
Predicting Popularity and Adapting Replication of
Internet Videos for High-Quality Delivery
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Abstract—Content availability has become increasingly
important for the Internet video delivery chain. To deliver
videos with an outstanding availability and meet the
increasing user expectations, content delivery networks
(CDNs) must enforce strict QoS metrics, like bitrate and
latency, through SLA contracts. Adaptive content repli-
cation has been seen as a promising way to achieve this
goal. However, it remains unclear how to avoid waste of
resources when strict SLA contracts must be enforced. In
this work, we introduce Hermes, an adaptive replication
scheme based on accurate predictions about the popularity
of Internet videos. Simulations using popularity growth
curves from YouTube traces suggest that our approach
meets user expectations efficiently. Compared to a non-
collaborative caching, Hermes reduces storage usage for
replication by two orders of magnitude, and under heavy
load conditions, it increases the average bitrate provision
by roughly 90%. Moreover, it prevents SLA violations
through an application-level deadline-aware mechanism.

Keywords—Video Quality, Popularity Growth, Peer-to-
Peer, Hybrid CDN, Replication, SLA, Prediction.

I. INTRODUCTION

Multimedia content distribution over the Internet has
increased dramatically in the recent years. A study pub-
lished by Cisco System, Inc [3] revealed that the global
Internet video traffic has surpassed peer-to-peer traffic
since 2010, becoming the largest type of Internet traffic.
Cisco also forecasts that video traffic will reach 86% of
the global consumer traffic by 2016, including TV, video-
on-demand (VoD), live streaming, and peer-to-peer (P2P)
file sharing.

In parallel, Internet access has become ubiquitous,
continuously faster, and cheaper. These advances have
contributed to increase the expectations of consumers on
Internet services. Today, content availability is critical,
particularly for streaming traffic, that includes VoD and

live streaming. On the one hand, for many workloads,
such as social network messaging or search engines,
QoS metrics can be defined in term of latency of short
transactions. On the other hand, streaming traffic is more
sensitive to buffering, where a stable and high bitrate
is essential. For example, Dobrain et al.[5] found that a
1% increase in buffering ratio can reduce the consumer’s
expected viewing time by more than three minutes. This
suggests that SLA contracts must include the bitrate as
a key QoS metric.

Yet current CDN architectures are not ready to fulfil
the requirements of the increasing demand for streaming
and meet consumers’ expectations. Through fine-grained
client-side measurements from over 200 million client
viewing sessions, Liu et al.[9] showed that 20% of these
sessions experience a re-buffering ratio of at least 10%,
14% of users have to wait more than 10 seconds for
video to start up, more than 28% of sessions have an
average bitrate less than 500Kbps, and 10% of users fail
to see any video at all.

To cope with these issues, CDN providers have started
to adopt for hybrid designs, that combine datacenters and
edge network resources [1]. The aim is to combine the
advantage of infrastructure-based and P2P systems. But,
the resource allocation on hybrid CDNs to meet user
expectations still imposes big challenges, particularly
if a minimal average bitrate has to be enforced. This
paper identifies adaptive content replication as one of
such challenges. Adaptive replication plays an important
role on the content availability. As the popularity of a
video increases, the number of replicas must be adapted
accordingly. Generally speaking, the faster and more
precise the replication scheme reacts to changes on
videos popularity, the better is the resource allocation
towards high content availability. However, to identify



popular videos precisely and to define the replication
degree properly are far from being trivial tasks.

In this work, we present Hermes, an adaptive replica-
tion scheme for offering highly available Internet videos
on hybrid CDNs. Hermes is based on predictions of
videos’ popularity. For that, we designed a learning
model using non-linear support vector machine (SVM)
methods. Inputs of our model come from lightweight
measurements of the request arrival process. Evaluations
with growth curves from YouTube traces show that our
predictions of popularity are accurate. That allows us to
prevent violations of strict SLAs by enforcing simple
replication policies. Our approach is flexible and can be
easily extended to different CDN scenarios.

