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Abstract—Delivering on-demand web content to end-users in
order to carry out strict QoS metrics is not a trivial task
for globally distributed network providers. This task becomes
still harder when content popularity varies over the time and
the SLA definitions have to include both transfer rate and
latency metrics. Current worldwide content delivery approaches
and datacenter infrastructures rely on cumbersome replication
schemes that are agnostic to edge-network resources, and
damage content provision.
In this work we present AREN, an novel replication scheme
for cloud storage on edge networks. AREN relies on a col-
laborative cache strategy and bandwidth reservation to adapt
the replication degree according to strict SLA contracts and
content popularity growth. We have evaluated the performances
of replication schemes on edge networks using Caju, a content
distribution system for edge networks. Compared to a non-
collaborative caching, evaluations show that AREN prevents
nearly 99.8% of all SLA violations when the storage system is
heavily loaded. We also show that AREN provides a sevenfold
decrease in the amount of storage usage for replicas, and
it increases by roughly 20% the aggregate bandwidth, hence
accelerating content delivery.

Keywords-Datacenter, replication, online services, SLA, popular-
ity growth.

I. INTRODUCTION

Multimedia content delivery has changed dramatically in the
recent years. Content distributed networks (CDNs) have al-
lowed operators to provide content to the masses. Nowadays,
ordinary users are able to reach worldwide audiences thanks
to web platforms deployed on top of CDNs.
In order to deliver popular content efficiently, CDNs have to
provide mechanisms, and schemes, such as data replication,
that are able to track content popularity growth properly.
Today’s CDN architectures are deployed on big, remote
and centralized sites, close to the core networks. Despite
being definitively scalable architectures for content delivery,
datacenters remain huge distributed systems that are very
expensive to build and operate. Its resource allocation ef-
ficiency relies mainly on over-provisioning. Since most of
CDN’s mechanisms are agnostic to edge networks load, their
infrastructures are not able to enforce strict Service Level
Agreement (SLA) contracts that include transfer rate.
Resource allocation at the edge of the networks present
several advantages over traditional CDN deployments, such
as the lowest ever latency and fined grained bandwidth
allocation. It might also be seen as eco-friendly, because it
allows us to reduce the energy cost of data transmission,
since it might dramatically decrease the path length between
the content source and destination.

Bandwidth and storage capacities available on edge networks
have increased dramatically in the recent years. In the begin-
ning of 2011, Free, a French internet provider, offered to
their subscribers internet connection speed up to 100Mbps ,
and storage capacities at home in the order of 250GB. These
available resources have contributed to create and popularize
internet service offers, such as video on demand, high quality,
streaming, backup and high speed storage synchronization.
One of the most important new opportunities for network
providers is to provide cloud storage at the edge of the
network. Cloud storage in edge networks will allow sys-
tem architects to design services with outstanding content
delivery guarantees that take advantage of very low latencies,
high data transfer, and huge amounts of storage capacities.
However, edge resources management to deliver cloud ser-
vices remains a big challenge for edge operators, and must
be wisely allocated.
We consider that data replication plays an important role on
scenario. However, it is not easy task to define replication
schemes for edge networks that fairly adapts the placement
and the number of replicas for popular content, especially if
strict SLA contracts have to be enforced.
This work presents AREN, an Adaptive Replication scheme
for Edge Networks that enforces strict SLA metrics with
efficient resource allocation. AREN minimizes the number
of SLA violations by (i) tracking bandwidth reservation
mechanism on edge nodes, and (ii) operating collaborative
caching mechanism properly. By simulation, we evaluate
the number of strict SLA violations, storage and bandwidth
usage, for AREN and compare our results to common
replication schemes. We show that AREN prevents the vast
majority of SLA violation under heavy load situations. It also
reduces by nearly seven-fold the required storage usage for
replication through caching, and it increases by roughly 20%
the aggregate bandwidth.
This work makes two main contributions:

• By simulations on top of PeerSim, we evaluate exten-
sively the case for utilizing many different data repli-
cation schemes for providing popular content delivery
with strict SLA at the edge of the networks.

