical. We have also implemented the algorithm in the
OMNeT++/INET discrete event simulator [12], in order to



8
7

6

5

4
3210

(a) Coverage areas

8
7

6

5

4
3210

(b) Graph representation

8
7

6

5

4
3210

(c) Collisions when 0
and 2 send

simultaneously

Fig. 1: Because of constant transmission range, the system can be
represented as an undirected graph.

provide a quantitative evaluation of various metrics against
OLSR (that we have implemented as well).

This paper is organized as follows. We present our hy-
potheses regarding the system, the model of communications
and the motivation (§II). We then present the algorithm’s
prerequisites and formal specification (§III). We then present
a quantitative evaluation of our algorithm on simulated graphs
using a full network stack simulation in OMNeT++/INET [12]
(§IV). Finally, we briefly present related works of the literature
from the WSN (Wireless Sensor Networks) paradigm (§V) and
conclude (§VI).

II. MODEL, BACKGROUND AND MOTIVATIONS

We start by specifying the system and communication
models. We then describe the MAC 802.11 protocol, and the
specification and motivation of the convergecast protocol for
MANETs.

A. System and communication models

We consider a constant set N of uniquely identifiable nodes
n0, n1, . . ., nN−1 in a 2-dimensional square. We assume
no availability of GPS information on the devices. Nodes
communicate via omnidirectional wireless transceivers with
fixed transmission T and reception R ranges that are identical
and large enough to guarantee network connectivity.

The coverage area of a node is therefore given by the
circle centered on the node of radius T (Fig. 1a). When the
node emits a frame, all other nodes within that circle receive
the signal with a probability 1, while all nodes outside of
the circle receive the signal with probability 0. Hence, the
cost to transmit a message to one’s immediate neighborhood
(the nodes within transmission range) is independent of the
size of that neighborhood. Because of physical limitations of
radiotransmitters, nodes are not able to send and receive simul-
taneously. The system can therefore be modeled as a geometric
graph: whenever a node u is part of the neighborhood of
node v, then the opposite is also true, and this relationship
can be represented by an undirected edge connecting u and
v (Fig. 1b). Now, whenever a node sends a message, all
adjacent nodes in the graph can be considered to have received
it, with one notable exception: as mentioned earlier, a node
located in the intersection of the coverage areas of two distinct
nodes that transmit a frame simultaneously will receive neither
signal correctly: this phenomenon is called collision (Fig. 1c).

Collisions are impossible to detect by the sender [2], and
must therefore be avoided by some Medium Access Control
protocol.

B. IEEE 802.11 MAC protocol

The role of the MAC layer of the IEEE 802.11 protocol is
to schedule the use of the wireless medium (in our case, the
carrier radio wave) in order to avoid collisions. In this protocol,
nodes that wish to transmit a frame must do so according
to a protocol known in the literature as CSMA/CA (Carrier
Sensing Multiple Access with Collision Avoidance): they first
listen to the carrier to check that no other node is already
transmitting. More specifically, if the node detects no signal
for a period of time called DIFS (DCF InterFrame Spacing), it
sends the frame. Otherwise, the node creates a random counter
called Contention Window (according to a uniform distribution
between 0 and a standard-specified quantity called CW), and
decrements it each time it senses that there has been no signal
for a period of time called SlotTime. The frame is sent when
the counter reaches 0. This protocol avoids collisions, but only
when the potential transmitters can hear each other.

On top of that, the protocol optionally allows the sender
node to ask the nodes that receive the frame correctly to
wait a period of time called SIFS (Short InterFrame Spacing),
and then send an acknowledgement frame. If the sender does
not receive the acknowledgement frame after a specific time
period called AckTimeout, or if the acknowledgement frame is
negative (NACK), the sender retries the whole process with
a larger Contention Window. This Contention Window grows
exponentially in the amount of retries, and there is a maximum
number of retries.

C. Optimized Link State Routing

As previously mentioned, convergecast can be trivially
implemented on top of unicast. The OLSR (Optimized Link
State Routing) protocol is a popular unicast algorithm for
MANETs. In this algorithm, each node starts by broadcasting
locally (i.e., only to its neighbors, who do not retransmit) its
list of neighbors in a HELLO message. Thus, every node in
the system eventually knows the list of its 1-hop and (2)-hop
neighbors, and all the links of each of its 1-hop neighbors.
Each node then selects among its neighborhood a set of relays
according to the MPR algorithm [13], and marks this set in the
HELLO message as well. Consequently, every node eventually
knows by which of its neighbors it was selected as MPR relay.
Then each node who was selected as MPR by at least one of
its neighbors must broadcast globally to the system the set of
neighbors by which it has been selected, in a message called
TC (Topology Control). Notice that each MPR selectee is a
last-hop node to each of its MPR selectors. Hence, since each
node must choose some MPR relays, every node is capable of
building a routing table for every node in the system, using
this information and some shortest-path algorithm. The routes
provided by these routing tables are guaranteed to be a shortest
path.