This work makes two main contributions:

• We design and evaluate a predictor of Internet
video popularity with YouTube traces. Our pre-
dictor tracks the dynamics of popularity growth
curves accurately based on measurements of
request arrivals; thus, the prediction model is
flexible enough for being used in different de-
ployments.

• Based on our accurate predictions, we designed
and evaluated Hermes, an easy-to-deploy, adap-
tive replication scheme that provides highly
available Internet videos. Simulations on top of
PeerSim[10] show that Hermes outperforms a
non-collaborative caching by reducing storage
and network usage. Unlike most of the recent
deadline-aware approaches, Hermes does not re-
quire any modification of network stack to en-
force strict QoS metrics.

The rest of this work is organized as follows. Sec-
tion II presents our datasets, and measurements for
predictions. Section III describes the learning model. In
Section IV, we analyse and explain our evaluation sce-
nario and performance results of our replication scheme
for edge resources in a hybrid CDN scenario. Section V
discusses related work, and Section VI concludes.

II. MOTIVATION AND MEASUREMENTS FOR

PREDICTIONS

In this section, we discuss the role of adaptive
replication schemes for content distribution. We present
our workload with popularity growth curves from real
YouTube traces, measurements, and datasets.

A. On the Track of YouTube Popularity Growth Curves

A fair reproduction of user interactions to Internet
videos is essential to evaluate an adaptive replication
scheme properly. Hence, we carefully set-up our work-
load to combine YouTube traces [6] to well-known
videos’ access patterns [14].

Figueiredo et al. [6] collected and characterized the
growth patterns of YouTube videos, whose datasets are
currently available online [16]. They analysed three types
of YouTube videos sets: videos that appear on YouTube
top list, videos that were banned from YouTube due
to copyrights violations, and videos that were randomly
selected through API calls. They crawled once a number
of videos’ daily features. For each video, there are up
to 100 daily measurements, or daily available samples,
per feature. In this work, we are mostly interested in
the measurements of view data feature, that depicts the
popularity growth curve of a video through a array of
cumulative number of daily views ranging from 0 to the
total number of views.

Before integrating to our workload, we first processed
theYouTube datasets to remove inconsistent measure-
ments, such as videos with no views. Basically, we
got rid of videos with small number of total views
(those smaller than the first quartile) and videos with
few daily measurements (those smaller than the third
quartile). That allows us to pick off 20% most represen-
tative YouTube growth patterns, accounting for 21827
distinct curves. Then, for a matter of simplicity, we
randomly selected, with a uniform distribution, curves
from this preprocessed data to be assigned to videos of
our workload. To summarize, Table I lists default values
for workload parameters. In our simulations, videos are
always divided in chunks of fixed size, 2MB. Assuming
that all consumers expect the same minimal QoS metric
for buffering their videos, we define a SLA contract
whose the minimal average bitrate is 14 chunks/s. We
consider that a SLA violation occurs whenever a viewer
does not observe her minimum average bitrate.

TABLE I. DEFAULT VALUES FOR WORKLOAD PARAMETERS

Workload
Requests per user uniform
Experiment duration 4 hours
Mean requests per second 100
Requests fractions 5% of creations, 95% of views
Object size (follows Pareto) shape=3, from 13MB to 1.6GB
Video popularity (Zipf-Mandelbrot) shape=0.8, cutoff=# of videos
Videos’ creation (Poisson) λ=creations per second
Popularity growth from YouTube traces 21827 distinct patterns



B. Adaptive Replication Schemes for Highly Available
Content

Replication schemes have become an important build-
ing block for Internet video providers to improve content
availability and meet consumers expectations. A good
popularity-aware replication scheme should offer content
replica maintenance to handle popularity growth prop-
erly.

Non-collaborative caching remains the simplest ap-
proach to provide popularity-aware replication of web
content [8]. They adapt the replication degree to the
content popularity using cache replacement policies, and
assuming fair-sharing as a key scheduling strategy. But,
Internet videos’ workloads on hybrid CDNs present new
challenges for non-collaborative caching, e.g. smaller and
highly heterogeneous storage for replicas, and a growing
need for high bitrate provision for meeting consumers’
expectations. Therefore, relying just on cache replace-
ment policies and fair-sharing scheduling can undermine
the performance of the whole system.