• We present the design and evaluation of AREN a novel
replication scheme that provides high-quality content
delivery for popular content. While AREN prevents
most of SLA violations, it improves the whole stor-
age system performance, by increasing the aggregate
bandwidth and reducing required storage usage for
replication.



The rest of this work is organized as follows. Section II
covers some background of the today’s content distribution
systems. Section III presents our approach to tackle replica-
tion of popular content, and provides an in-depth description
of Caju, our evaluation scheme for CDNs at edge-networks.
In Section IV, we analyses and explains our evaluation
scenario and performance results. In Section V, we present
related work. Finally, Section VI shows future work and
concludes.

II. BACKGROUND

In this section we briefly discuss the role of edge networks in
CDNs, and we present challenges faced by network providers
in order to deal with popular content delivery properly.
Content distribution networks and edge networks: Con-
tent distributions networks (CDN) are distributed system that
maintain content servers in many different locations in order
to cope with load management in scalable way, and also to
enhance latency and bandwidth available for clients. There
are two types of servers in CDN compositions: origin and
replica servers (so-called surrogate servers) [13]. We can
therefore differentiate CDNs on the basis of their surrogate
servers placement, and classify them into core and edge
architectures. Core CDN architectures rely on private data-
centers deployment close to ISP points of presence (PoP).
This has been a successful approach used by pioneers as
Akamai, as well as by major content and service providers.
Akamai platform [11] has been built on top of large number
of small server clusters highly distributed in many different
countries. Hence such architectures require complex algo-
rithms for locating and delivering content properly, e.g.
very precise infrastructure mapping and monitoring. Some
content providers, including Amazon and Google [10], and
service providers, such as Limelight, have opted to deploy
very expensive and large datacenters in very few strategic
locations. As core architectures are connected to PoPs, they
do not have control of traffic throughout ISP until the
end-customer, that undermines QoS guarantees enforcement.
Interoperable CDNs in edge network have emerged to tackle
directly these issues. Network service providers look forward
to (i) taking advantage of their infrastructure, (ii) deploying
their own datacenters, and (iii) delivering content as close
as possible to end-customer. The aim is to be able to offer
differentiated QoS guarantees to regular customers1. Another
highly distributed approach of edge CDN architectures is
P2P network distribution. This consists of content servers de-
ployed on the consumer-edge devices, where peers cooperate
to share and distribute the content. P2P network distribution
comprises video stream handlers, such as PPLive and Zattoo,
and content swarming, e.g. BitTorrent, eMule, and NaDa, a
distributed content distribution platform based on nanodata-
center in home gateways. NaDa relies on BitTorrent protocol
to manage unused edge resources. In this work, we are mostly
interested in challenges risen by edge CDN architectures.

1Enabling digital media content delivery: Emerging opportunities for
network service providers. www.velocix.com, 2010.

Popular content: Multi-media content distribution over the
internet has increased dramatically in the recent years. A
recent study published by Cisco System, Inc2 revealed that
the global internet video traffic has surpassed peer-to-peer
traffic since 2010, becoming the largest internet traffic type.
Cisco Systems also forecasts that internet video traffic will
reach 62% of the consumer internet traffic by 2015. Many
studies [8], [16] have drawn attention to reach a better
understanding of internet video properties, such as popu-
larity growth. In general, these studies point out that well-
known popularity characteristics are applicable to multimedia
content. For instance, they show that internet multimedia
popularity distribution follows power law, time scale might
vary from hours to weeks according to the media type,
and that popularity bursts have a short duration and are
quite likely to happen just after the content publication,
especially for internet videos. Despite that, these studies
fails to define a trustful and definitive multimedia growth
pattern due to the inherent unpredictability of publication,
search and promotion engines used by content providers. An
alternative to overcome resource allocation problems caused
by unpredictable multimedia growth pattern is providing
adaptive replication schemes that are fit for purpose.