This algorithm is very suitable for MANETs because it
greatly optimizes the amount of data needed to be exchanged
in order to compute the routing tables. It is in fact the
optimized version of the Link State Routing protocol used in
classical infrastructure networks [1]. Nonetheless, as we will
see now, even well-optimized unicast algorithms like OLSR
are ill-suited to provide a convergecast primitive.

D. Motivation

Let us illustrate this last point with a simple experiment that
we carried out in the discrete event simulator OMNeT++ on
a random geometric graph. Let us assume that some node of
the network wishes to send a request to all the other nodes.
This request will be broadcast using some MANET broadcast
algorithm like MPR. The other nodes, upon reception of the
request, have to send a response back to the requester, to
imitate a round-based consensus algorithm. In our experiment,
this response will be sent using OLSR. Fig. 2a shows one
graph, with the requester marked in yellow, the nodes whose
answer has not arrived at the end of the experiment in red, and
the edges on which response messages were lost are marked
in red as well. We see that very few response messages (14
including the response from the requester) actually arrive to
the requester, because of losses on the way back (every
node received the request message): the responses collided
with each other on the way back to the requester. This
behavior is confirmed when the experiment is run on a large
sample of graphs of varying average degree, as we can see
on Fig. 2b: few request messages are lost (less than 5%),
but the rate of received responses is between 30% for low-
degree graphs, and less than 10% for high-degree ones. The
CSMA/CA random delay mechanism that was active during
the experiment did not help much, since the transmitters of
the colliding messages frequently did not hear each other.

As we see, the convergecast operation is particularly suscep-
tible to collisions, and the random delay implemented by the
MAC layer is not particularly helpful. We therefore propose
a new algorithm, Distributed Convergecast (DC), that strives
to achieve better reception rate, without increasing the amount
of bytes sent and the latency.

III. ALGORITHM

The goal of a MANET convergecast protocol is to support
the sending of messages from a subset of nodes of the network
to the same node. Any subset of nodes (in particular, the
entire network) is liable to send a message at any time. The
goal is to achieve a good reception rate (i.e., the proportion
of messages received by the common destination), while
minimising the amount of bytes sent (thus minimising the
energy consumption) and the latency.

The nodes are assumed to have no previous informa-
tion whatsoever on the network. However, we assume that
the convergecast operation to a specific destination follows
a broadcast by that destination. Hence, we assume that a
MANET broadcast protocol is implemented in the network (in
our case, MPR). A complete description of the MPR broadcast
algorithm is out of the scope of this paper.

We will briefly explain the principle of the algorithm before
providing a complete formal specification. The idea is to use
information about the immediate neighborhood (since it is
needed and computed by the broadcast algorithm anyway) to
calculate deterministic delays, in order to locally schedule the
responses to the node who transmitted the request, therefore
ensuring that they cannot collide with each other.

A. Prerequisites

Our algorithm requires to keep and transmit some informa-
tion during the broadcast phase. Broadcast algorithms, even the

(a) Cartography of losses (b) Losses of response messages

Fig. 2: Many more messages are lost on the way back



simplest ones [14, 15, 16], keep a memory of retransmitted and
delivered messages, in order to avoid retransmitting multiple
occurrences of the same message, or delivering it multiple
times to the applicative layer (some broadcast specifications
forbid multiple deliveries of messages). This memory stores
a unique identifier of the message (some tuple made of the
identifier of the broadcast sender, and a sequence number).
For our purposes here, we need this memory to also include:

• the direct transmitter of the message (the "father"), infer-
able from the MAC header of the message;

• the other recipients of the message ("the brothers"), minus
those (the "uncles") that had already received it from the
transmitter of the transmitter (the "grandfather"). This is
inferred from the neighborhood information, and some
extra information to the MPR header;

• the (local) time of the delivery;
In the case this message is to be retransmitted by the node,

we also need:
• all the neighbors this message will be retransmitted to

(the "sons"), minus those that are already neighbors of
the transmitter (and can thus be assumed to have received
it already). This is also inferred from the neighborhood
information, and some extra information contained in the
MPR header;

• all the designated relays of the message, computed with
the MPR heuristic [17]. This set is a subset of the former,
and is included in the MPR header anyway;

• the (local) time of the retransmission.
Some of this information is needed by the MPR algorithm

anyway for the broadcast to function correctly, and is therefore
already part of the MPR header of the request message.
However, our algorithm requires the following information to
be included in it as well (we assume a request message sent
from node u to node v):

• The node that transmitted the message to u (the "father"
of u, and grandfather of v);

• The nodes that are neighbors of u’s father, minus those
that are already neighbors of u’s grandfather (u’s "un-
cles"), and minus u’s father itself. Those nodes are the
"brothers" of u.