Our previous work, AREN [13], which presents a
novel adaptive replication scheme has been designed
with these issues in mind. AREN relies on collaborative
caching and a bandwidth reservation mechanism to adapt
the replication degree and to enforce SLA contracts for
costumers. It applies a simple mechanism of popularity
classification and content replication based on the current
sum of bandwidth reservation and low/high bandwidth
thresholds. Simulations with synthetic workload demon-
strated that this approach provides near-optimal results,
providing an outstanding content availability. It outper-
formed non-collaborative caching by preventing almost
99.8% of SLA violations. By reducing the total number
of replicas, AREN reduces storage usage for replication
and increases the aggregate bandwidth. Unlike non-
collaborative caching, AREN reduces the dependency on
cache replacement policies by decreasing consistently the
number of replicas.

Although AREN’s results showed that it is highly effi-
cient in replicating Internet video workloads, its deploy-
ment raises considerable issues for Internet providers.
One of the main disadvantage of this approach, that can
make Internet providers reluctant to its use, is that it
depends on changes on the functioning of the network
stack. Efficient bandwidth reservation for meeting dead-
lines, like D2TCP[15], requires major adjustments to the
transport network layer to provide end-to-end bandwidth
reservation properly.

To overcome this important issue, and encouraged
by findings with AREN’s threshold-based approach, we
introduce a flexible learning model for predicting popu-
larity and replication degree. It tracks popularity growth
of Internet videos based on lightweight measurements of
the request arrival process. The aim is to instrument a
collaborative caching, creating and deleting replicas, ac-
cording to video access patterns. We argue that, through
accurate predictions, we are able to react to popularity
growth changes promptly, and prevent SLA violations.

C. Measurements and Dataset for Predictions

One of our first efforts towards accurate predictions
was to gather as much information about users’ interac-
tions as possible in an easy manner. We run simulations
with the workload described in Subsection II-A for
collecting those measurements.

Our data comes from 10 lightweight measurements
of the request arrival process: video size, network avail-
ability, network usage (load), current number of viewers
and replicas, inter-arrival time between requests (delta),
aggregate number of views, mean of time between re-
quests (mtbr), life time, and average bitrate. We chose
this approach because it provides a simple procedure
to collect information of consumers’ interactions. In
hybrid CDNs, this data can be collected from logically
centralised coordinator servers that are already in charge
of accountability or admission control tasks. In addition,
we added labels to each line of our measurements.
Labels track the behaviour of AREN functioning, and
allow us to classify requests. For instance, labels permit
distinguishing popular from non-popular videos. We
described these labels as follows:

Non-popular videos: Videos with non-popular labels
are those whose access pattern of its request arrival
process has not trigged any increasing on the initial
replication degree. According to recent findings [14],
the popularity of Internet videos follows a Zipf-like
distribution, consequently most of them likely belong
with this group. In AREN, they do not require any extra
replica.

Popular videos: If during the simulations, a video has
its replication degree modified by AREN, we attribute
a popular label to it. In addition, we introduced fur-
ther information to this group in order to capture the
behaviour of the replication maintenance. Depending on
the decision taken by AREN, there will be three types,
or subclasses or labels, of popular videos: increasing,



keeping, or decreasing. This allows us to interpret the
measurement as a trigger for changing the resource
allocation of that video, in our specific case, modifying
the number of replicas.

III. LEARNING MODEL

We describe our statistical learning model in this
section. First, we present an brief overview of statistical
learning. Then we explain the model, showing our two-
step approach. Finally we describe our implementation
and framework for learning.

A. Statistical Learning Overview

Statistical learning is about learning from seen data
in order to predict unseen data with minimal error. Data
comprise measurements x represented by a feature vector
with a fixed number of dimensions p (x ∈ X ⊂ Rp) from
the input space X . There are two ways of learning from
data: supervised and unsupervised learning.