III. APPROACH

This section describes the approach used in this work. First,
we present a short description of the target problems. Then
we briefly describe our evaluation scheme based on Caju.
Finally, we present our adaptive replication scheme AREN.

A. Problem statement

Consider a set of storage elements J́o that stores o. Assume
that is necessary to allocate at least the bandwidth bjo on
each j ∈ J́o in order to enforce SLA definitions properly.
We focus on the dynamics of adaptive resource allocation
and request scheduling for nodes of J́o. We particularly aim
to achieve two main goals: (i) minimize the network and
storage usage on edge networks, and (ii) minimize the overall
number of SLA violations. We focus on the SLA violations
concerning GETs. A GET is a request done by a client to
retrieve a stored content.

B. Caju’s architecture

To evaluate the performances of our replication scheme,
AREN, we propose Caju, a tool which models a content
distribution system for edge networks on top of PeerSim.
In Caju, service provider infrastructure is organized in fed-
erated storage domains, as depicted in Figure 1. A storage
domain is a logical entity that aggregates a set of storage
elements that are located close to each order. For instance, a
storage domain might be formed of ISP storage elements that
are all connected to the same digital subscriber line access
multiplexer (DSLAM). These storage elements are parti-
tioned in two different classes: (i) operator-edge, furnished

2Cisco visual networking and methodology, 2010-2015. www.cisco.com,
2011.



by storage operators, e.g. small-sized datacenters, and (ii)
consumer-edge those by consumers, such as set-top boxes.
Edge devices contribute with their resources to cloud storage.
A node per storage domain, normally from operator-edge
class, plays a role of coordinator. On top of each coordinator
runs a couple of services to handle requests scheduling and
replication for its storage domain. Coordinators interact to
each other to share information about content and available
resources location. A detailed description of Caju design is
available in [15].

Figure 1. Storage elements and storage domains

C. Replication scheme

AREN stands for Adaptive Replication for Edge Networks
scheme. AREN replication scheme relies on bandwidth reser-
vation and collaborative caching to provide an adaptive num-
ber of replicas for popular content. AREN provides a request
scheduling and a content replication mechanisms that aim to
minimize strict SLA violations and edge resources usage.
Our replication scheme is simple and easy to implement.
Request scheduling Within a storage domain, AREN relies
on a coordinator that tracks bandwidth reservation and selects
nodes accordingly. Scheduled source nodes contribute with
the same amount of bandwidth, and cooperate to enforce
SLA constraints by reserving bandwidth. Source nodes are
selected to respond a request only if there is enough unre-
served bandwidth.
To enhance resource allocation in edge networks, AREN
implements two simple scheduling policies.

• Divide-and-conquer. GET requests can be served by
either consumer-edge nodes or mini-datacenters. The
divide-and-conquer scheduling policy gives priority to
consumer-edge nodes and uses mini-datacenters only if
there is no more spare bandwidth for reservation in the
set of consumer-edge nodes of the requested object. It
permits to save mini-datacenter bandwidth for creating
replicas to popular content faster.

• Nearest source selection. We assume that intra-domain
transfers are preferable to any request. For that reason,
this scheduling policy prioritizes the selection of GET
sources that comes from the same Storage Domain of
the request destination. That allows AREN to reduce the
inter-domain traffic load.

Content replication After scheduling a request to an object,
coordinator updates its current aggregate bandwidth demand,
and decides if it is worth creating a new replica in caching

of the destination node. Coordinator computes the utility of
a new replica based on thresholds. Replica utility measures
the benefit of creating replicas with regard to popularity and
current bandwidth consumption of an object. We consider
two thresholds for aggregate reserved bandwidth: Pmin and
Pmax. Our replication strategy is based on two main com-
ponents:

1) Popular content classification: An object becomes pop-
ular whenever its aggregate active bandwidth is greater
than a factor of the maximum threshold. For instance,
consider a popularity factor Q, the threshold percentage
Pmax, and object o that has a single replica into a
consumer-edge storage element of network capacity of
b. Let U(o) be the current bandwidth reservation for
object o, o is popular if U(o) > Q ∗ Pmax ∗ b.