0

1

2

5

3

4

6

(a) Graph disposition.
Source in yellow,

retransmitters in red

Message Father Brothers
0 → 〈1, 2〉 〈〉
1 → 〈3, 4, 5〉 0 〈2〉
4 → 〈6〉 1 〈3, 5〉

(b) Extra content in the MPR header

Fig. 3: Information transmitted during the request phase

We can see an example of how this extra information is
transmitted on Fig. 3b. Notice that the information regarding

one’s father and brothers need only be transmitted on one hop.
For instance, when 4 receives the message from 1, he can
remove the information regarding 1’s father and brothers, and
replace it with its own. So the size of the MPR header does
not grow with the number of hops, and is proportional to the
average degree of the graph. This is the only extra information
we need transmitted by the broadcast primitive.

B. Deterministic delay mechanism

The first part of our algorithm is the calculation of a
deterministic delay for the response.

The idea is that whenever a node u receives a request
message m, it knows the set of nodes that have received m
from the same transmission (and are therefore expected to
answer to it). We will call this set the contention set (which
includes u). This set can be totally ordered, and u has a
index i in this set. The idea is to allocate to each member
of the contention set a non-overlapping timeslot according to
its index, thereby creating a local and distributed by design
schedule of the responses.

The timeslots need to be dimensioned carefully (too small
timeslots will lead to collisions, too large ones will lead to
latency degradation), and must be calculable independently
by each node in the contention set. For this, we first assume
that the bitrate of the antennae are fixed and known, which is
not a particularly strong requirement. We also assume that the
response messages to a specific request have the same size.
Those two values allow us to calculate the time needed by the
other nodes to send their message.

However, we also need to consider the randomization intro-
duced by CSMA/CA. We know how CSMA/CA calculates the
delay, and the various parameters mentioned earlier in §II-B
(DIFS, SlotTime, CW) are fixed by the standard.

Thus, we can calculate an upper bound on the amount of
time CSMA/CA adds to the transmission time, assuming that
no potentially conflicting transmissions occur at the same time.
For instance, on a transmission without retries (a broadcast,
for instance), we have the following upper bound:

BoundNR =
M

B
+ CW1 ∗ SlotTime (1)

With M being the message size, B the antenna bitrate, and
CW1 the maximal value of the random contention window.

When the optional retry mechanism is activated, calculating
an upper bound becomes:

BoundR =

MaxRetries∑
r=1

(
M

B
+ CWr ∗ SlotTime + AckTimeout

)
(2)

The AckTimeout and MaxRetries parameters are determined
by the standard, but CWr increases exponentially in the
amount of retries:

CWr = min(CWmax,CWmin ∗ 2r−1) (3)



With CWmax and CWmin being determined by the stan-
dard, and r being the index of the retry (beginning at 1). The
response timeslot for a node can be therefore be calculated
like this:

ResponseSloti =
[

RTu + RA ∗ BoundNR + (i− 1) ∗ BoundR;

RTu + RA ∗ BoundNR + i ∗ BoundR

]
(4)

With i being the index of the node in the total order of the
contention set, RTu being the time (local to u) at which the
request was received, and RA being the number of relays that
will retransmit. A node that wishes to transmit a response to
the node that it received the request from has to do it within
that timeframe.

Due to application-specific reasons, a node might not be
able to do so. For this reason, if the timeslot has already started
when the response is ready to be sent, then the node must
answer after the last timeslot is finished, that is after:

EndResponseSlotsu = RTu+RA∗BoundNR+S∗BoundR (5)

With S being the size of the contention set. Notice that if
multiple nodes miss their slot, they will potentially transmit
at the same time at the end of the last timeslot. The purpose
of our mechanism is not to guarantee the total absence of
collisions, but merely to make them less likely, which is good
enough, as we will see later.

C. Message aggregation mechanism

Since the messages converge from the whole network to the
requester, it makes sense to aggregate them on the way back in
order to decrease the amount of bytes sent, and to dramatically
decrease the amount of messages transiting in the network at
a given time, which helps avoiding collisions.

A node retransmitting a broadcast message knows the subset
of its neighbors that will have to answer to it. It is the set of
its 1-hop neighbors, minus the message transmitter and its
neighbors. This set will be called the aggregation set. With
this set, we can implement a simple aggregation mechanism
that will aggregate and delay all response messages received
between the time of the broadcast retransmission and the time
when the last node of the aggregation set is supposed to have
finished answering. We dimension the aggregation window at
node u proportionally to its aggregation set:

AWu =

[
RetrTu + RA ∗ BoundNR;

RetrTu + RA ∗ BoundNR + S ∗ BoundR

] (6)

With Retru the time at which u has finished retransmitting,
and S the size of the contention set of the sons of u. Notice
also that the aggregation does not wait for late nodes.

We can see on Fig. 4 that the response slots for nodes in
the same contention set do not overlap: RT4 designates the
time at which 4 receives the request from 1, RetrS(4) the
timeslot during which 4 is supposed to retransmit the request
to 6, RSi(u) the response slot of index i attributed to node
u (according to 4), and ERS4 the end of all the response
slots according to 4. Since 3, 4 and 5 all receive the request
from 1 at the same time, RT4, RT3 or RT5 mean the same
time, regardless of any clock drift or offset. Thus, 3, 4 and
5 always agree on the time of their respective response slots.
On top of that, since RetrT1 and RT4 mean the same time
(4 finishes receiving the message from 1 at the same time
1 finishes sending it to 4), the aggregation window of 1 is
consistent with the response slots of 3, 4 and 5.