In supervised learning, each measurement or input is
coupled with a y, a label, from the output space Y . To
learn, we have N pairs (x, y) drawn independent and
identically distributed (i.i.d.) from a fixed but unknown
join probability density Pr(X,Y ). This is true for both
training and testing datasets. For instance, we consider
the training dataset S = {xi, yi}Ni=1 of N pairs (x, y).
From this dataset, the supervised learning algorithm
searches for a function f : X → R in a fixed function
class F . State-of-the-art algorithms, such as support
vector machines (SVM) [4] or Adaboost[7], aim to find
f? in F with the lowest empirical risk defined as:

f? ∈ argmin
f∈F

remp(f)

where remp(f) = 1
N

∑N
i=1 I{f(x)6=yi} is computed over

the training set, and I{.} is the indicator function which
returns 1 if the predicate {.} is true and 0 otherwise.

In unsupervised learning, we have N samples
(x1, x2, . . . xN ) of a random p-vector X having prob-
ability density Pr(X). Unlike supervised learning, we do
not have outputs to learn. Instead, we are interested in
inferring the properties of the probability density Pr(X).
This allows us to have insights into how the data are
organized or clustered.

B. Learning Model for Internet Videos

In this work, data come from users’ interactions to In-
ternet videos. We assume that there exist data with near-
optimal results from where we can learn. As described
in Section II, these data come from simulations using
AREN replication scheme. Each dataset line contains 10
lightweight measurements of request arrival process and
a label, as described in Subsection II-C. We denote as
inputs the measurements of the request arrival process,
and as outputs the popularity labels.

In Subsection II-C, we present two classes of outputs:
non-popular and popular. Then, we describes that there
are three subclasses for popular videos. Therefore, we
model our problem in a two-step approach as follows:

Popularity classifier: This learner allows us to classify
videos into non-popular and popular. Since the popularity
of Internet videos follows a Zipf-like distribution, popu-
lar videos can be seen as rare events. Hence, we identify
popular videos as anomalies through an unsupervised
learning method with binary outputs.

Replication classifier: Here we consider popular videos
only. There are three subclasses of replication for popular
videos: increasing, keeping, and decreasing. In this case,
we use a multi-class supervised learning method.

C. Framework for Learning and Predicting, and Imple-
mentation

Our two-step classifier is based on support vector
machine (SVM) methods [4]. According to Friedman
et al., SVMs are a set of robust supervised learning
methods, that produce accurate, non-linear boundaries for
classifiers by constructing a linear boundary in a large,
transformed version of the input space. We implemented
our learning model as a module of Hermes using Scikit-
learn, a general-purpose machine learning library [11].
From Scikit-learn, we selected two main procedures:
sklearn.svm.OneClassSVM for popularity classi-
fier, and sklearn.svm.SVC for replication classifier.

We designed a simple framework to use our Hermes’s
learning module, depicted in Figure 1. Our framework
has two phases: (i) learning and (ii) predicting. Each
phase has its own YouTube-like workload. In the learning
phase, we first generate the training dataset with AREN.
Then we feed this training dataset to Hermes in order to
identify YouTube popularity patterns. Once the learning
phase has been accomplished, Hermes can use its learn-
ing module in a predicting phase, as indicated in the the
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Fig. 1. Framework for learning and predicting Internet videos
popularity.

left-hand side of Figure 1. In this phase, inputs comes
for measurements of the the request arrival process of
workload 2, that permit classifying requests to popular
videos and instrumenting replication accordingly.

IV. EVALUATION

Our utmost performance goal is to prevent all SLA vi-
olations. As detailed in Subsection II-A, a SLA violation
occurs whenever a viewer does not observe her minimum
average bitrate. We are also interested in reducing storage
and network usage as much as possible. We focus on
the storage usage for replication. In terms of network
usage, we are particularly interested in evaluating the
bitrate provision under heavy load. First we introduce
the scenario and the replication schemes evaluated in this
work. Then we present our most important results.