2) Replica maintenance for popular content: The mecha-
nism adapts the number of copies of popular objects
regarding the thresholds and the current aggregate
reserved bandwidth. It is called whenever GET is
scheduled or periodically for maintenance purposes.
New replicas are created in GET destination when
aggregate bandwidth is greater than the maximum
threshold, and randomly removed when smaller than
the minimum threshold.

IV. EVALUATION

Our evaluation has two main goals. (i). To verify if it
is reasonable to use edge devices, including operator-edge
devices, so-called small-sized datacenters, to offer distributed
storage service with strict QoS metrics. (ii). To evaluate the
performance of our bandwidth threshold-based approach as
an adaptive replication scheme. Towards these goals, we
designed and implemented an evaluation scheme based on
Caju that simulates our network topology and data flows
among storage elements in a very precise way. It was built on
top of PeerSim, a stable and extremely scalable event-driven
simulation engine.
The evaluation scenario (Figure 2) includes 4002 numbered
nodes arranged across 2 storage domains (sd). There are
one operator-edge device (nodes 1 and 2002) and 2000
consumer-edge devices per storage domain. Storage and
network capacities differ accordingly to the class of device.
Operator-edge devices have 20TB of storage capacity and
full-duplex access link of 4Gbps. Consumer-edge devices
contribute 200GB each, equipped with 100Mbps full-duplex
links. Note that the two operator-edge devices contribute with
a small fraction of the total amount of overall edge resources,
namely additional 10% of storage capacity and only 2%
of the overall network capacity. This draws our attention
to the performance of replication schemes and resources
allocations towards non-expensive small-sized datacenters in
edge networks. We also assume that storage elements of a
storage domain are connected to the same edge network, and
that a maximum limit of 80% is enforced to aggregate traffic.
Edge networks are connected to the operator network that
ensures inter-storage domain connectivity.
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Figure 2. Evaluation scenario

Table I
DEFAULT VALUES FOR WORKLOAD PARAMETERS

Workload
Requests per client uniform
Experiment duration 1h 40min
Mean requests per second 400
Requests division 5% of PUTs, 95% of GETs
Object size (follows Pareto) shape=3, smallest=26MB,

biggest=1.6GB
Content popularity shape=0.8,
(Zipf-Mandelbrot) cutoff=number of objects
PUTs (Poisson) λ=PUTs per second
Popularity growth (Weibull) shape=2, scale ∝ duration

Workload was carefully set-up to match multimedia popular
content distribution, as described in Section II. Table I list
default values for workload parameters respectively. SLA
contracts differ to each other by transfer rate. Thus, we
consider three SLA classes, in chunks per second: (a) 41,
(b) 21, and (c) 14 chunks/s. To each customer is assigned a
SLA that regards the following distribution: 40% class (a),
40% to (b), and the remaining 20% to (c). We assume that a
SLA violation occurs when any transfer of a consumer does
not observe her minimum contracted transfer rate.
We use happiness or number of customers without SLA
violations as a key performance metric. Along with happi-
ness,we are interested in evaluating the amount of resources
allocated to deliver content in edge networks properly. We
focus on number of flows, storage and network usage,
exploring in details the resource allocation performance for
the most popular content.
The rest of this section is structured as follows. Subsec-
tion IV-A describes the 4 replication schemes evaluated in
this work. Subsection IV-B shows how efficient common
replication schemes are for disseminating popular content
in edge networks. We initially evaluate the performance of
our evaluation scheme comparing two approaches: uniform
replication and non-collaborative caching as an adaptive
replication scheme. Then, Subsection IV-C shows how our
replication scheme brings off challenges related to content
deliver in edge networks.