RT4

RetrT1

ERS4

BoundNR BoundR BoundR BoundR

AW1

RetrS(4) RS0(3) RS1(4) RS2(5)

Fig. 4: Response timeslots for 3, 4 and 5, according to 4
and aggregation window of 1

(same topology as Fig. 3)

D. Algorithm specification

We recall that the convergecast follows immediately a
broadcast phase that uses the MPR algorithm. During this
broadcast phase, according to §III-A, the request message R
is stored in the memory Mem. This request message contains,
among the other things mentioned earlier, the transmitter of
the request (R.Tr) and the time of its delivery (R.T ).

The header of the response message M must contain at least
the address of the requester (M.S), i.e., the destination of the
response, and the sequence number of the request (M.N ).

Our algorithm considers two cases:
• The message M is received from the upper layer (i.e.,

the node wishes to send a response message using con-
vergecast).

• The message M is received from the lower layer (i.e.,
some other node sent a response to the current node, who
must retransmit or deliver it).

The first case is described by algorithm 1: Upon reception
of a response message from the upper layer, we search the
memory of requests Mem defined in §III-A for the request
corresponding to the response (line 2), according to the se-
quence number M.N and request source M.S specified in the
response message. If the request cannot be found, the message
is dropped and the algorithm finishes (line 5). Otherwise, the
response timeslot is calculated according to equation 4 (line
6). If it turns out the timeslot is already over, the end of the
last timeslot is calculated according to equation 5 (line 8). If it
turns out that the last timeslot has already passed, the message
M is sent to the request transmitter R.Tr immediately, and



Algorithm 1: Convergecast : upon reception of mes-
sage M from upper layer

Input:
M : message

/* Memory of requests */
1 global variable (set of requests) Mem;

/* Corresponding request */
2 local variable (request) R←− getRequest(Mem,M.N,M.S);

3 if R = nil then
4 drop(M);
5 return;

/* Obtain start of own timeslot */
6 local variable (float) D ←− getTSStart(M,R);

/* If late, obtain end of last timeslot */
7 if R.T +D < currentT ime() then
8 D ←− getLastTSEnd(M,R);

/* If after end of last timeslot, send right
away */

9 if R.T +D < currentT ime() then
10 send(M,R.Tr);
11 return;

/* Otherwise, delay send at the timeslot */
12 delayedSend(M,D,R.Tr);

the algorithm finishes (line 11). Otherwise, the message is sent
to the request transmitter with the chosen delay D (line 12).

The second case is described by algorithm 2: Upon recep-
tion of a response message from the lower layer, we search
the memory of request Mem for the request corresponding
to the response (line 4). If the request cannot be found, the
message is dropped and the algorithm finishes (line 7). Then,
if the node A executing the algorithm is the intended recipient
M.S of the message, it is delivered to the upper layer and the
algorithm terminates (line 10). Otherwise, the message must
be forwarded to the transmitter of the request R.Tr. First, the
aggregation window is obtained according to equation 6 (line
11), as well as the end of the last timeslot of the contention
set of the node executing the algorithm, according to equation
5 (line 12). The delay is set to the maximum of these last two
values (line 13). If this delay has already passed, the response
message is retransmitted immediately to the transmitter of the
corresponding request R.Tr (line 16). Otherwise, the response
message is aggregated with the others of the same aggregation
window, and this set of aggregated messages is sent to the
request transmitter with the chosen delay D (line 18).

Note that a node retransmits aggregated response messages
necessarily after the end of the last timeslot of its contention
set, thanks to line 13, and not within its own timeslot. This
is because aggregated messages are larger than individual
messages, and the timeslots have been calculated according
to the size of individual messages, so the transmission of an
aggregated message inside a timeslot would probably spill over
the next timeslot.

E. Example

In order to better understand the execution of the algorithm,
we will run it on the simple graph on Fig. 5. Node 0 makes

Algorithm 2: Convergecast: upon reception of mes-
sage M from lower layer

Input:
M : message

/* Memory of queries */
1 global variable (set of requests) Mem;

/* Own address */
2 global variable (address) A;

/* Set of aggregated messages */
3 global variable (set of messages) AS;

/* Corresponding request */
4 local variable (request) R←− getRequest(Mem,M.N,M.S);

5 if R = nil then
6 drop(M);
7 return;

8 if A = M.S then
9 deliver(M);

10 return;

/* Obtain end of aggregation window */
11 local variable (float) D1←− getAWEnd(M,R);

/* Obtain end of last timeslot */
12 local variable (float) D2←− getLastTSEnd(M,R);

/* Obtain delay */
13 local variable (float) D ←− max(D1, D2);