A. Evaluation Scenario and Replication Schemes

We evaluated this work with Caju, a tool which mod-
els a content distribution system for edge networks on top
of PeerSim. In Caju, the service provider infrastructure
is organized in federated storage domains, as depicted
in Figure 2. A storage domain is a logical entity that
aggregates a set of storage elements that are located close
to each order. There are two different classes of devices:
(i) operator-edge, furnished by storage operators, e.g.
small-sized datacenters, represented by big nodes up on
Figure 2, and (ii) consumer-edge, the small ones, whose
consumers are connected to, such as home gateways.

System interactions are straightforward. Users can
either share or view videos. For sharing, given a fixed
number of initial replicas n, it simulates the initial video
creation and a chain of object-replication of n − 1
stages. A view request is served by at most R nodes
with uniform load. Available sources come from r =
min(n,R). We set R to five for all experiments. A
detailed description of Caju is available in [13].
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operator-edge 
device

consumer-edge 
devices

edge
network

Storage Domain 

edge
network

operator
network

10
0M

bp
s

200GB

20TB

4Gbps

10
0M

bp
s

200GB

20TB
4Gbps

...

Fig. 2. Evaluation scenario

Our evaluation scenario (Figure 2) includes 4002
nodes, arranged across two storage domains. There are
one operator-edge device and 2000 consumer-edge de-
vices per storage domain. Storage and network capaci-
ties differ according to the device class. Operator-edge
devices have 20TB of storage capacity and full-duplex
access link of 4Gbps. Consumer-edge devices contribute
200GB each, equipped with 100Mbps full-duplex links.
Note that the two operator-edge devices contribute with
a small fraction of aggregate edge resources, i.e. 5% of
the storage capacity and only 2% of the total network
capacity. This draws our attention to the performance
of replication schemes towards consumer-edge resource
usage. We assume that edge networks are connected to
the operator network that ensures inter-storage domain
connectivity. We assume only 1% consumer-edge de-
vices storage is available for caching additional replicas,
namely 2GB.

We evaluate three replication schemes.

Non-collaborative caching Adaptive replication
schemes based on non-collaborative caching, such as
those that uses Least Recent Used (LRU) algorithm,
are easy to implement and deploy. A new replica is
created whenever a user requests to view a video. LRU
replacement is enforced regarding the static percentage
of the local storage capacity for caching of 1%.

AREN That stands for Adaptive Replication for Edge
Networks. It relies on bandwidth reservation and collab-
orative caching to adapt the replication degree of popular
content. Considering a logically centralized coordinator,
AREN tracks the active aggregate bandwidth per content,
and decides if it is worth creating a new replica in
viewer side. The coordinator computes the utility of new
replicas based on thresholds. Replica utility measures
the benefit of creating replicas with regard to popularity
and current bandwidth consumption of a video. It also



checks if replicas are redundant and must be deleted.
For scheduling on edge networks, AREN enforces two
simple policies: divide-and-conquer and nearest source
selection. Further details about AREN are available in a
previous work [13].

Hermes This is our main contribution. It provides a
proper, adaptive replication scheme for Internet videos
that enforces strict SLA contracts through accurate pre-
dictions. More interestingly, it does not requires any
modification of the network stack, as most of deadline-
aware approaches do. Hermes implements our learning
model for Internet videos, described in Section III.
This module permits identifying popular Internet videos
based on lightweight measurements of request arrival
process. Since Hermes predicts accurately requests to
popular videos, we argue that enforces simple replication
policies is enough to prevent both violations and waste
of resources. To evaluate this idea, we define d as the
number of additional replicas to cope with the popularity
growths. Therefore, whenever a video is classified as
popular, new d-replicas are created. Similarly, Hermes
reduces replication degree according to the video pop-
ularity. Hermes enforces the same AREN’s policies for
requests scheduling on edge resources.

B. Predictions and Replication Performance

Hermes relies on predictions to identify popular
videos and enforce QoS metrics through replication.
Hermes’ performance depends mainly on (i) prediction
accuracy and (ii) the efficiency of the replication policy.
In Section III, we explain that our two-step classifier
relies on SVM methods. To measure the prediction
accuracy of each step, we vary the kernel, the main
SVM parameter. We consider four kernels: Radial Basis
Function (RBF), Linear, Polinomial (Poly), and Sigmoid.
For evaluating our classifier, we use the framework
described in Subsection III-C.