A. Evaluated replication schemes
Besides AREN, we have evaluated four other replication
schemes.
Uniform replication scheme with fixed number of replicas
This is the simplest approach to replicate objects into a
system, that is broadly used in current datacenter deploy-
ments. Given a fixed number of replicas n as a parameter, we
simulates a chain of object-replication of n stages just after
the initial insertion (PUT). Requests are randomly scheduled
to provide load balancing. Each request might be served by at
most R nodes with equal load. The actual number of sources
is r = min(n,R).
Non-collaborative LRU caching Simple adaptive replication
schemes based on non-collaborative caching, such as those
that implements Least Recent Used algorithm, are easy to
implement and deploy. In our implementation, a new replica
is created whenever a client, connected to a operator-edge
device, performs a GET to any object. LRU replacement is
enforced regarding a static percentage of the local storage
capacity for caching. Request scheduling is quite similar
to that of uniform approach. Initial placement requires two
replicas in different devices classes of the same SD.
DAR The main goal of Distributed and Adaptive Replication
scheme is to balance the expected bandwidth load per node.
DAR algorithm intuition is replacing object replicas in the
local caches based on their current transfer rate. Fresh
objects replaces local cached objects with higher transfer
rate, removing the highest first. We assume that there is a
logically centralized coordinator that tracks and computes
the latest transfer rate of any object. Since this approach was
initial proposed to a P2P architecture and did not handle
directly strict SLA targets, we had to sightly enhance our
implementation as follows. If no object with higher transfer
rate was found, but there exists stale objects, apply LRU
as replacement policy. For DAR, we implemented exactly
the same request scheduling and initial placement of LRU
algorithm.
Unlimited We have made an assumption of unlimited net-
work and storage capacities at both consumer and operator
edge-nodes. On this unlimited scheme, sources nodes reserve
the strict bandwidth necessary to a transfer according to
the SLA contracts. It differs from our AREN approach
in two points. First, it ignores spare bandwidth, keeping
bandwidth reservation value as a hard limit. Second, it avoids
creating additional replicas since nodes always have enough
resources.

B. Performing efficient content deliver in edge networks
We initially measure the feasibility of delivering popular
content with strict SLA contracts using Caju. We compare
two approaches: uniform replication with a fixed number of
replicas, and non-collaborative LRU caching.
We have evaluated the required number of replicas of uniform
replication for different request rates in order to prevent SLA
violations. We have varied the number of replicas from one to
10. We have compared it to a non-collaborative LRU caching.
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and LRU caching (size=1%).

We have simulated different caching sizes percentages: 1%,
5%, and 10% of the storage capacity. Figure 3 plots an
initial evaluation of storage usage and happiness for these
two replication schemes. Even with the smallest cache per-
centage of 1%, caching performs much better than uniform
replication. Caching consistently improves happiness metric
by preventing violations. It allowed us to slash violations oc-
currences from 2953, with uniform scheme, to 1. It required
only 14.20TB, that is similar to a uniform scheme with 3
replicas, 12.98TB.
We have plotted in Figure 4 the aggregate bandwidth for
caching and uniform approaches. We selected results from
caching with local cache size of 1% of the node storage
capacity, and uniform replication with 10 replicas. By using
caching, we have been able to reduce the aggregate band-
width by a third. We have omitted further detailed evaluations
of uniform replication and caching on edge networks due to
space constraints. But they are available on our technical
report [15].
These results show that (i) simple caching is much more
efficient in replicating popular content on edge networks than
uniform approach in terms of number of SLA violations, (ii)
caching allow us to reduce network resources consumption,
and (iii) it permits edge node to contribute with tiny amounts
of storage capacity contribution (2GB) in order to maintain
enough replicas for popular content.