/* If after delay, retransmit and end */
14 if R.T +D < currentT ime() then
15 send(M,R.Tr);
16 return;

/* Otherwise, aggregate and delay send */
17 M ←− addOrAggregate(AS,M.N,M.S,M);
18 delayedSendAndClean(M,D,R.Tr,AS);

the request, and every other node is supposed to answer.
In order to simplify the example, it is assumed that the
application is always able to produce its response in time
for the corresponding timeslot. Node 0 starts by triggering a
broadcast of the request using the MPR broadcast algorithm.
It registers the empty set in its contention set (since it is
the origin of the request and won’t have to retransmit any
answer), and its two sons 1 and 2 in its aggregation set.
When 1 and 2 receive the transmission, they both put 〈1, 2〉 in
their contention sets: they are the neighbors of 0, and 0 itself
received the request from noone else. As soon as 1 receives
the request transmission, it forwards it, and puts 〈3, 4, 5〉 in
its aggregation set: it knows they are the only new recipients
of the request. In the MPR header, it includes the information
that 0 is its father and 2 its brother. When 3, 4 and 5 receive
the request transmission from 1, they all put 〈3, 4, 5〉 in their
contention set: they know that 2 is their uncle not their brother.

At that time, 4 retransmits the request to 6 (and puts 6 in
its aggregation set), but 1 concurrently responds to 0. Since 0
cannot hear 4, and 6 cannot hear 1, the messages cannot collide
with each other. 6 responds to 4 straight after receiving the
request. After 1 has finished responding to 0, 2 does the same.
However, this last response can overlap with the response from
3 to 1. In this case, 1 can hear both 2 and 3, so the messages
have a chance of colliding. On top of this, since 3 and 2 cannot



0

1

2

5

3

4

6

(a) Graph disposition.
Source in yellow, retransmitters

in red

Node CS AS
0 〈〉 〈1, 2〉
1 〈1, 2〉 〈3, 4, 5〉
2 〈1, 2〉 〈〉
3 〈3, 4, 5〉 〈〉
4 〈3, 4, 5〉 〈6〉
5 〈3, 4, 5〉 〈〉
6 〈6〉 〈〉

(b) Contention and aggregation sets

Time interval Origin Type Dest.
[0, b] 0 Req 1,2

[b, 2b] 1 Req 3,4,5
[2b, 3b] 4 Req 6

[b + B, b + B + U] 1 Resp (1) 0
[b + B + U, b + B + 2U] 2 Resp (2) 0

[2b + B, 2b + B + U] 3 Resp (3) 1
[2b + B + U, 2b + B + 2U] 4 Resp (4) 1

[2b + B + 2U, 2b + B + 3U] 5 Resp (5) 1
[2b + B + 3U, 2b + B + 4U] 1 Resp (3,4,5) 0

[3b, 3b + U] 6 Resp (6) 4
[2b + B + 3U, 2b + B + 4U] 4 Resp (6) 1

[2b + 4U, 2b + 5U] 1 Resp (6) 0

(c) Produced schedule:
b is the duration of a broadcast transmission,

B is BoundNR and U is BoundR

Fig. 5: Algorithm walkthrough

hear each other, the random delay mechanism of CSMA/CA
cannot be guaranteed to deterministically avoid this collision.
After 3 has finished responding to 1, 4 does the same (but only
with its own response, not the one it has received from 6). Then
5 does the same. The end of the timeslot of 5 coincides with
the end of the aggregation window of 1, who retransmits the
aggregated responses of 3,4 and 5 to 0. At the same time, 4
transmits the response of 6 to 1 (since 4 must wait for its last
brother, 5, to have finished transmitting before transmitting
responses from its own descendents, per line 13 of algorithm
2). When 1 gets 6’s response from 4, it forwards it to 0. At
that time, all the responses have reached 0, no more messages
transit in the network for that specific request.

This algorithm avoids the most obvious collisions by using
only local information: notice that brothers from a same father
will always have the same contention set, itself identical to the
aggregation set of their father. This means that brothers will
never contend with each other as long as they can make their
timeslot. This local and distributed scheduling also allows for
non-colliding transmissions to take place concurrently. This
algorithm does not propose to avoid all possible collisions. In
fact, several such convergecast operations with different sinks
could be taking place in the same MANET at the same time,
and our algorithm offers no mechanism to avoid the collisions
incurred by this. However, we will see in the evaluation that
we are able to avoid many more of them than OLSR.

IV. EVALUATION

A. Metrics

We evaluate DC according to the following metrics:
• The response rate, that is the amount of responses re-

ceived by the requesting node divided by the amount of
nodes in the network.

• The total amount of bytes sent in the network for the
response messages. This metric measures the cost of
the algorithm, indirectly the energy cost. Every response
message is counted, in particular the retries caused by the
MAC-level CSMA/CA mechanism. Thus, an algorithm

that causes many collisions, and therefore relies a lot on
those retries to be effective, will be very costly.

• The latency of the responses. Since there are multiple
responses, this is not straightforward. We could define
this latency as the mean of the latencies of all received
responses, but this would mean not taking into account
the responses that never arrive, and comparing the laten-
cies despite potentially very different response rates. For
this reason, we define the latency as the time required
to receive a certain proportion of responses defined as a
parameter. This will only be possible if the response rate
is above this proportion.

We also want to evaluate the impact of the optional
CSMA/CA retries on those various metrics. For this reason,
we propose to evaluate our algorithm and OLSR with both
settings. We determined earlier that the backoff of the re-
tries is exponential, so we want to experiment with different
hypotheses regarding the maximal amount of needed retries.
Naturally, only our algorithm will be impacted by this setting.
We propose the following values :

• An optimistic version, which sets BoundNR assuming that
no retries at all are needed, i.e. that transmissions succeed
on the first attempt.

• A balanced version, which assumes that at most one retry
is needed, i.e. that transmissions succeed on the second
attempt at the latest.

• A pessimistic version, which assumes that all the retries
are needed.

B. Graph generation

Since the expected gain of our algorithm depends on the
structural properties of the graph, the way to generate the
graphs matter. We generate random geometric graphs [18]:
we place N nodes at random in a 500 x 500 meters square,
according to a uniform distribution. We assume a range of
radiotransmitters R of 100 meters. Two nodes are connected
if, and only if, their Euclidean distance is less than 100 meters.
Such a network is not necessarily connected, we therefore



(a) Without MAC-level retries (b) With MAC-level retries

Fig. 6: Reception rate at requester

prune the generated networks that aren’t. Since the value
of N will have a direct influence on the average degree of
the graph, and therefore on the probability of collisions, we
propose to create 5 samples of 100 random geometric graphs
with N being respectively 50, 100, 150, 200 and 250. In our
simulated samples, this corresponds to an average node degree
of respectively 5.16, 10.46, 15.69, 20.93 and 26.16.

C. Discrete event simulator

For a realistic simulation of the behavior of OLSR and
DC on MANETs, we need an accurate modelisation of the
WiFi radiotransmitters and of the IEEE 802.11 MAC layer,
so that the phenomenon of collisions is correctly represented.
The discrete event simulator OMNeT++, and the associated
INET framework, provide such a model that we will use. We
have implemented both OLSR and DC for this experiment. A
specific node is chosen to be the requester.

TABLE I: Simulation parameters

Area 500 x 500 m
Number of nodes 50, 100, 150, 200, 250

Average graph degree 5.16, 10.46, 15.69, 20.93, 26.16
Transmission range 100 m
Transmitter bitrate 10 Mbps

Applicative payload 24 B

D. Results

The first experiment evaluates the response rate of each
algorithm. A requester sends a request, everyone is supposed
to respond, and the responses are counted. We see on Fig. 6a
that when MAC-level retries are disabled, DC achieves a much
better reception rate than OLSR, regardless of variant. While
OLSR has a reception rate of 30% on low-degree graphs
and less than 10% on high-degree ones. At the same time,
DC achieves between 55 and 70% for low-degree graphs and
between 30% and 40% for high-degree ones. As expected,

graphs with high degree are more susceptible to collisions,
regardless of algorithm, even if DC resists much better. We
also notice that overdimensioning the timeslots a bit seems
to help the reception rate a bit: the balanced version of DC
achieves a reception rate 10% to 15% higher than that of
the optimistic version. Even if the L2 retries are disabled,
dimensioning timeslots as if one of them is needed helps
increase the reception rate slightly.

When the L2 retries are enabled (Fig. 6b), both OLSR and
DC achieve near perfect reception rate, although OLSR tends
to fall off at high-degree graphs. This does not mean that our
algorithm is useless: in fact, in the case of OLSR, this near-
perfect reception rate comes at a very high cost in transmitted
bytes. Since OLSR generates many collisions, it has to make
use of L2 retries very often, and this mechanism is a very
expensive way of ensuring a good reception rate.

Fig. 7: Amount of bytes sent per received response
(MAC-level retries activated)



We can see this clearly on Fig. 7 where the total amount of
bytes sent for response messages is divided by the reception
rate. We observe that DC is much more efficient than OLSR,
needing less than half the bytes to achieve the same rate of
received responses (for the balanced version). This comes from
the fact that DC avoids collisions much better, and therefore
doesn’t need to use L2 retries as often as OLSR: DC combined
with L2 retries is the most efficient way in terms of byte
transmission to reach a perfect reception rate. We also see
that overdimensioning the timeslots too much, as we did with
the pessimistic version of DC, does not improve the efficiency
significantly.