C. Exploring popular content delivery with AREN
Our targets in delivering popular content in edge networks
are to minimize the number of SLA violations, and resources
utilization. We have shown in Subsection IV-B that a non-
collaborative LRU caching copes with these issues quite
fairly compared to a uniform replication scheme. But an
increasing demand for multimedia content, especially as
VoD, might overload cloud storage systems, damaging its
performance. We assume that replication schemes in edge
networks should be able to adapt accordingly. Here, we
present challenges raised by heavily loaded cloud storage
systems, and we show how AREN uses collaborative caching
and bandwidth reservation to overcomes these issues.
We compare AREN to non-collaborative LRU caching, and
a collaborative caching based on DAR replication algorithm.
All schemes were configured to use a cache size equal to
1% of the local storage capacity and consumers are able to
GET objects by setting up transfers from up to five different
sources, according to number of available replicas. We have
set up AREN to enforce bandwidth reservation, and we chose
minimum threshold percentage to 5% and maximum one to
30%.To simulate higher workload loads, we slightly modified
the default values of object size distribution from Table I, by
changing the shape and lower bound (smallest) parameter of
Pareto distribution.
We initially show in Figure 5 the happiness measurements
when the mean object size increases. DAR and LRU caching
approaches performs poorly in higher loads, while AREN is
resilient to load increasing. Overall, happiness falls sharply
when the workload’s mean object size increases, except for
AREN replication scheme. Under the heaviest load, mean
object size equal to 140MB, we observed happiness metric
equal to 3949 for AREN, versus 2 for caching and 1 for DAR.
While AREN suffered only 51 violations, caching and DAR
suffered 27539 and 30071 respectively. For the remaining
evaluations, we assume 140MB as the default mean object
size.
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We consider that edge nodes’ primary goal is not to provide
cloud storage. Therefore storage usage has to be minimized
as much as possible. Since all schemes of this Subsection
perform the same initial placement, storage usage differs
exclusively in cache usage for replication. Figure 6 shows the
storage usage by replicas . AREN scheme provides roughly a



sevenfold decrease in the amount of cache usage compared to
DAR and LRU caching approaches. AREN performs better
than both DAR and LRU caching approaches because it
creates new replicas for popular content only, and it is able
to remove unnecessary replicas thanks to the AREN’s coor-
dinator role in monitoring and tracking aggregate bandwidth
reservation. DAR and LRU caching have similar results due
to a unwanted behaviour of our DAR implementation for
delivering popular content, detailed in Subsection IV-A. Our
enhanced DAR implementation reduces SLA violations, but
increases the storage usage.
Since network capacity is a scarce resource in edge net-
work for cloud storage, an efficient replication scheme must
minimize the bandwidth usage on operator-edge storage ele-
ments, so-called mini-datacenters. We present the aggregate
bandwidth usage for non-collaborative LRU caching, and
AREN schemes in Figures 7, and 8, respectively. AREN
scheme reduces roughly 50% of aggregate upload bandwidth.
AREN performs better thanks to divide-and-conquer policy,
described in Subsection IV-A, that prioritizes consumer-edge
nodes as GET requests’ sources. Instead, non-collaborative
LRU caching and DAR schemes rely on pure random
scheduling that overloads mini-datacenters upload link. Ag-
gregate download bandwidth has the same level for all two
schemes because a common initial placement policy requires
the primary copy to be stored in a mini-datacenter. With our
DAR implementation, we have found results quite similar to
caching.
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Bandwidth in edge networks have to be allocated wisely. The
request scheduling must handle requests properly in order to
reduce the traffic burden, particularly for the most popular
content. Figure 9 shows a box plot, including minimum value,
fist quartile, median, third quartile, whisker and outliers
values, from upper quantile of GET durations of the 10
most popular objects. These objects account for 1.5% of
the all GET requests. AREN presents the smallest degree of
dispersion amongst the evaluated replication schemes. That
happens because AREN scheme is able to better schedule
GET requests through bandwidth reservation, avoiding that
GET request for popular content either last too long, causing
violations, or too short, wasting network resources. Overall,

we have verified that 99% of all violations with caching last
at least 4.64 seconds, with outliers up to 48 minutes. Since a
straightforward implementation of non-collaborative caching
relies on random scheduling, it lacks essential information for
preventing edge nodes’ overloading, and therefore provides
poor resource allocation for popular content.
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Figure 9. Upper quartile of GET
durations of the 10 most popular
objects.
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Figure 10. Maximum number of
replicas for the 2% most replicated
objects.