Fig. 8: Latency at 80% reception rate
(MAC-level retries activated)

The most counter-intuitive result can be seen on Fig. 8. We
define the latency as the time needed to achieve 80% reception
rate, which was achieved for any configuration, as we’ve seen
on Fig. 6b. We see that both optimistic and balanced versions
of DC achieve lower latency than OLSR, despite the fact that
DC adds deterministic delays on the responses. Optimistic DC
achieves the same quorum of responses in less than half the
time of OLSR regardless of graph degree, and even balanced
DC achieves it in 50% of the time for low-degree graphs and
70% on high-degree ones. It turns out that delaying answers
on purpose in order to avoid collisions is in fact better for
latency than to risk those collisions and having to potentially
retry the transmission: retries are costlier in terms of latency
than deterministic delays.

We note that the latencies are low enough to make DC
highly resistant to mobility. Our algorithm relies solely on
information gathered during the broadcasting of the request,
that is guaranteed to be very fresh. The probability that the
graph changes between the broadcast and the convergecast
phases is negligible, particularly if we have in mind a human
pattern of mobility (people walking or cycling with handheld
connected phones). In contrast, OLSR relies on the global
information about the graph provided by the Topology Control

message. Since these messages are costly1, the RFC [3]
recommends broadcasting them only every 5 seconds, and
keeping the information provided by them up to 15 seconds.

We see that using the optional L2 retry mechanism provided
by CSMA/CA is needed to achieve near-perfect response rate.
Even if DC is much better at avoiding collisions than OLSR,
it cannot (and does not attempt to) avoid all of them, due
to the very limited amount of information it uses. As we
can see, even doing a minimal effort of avoiding the very
obvious collisions can help a lot decreasing the amount of
bytes transmitted and the latency. DC does not aim to be a
replacement to CSMA/CA-provided retries, but a complement
to it.

V. RELATED WORKS

Convergecast has mainly been studied in the context of
Wireless Sensor Networks, where a fixed and static set of
nodes must transmit some environment information to a base
station regularly [6]. These nodes are typically small devices
with low-bitrate and low-consumption antennae, very limited
memory and a very little available power. The network is
without infrastructure, and the base station is not directly
connected with all the nodes, which means that the nodes
must forward the packets from other nodes all the way to the
base station. This paradigm is close to MANETs, with some
important differences. Among those differences, we have a
fixed set of nodes without mobility, a fixed base station that
knows the entire link state of the graph and sometimes even the
geographical position of the nodes, and synchronized clocks.
These differences stem from the constraint of power saving
inherent to WSN: it is essential to be able to switch off the
radiotransmitter when idle. This constraint is not present in
MANETs.

For this reason, WSN convergecast algorithms like [7, 8,
9] all try to build a spanning tree based on global graph
information to schedule transmissions globally. In [9], the
algorithm builds a breadth-first tree and allocates timeslots
or channels to each node. The attribution of a unique parent
to each node is done using the Euclidean distance criterion.
In [8], the authors even assume that nodes are placed on a
lattice, determine a period based on the collision distance
of the nodes, and attribute initial timeslots according to the
reception order of an initial broadcast: nodes choose their
timeslot according to the node they receive the broadcast
from. When this is done, each node can only transmit during
the timeslots congruent to their initial timeslot modulo the
period. In [7], the graph is reduced to a series of branches,
and the information on each branch (number of nodes) is
broadcasted to the entire network. The paper first offers a
simple scheduling algorithm for converging packets from the
whole branch to one of its ends, and then schedules the
branches relatively to each other (each branch progressing
in turn). More recently, [10] target low-duty-cycle WSNs, a

1Our simulations estimate the cost of TC messages to be respectively 430,
865, 1240, 1544 and 1763 bytes transmitted per node per second, according
to the average degree of the graph.



specific type of WSNs where the nodes awaken at periodic
time intervals. They assume that nodes know their neighbors,
their level in the spanning tree rooted in the sink, as well as that
of their neighbors and the active schedule of their neighbours.
Starting backwards from the root, each node chooses a set
of time-extended forwarders among the neighbors in the level
above them, according to metrics (e.g. the expected probability
of reception at the sink or the expected latency) that can
be calculated recursively based on initial values fixed at the
root. The time-extended forwarders assignation must be non-
conflicting, which is always possible, but at the expense of
latency (a node can always choose the same forwarder as one
of its brothers, as long as it selects a later active timeslot).
Although this paper is more interesting than the previous ones,
since it does not assume that each node knows the entire
structure of the graph and the forwarder choice is done in
a decentralised manner, it still assumes synchronized clocks,
and a fixed graph topology to amortize the high cost of initial
calculations and messages.

A more interesting paradigm, closer to MANETs, is offered
by [19]: only the base station is fixed, and broadcasts a beacon
with a sequence number. Each retransmitter increases a hop
counter, so that every node in the graph knows a shortest path
to the base station. Next, the nodes send a beacon to the base
station following this shortest path, so that the base station
knows a spanning tree on the graph. A trivial convergecast
algorithm can be built on this, but the collisions are left to
CSMA/CA to deal with, and no aggregation mechanism is
provided.

VI. CONCLUSION AND FUTURE WORKS

We have proposed a distributed convergecast algorithm that
alleviates the issue of collisions when simultaneous responses
from all the nodes of the network converge to the same node.
Our algorithm, DC, is perfectly suited for generic MANETs
that admit a limited (e.g. human) pattern of mobility, and
is implementable on ubiquitous and application-independant
hardware like connected phones equipped with WiFi antennae.
It is taking into account the random behavior of CSMA/CA
message delays, and uses its retry mechanism to its advantage
when needed, without relying on it too much. DC can be used
for a variety of applications that need to quickly converge in-
formation to a requester, but it was designed with round-based
consensus algorithms like Paxos in mind, where a leader (who
can be anyone and even change over time) needs a quorum
to progress. DC will allow consensus algorithms to converge
very fast, while also preserving the energy consumption of
the nodes taking part in the consensus. We achieve this by
using only local neighborhood information and a short-term
spanning tree built during the broadcast phase, and locally
scheduling responses that would otherwise collide.

Our experiments on a large sample of random connected
dominating graphs show that we are able to be as effective
as popular unicast algorithms like OLSR, while being more
efficient and quicker by needing fewer transmission retries.

We have designed DC to be implementable on ubiquitous
hardware communicating with the IEEE 802.11 WiFi proto-
col. It is also easily improvable to take into account recent
improvements made to the WiFi protocol and implementa-
tions. We have assumed a single-channel and single-frequency
WiFi for the sake of simplicity, but the algorithm is trivially
adaptable to CDMA (Channel Division Multiple Access) and
FDMA (Frequency Division Multiple Access) mechanisms
provided in recent versions of the WiFi protocol. The local
schedule we built can be improved to distribute those multiple
channels and frequencies and further reduce collisions and
latency.

REFERENCES

[1] A. S. Tanenbaum and D. Wetherall, Computer networks, 5th Edition.
Pearson, 2011.

[2] IEEE 802.11 Working Group, “Wireless lan medium access control
(mac) and physical layer (phy) specifications,” IEEE Std 802.11-2016,
2016.

[3] T. Clausen and P. Jacquet, “Optimized link state routing protocol (olsr),”
RFC, vol. 3626, pp. 1–75, 2003.

[4] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Mühlethaler,
A. Qayyum, and L. Viennot, “Optimized link state routing protocol
(olsr),” INRIA, Research Report 5145, 2003, 57 pp.

[5] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,”
in IEEE Intern. Multitopic Conference, 2001.

[6] S.-H. Yang, Wireless Sensor Networks: Principles, Design and Appli-
cations. Springer London, 2014.

[7] S. Gandham, Y. Zhang, and Q. Huang, “Distributed minimal time
convergecast scheduling in wireless sensor networks,” in 26th IEEE
International Conference on Distributed Computing Systems, 2006,
p. 50.

[8] S. S. Kulkarni and U. Arumugam, “TDMA service for sensor net-
works,” in 24th International Conference on Distributed Computing
Systems Workshops, 2004, pp. 604–609.

[9] V. Annamalai, S. K. S. Gupta, and L. Schwiebert, “On tree-based
convergecasting in wireless sensor networks,” in 2003 IEEE Wireless
Communications and Networking, 2003, pp. 1942–1947.

[10] L. Cheng, L. Kong, Y. Gu, J. Niu, T. Zhu, C. Liu, S. Mumtaz, and T. He,
“Collision-free dynamic convergecast in low-duty-cycle wireless sensor
networks,” IEEE Trans. Wirel. Commun., vol. 21, no. 3, pp. 1665–1680,
2022.

[11] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[12] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops,
2008.

[13] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying for
flooding broadcast messages in mobile wireless networks,” in IEEE
annual Hawaii Intl. Conference on System Sciences, 2002.

[14] D. Gutiérrez-Reina, S. L. Toral-Marín, P. Johnson, and F. J. Barrero-
García, “A survey on probabilistic broadcast schemes for wireless ad
hoc networks,” Ad Hoc Networks, vol. 25, 2015.

[15] P. Ruiz and P. Bouvry, “Survey on broadcast algorithms for mobile ad
hoc networks,” ACM Computing Surveys, vol. 48, no. 1, 2015.

[16] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Wireless Networks, vol. 8, no. 2-
3, 2002.

[17] L. Viennot, “Complexity results on election of multipoint relays in
wireless networks,” INRIA, Research Report 3584, 1998, 16 pp.

[18] M. D. Penrose, Random Geometric Graphs. Oxford University Press,
2003.

[19] F. Araújo, J. Santos, and R. P. Rocha, “Implementation of a routing
protocol for ad hoc networks in search and rescue robotics,” in IFIP
Wireless Days, WD, 2014, pp. 1–7.


	Introduction
	Model, background and motivations
	System and communication models
	IEEE 802.11 MAC protocol
	Optimized Link State Routing
	Motivation

	Algorithm
	Prerequisites
	Deterministic delay mechanism
	Message aggregation mechanism
	Algorithm specification
	Example

	Evaluation
	Metrics
	Graph generation
	Discrete event simulator
	Results

	Related works
	Conclusion and future works