We analyzed the number of replicas of the most popular
content. Figure 10 plots the maximum number of replicas for
the 2% most replicated objects. It shows that the vast majority
of the content had a small number of copies. For instance,
98% of objects with DAR scheme had less than 21 copies.
Although, we are able to drop this number by two-thirds
with AREN scheme. Our replication scheme performs still
better for the most replicated content. While the maximum
number of replicas using DAR and LRU reached respectively
1574 and 1740, AREN’s most replicated object had only 188
replicas. This means that AREN adapts replication efficiently
for the most popular content. It reduces the amount of
required storage space for additional replicas, as well as the
number of allocated edge nodes per stored object.
We have evaluated the bandwidth allocation efficiency of
AREN, caching, and DAR, in terms of aggregate bandwidth
and bandwidth allocation variance during the peak of utiliza-
tion, and we have compared their results to an assumption
of unlimited network and storage capacities (described in
Subsection IV-A). Figure 11 shows that AREN’s bandwidth
allocation through reservation is similar to the unlimited as-
sumption. That allows us to increase the aggregate bandwidth
by almost 20%, hence achieving faster content delivery. DAR
and LRU weaken the system’s performance due to their
fair sharing bandwidth allocation policy. Measurements of
bandwidth allocation variance, Figure 12 shows that unlim-
ited scheme presented the highest variance values. Alongside
AREN, second highest values, it shows that imbalance in
bandwidth allocation per node matters to deliver popular con-
tent with strict SLA. We have seen the higher the imbalance
in bandwidth is, the better is the network resource allocation.
In order to control the impact of storage traffic in edge
networks, transfers between nodes from different Storage
Domains must be avoided as much as possible. AREN
scheme enforces a nearest source selection scheduling policy,
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Figure 11. Aggregate bandwidth for three replication schemes and an
assumption of unlimited resources, during utilization peak.
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Figure 12. Variance for three replication schemes and an assumption of
unlimited resources during utilization peak.

described in Subsection IV-A, which prioritizes the selection
of intra-domain sources for requests. That allows us to
reduce significantly the inter-domain traffic burden compared
to a pure random scheduling. Figure 14, and 13 plot the
aggregate bandwidth exchanged between the two Storage
Domains. The enforcement of our straightforward policy in
AREN scheme reduces nearly 60% of the overall traffic
inter-Storage Domains compared to non-collaborative LRU
caching. Our DAR scheme implementation performed very
similar to caching.
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Figure 13. Aggregate bandwidth
between Storage Domain 1 and 2 for
caching.
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Figure 14. Aggregate bandwidth
between Storage Domain 1 and 2
from AREN replication scheme.

V. RELATED WORK

Our related work is organized in two parts: content replica-
tion and QoS guarantees for content delivery.

Content replication:A large number of replication schemes
have been proposed in the recent years, particularly for P2P
networks. Broadly speaking, these schemes fall into three
categories according to their resource allocation strategies:
uniform, proportional or adaptive replication schemes. The
Google File System (GFS) [9] and Ceph [18] adopt a
pragmatic approach where the number of replicas per object
is uniform and fixed. This approach has had a considerable
success in the industry, particularly for datacenters deploy-
ment, because it is easy to adopt. However it relies on over-
provision to provide enough resources for popular content,
and despite of using commodity servers, it is inefficient
and quite expensive. We have verified in this work that a
simple non-collaborative LRU cache outperforms uniform
replication schemes. Cohen et al. [5] initially suggested
that storage capacity and bandwidth must be taken into
account to enhance proportional replication algorithms, but
their aim was limited to minimize the expected search size
in unstructured P2P networks. Adya et al. [1] and On et al.
[12] propose a interesting proportional replication schemes
based on availability of untrusted storage nodes. Although
they fail to state replication in terms of response time,
storage and bandwidth capacity, that are primary issues for
consumer-edge devices. Carbonite [4] extends these concepts
and introduces an adaptive replication scheme that takes
into account both availability (for GETs) and durability (for
PUTs) of stored objects. On the one hand it shows how much
bandwidth usage is important for replication schemes, but on
the other hand their assumptions are based on a very idealized
mathematical model, that ignores object popularity and node
overhead. We have shown with AREN that tracking popu-
larity growth and load over nodes are essential for enforcing
strict SLA contracts. EAD [14] and Skute [3] tackle these
issues by using a cost-benefit approach over decentralized
and structured P2P systems. EAD creates and deletes replicas
throughout the query path with regard to object hit rate using
an exponential moving average technique. Skute provides
a replication management scheme that evaluates replicas
price and revenue across different geographic locations. Its
evaluation technique relies on equilibrium analysis of data
placement. Despite being highly scalable and providing an
efficient framework for replication in distributed systems,
these approaches result in inaccurate transfer rate allocation,
hence inappropriate for high-quality content delivery. AREN
overcomes these issues by combining bandwidth reserva-
tion and collaborative caching successfully. More recently,
Zhou et al. proposed DAR [20], an adaptive replication
algorithm for P2P-assisted Video-on-Demand (VoD). DAR
permits distributing content in scalable way by balancing
the expect bandwidth load per node. But, we have seen that
DAR approach performs worse than caching to enforce strict
QoS metrics. AREN provides proper bandwidth imbalance
to prevent SLA violations and improve resource allocation.
QoS guarantees for content delivery: The increasing com-
petition between network service providers along with ever-
growing demand for multimedia content push through tighter



delivery guarantees. Consumers and providers engage in Ser-
vice Level Agreement (SLA), that formally establishes which
system performance is expected for a particular service.
While response time and mean request rate are commonly
included in current negotiated contracts [6], high-quality
metrics, such as end-to-end latency and strict transfer rate, are
avoided by providers because they are very tough to enforce.
Evans et al. [7] show that appropriate engineering of edge
network is key for tight SLA. Integrated Services architec-
ture (InServ) with Resource reSerVation Protocol (RSVP)
guarantees QoS metrics by reserving end to end resources
before sending any data, but suffers from poor scalability.
Differentiated Service (DiffServ) groups distinct traffic flows
in classes and configures routers to correctly follow a Per
Hop Behaviour (PHB) without resource reservation. However
it lacks proper end to end QoS enforcement due to PHB
mismatches across different ASes. Recently, researchers have
extensively studied this problem in datacenters networks [19],
[2], [17]. Later proposal, D3 [19], provides a deadline-aware
protocol that uses explicit rate control to apportion bandwidth
according to flow deadline. That allows to increase the
aggregate throughput in datacenter environments compared
to TCP. But D3 and previous proposals are particularly de-
signed for transporting tiny objects from homogeneous nodes
across datacenter Ethernets with very low delay and high
throughput, and furthermore they are agnostic to popularity
peaks, and they are not customized for wide area network
environments with unpredictable transfer rate demands and
high variances in network latency. The bandwidth reservation
used by AREN is strongly based on D3 findings. Performance
evaluations of AREN show that combining bandwidth reser-
vation and collaborative caching mechanisms is essential to
enforce transfer rates as QoS metrics in edge networks.

VI. CONCLUSIONS

This work presented AREN, an novel adaptive replication
scheme for cloud storage in edge networks that enforces
strict SLA metrics with efficient resource allocation. AREN
minimizes the number of SLA violations by tracking band-
width reservation mechanism on edge nodes for operating
collaborative caching mechanism properly. Our evaluations
show that AREN consistently outperforms common replica-
tion schemes. For future work, we will investigate adaptive
replication schemes’ mechanisms to cope with unpredictable
popularity growth patterns of web content, by validating our
simulations with real traces.
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