Popularity prediction accuracy: The first step of
our learning model predicts Internet videos popularity
through a binary classification. We used a dataset with
286823 samples of view requests, whose 1.31% of them
belong to popular videos. Figure 3 depicts the receiver
operating characteristic (ROC) curve. ROC curve is one
of the most common ways of evaluating the efficiency
of a binary classifier. This plot allows us to select the
best classifier by measuring the true positive rate versus
the false positive rate, and by computing the area under
the ROC curve (AUC), where the value 1 represents

the optimal classifier. Using RBF kernel, our classifier
reaches an AUC of 0.97, quite close to the optimal value.
Therefore, RBF kernel is the best choice for predicting
popularity.

Replication prediction accuracy: For the second step of
our learning model, the goal is to predict the replication
action for popular videos in three classes. The dataset
for this step contained 612754 view requests. Figures 4
shows total precision rates using different SVM kernels.
RBF outperforms the three other kernels with the highest
precision rate of 0.98, becoming our best choice. Unlike
popularity predictions results, Linear and Poly kernels
performed quite well, both scoring 0.97.
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Evaluating the replication policy: Whenever the learn-
ing module of Hermes predicts that a video needs more
replicas, we assume that d new replicas must be created
once for preventing violations. Figure 5 measures the
number of violations for different values of d, whose
values vary from one to 13. When d ranges from seven
to 10, there is no violations. This suggest that since
popularity predictions are accurate, a simple replication
policy should suffice. However, if d is bigger than 10,
replication adds enough load to cause violations. Hence,
we select d equal to seven as the most appropriate value
for preventing violations.

C. Resource Allocation Results and Analysis

We compare Hermes with a non-collaborative caching
and AREN, all described in Subsection IV-A. We evalu-
ate the network and storage usage, as well as the number
of violations.

We aim to adapt the number of replicas to the number
of views of a video, especially for the most popular
ones. Figure 6 plots the maximum number of replicas
for the 1% most popular videos. Using caching, the
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maximum number of replicas is high, raging from 817 to
1377. AREN permits decreasing significantly the lower
and upper limits, to 7 and 39. Hermes also reduces
the maximum replica range, which is from 9 to 58.
More interestingly, the shape of the replication curves of
Hermes and AREN are quite similar indeed. It confirms
that our predictions are accurate, and that a simple
replication policy works properly.

Reducing the number of replicas implies that the sys-
tems requires less storage for replication. Figure 7 shows
storage usage for replication by replication scheme. Al-
though Hermes utilizes more storage for replication than
AREN, its usage remains two orders of magnitude below
a non-collaborative caching. The maximum storage usage
for AREN, Hermes, and a non-collaborative caching
were 3, 49, and 7956 GB respectively. Hermes creates
more replicas than AREN because it does not rely on
bandwidth reservation to prevent violations. Despite that,
Hermes maintains replicas efficiently, keeping storage
usage very low, and making cache replacement policies
redundant.
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In terms of violations, Hermes performance is also
quite similar to AREN. Hermes prevents all violations.
Each point of the Figure 8 represents the number of

SLA violations for intervals of five minutes. Overall,
caching caused 1569 violations affecting almost one third
of all viewers, AREN had one violation, and Hermes
none. As AREN, Hermes prevents violations by (i)
creating new copies for popular videos only, and (ii)
adapting the number of replicas properly. Vertical lines
in Figure 8 represent the first access to the three popular
videos with the worst content provision through caching.
They account for 96.81% of all caching violations. The
appearance of these videos puts the system under heavy
load, which makes caching fails to prevent violations.

Figure 9 depicts the average bitrate for viewers of
the three videos with the worst content provision using
caching. When caching was under heavy load, half of
viewers experienced a very low bitrate, raging between
460Kbps and 4860Kbps. The mean bitrate with caching
was 45Mbps. On average, Hermes improved this bitrate
by roughly 90% under heavy load. AREN comes just
behind, improving bitrate provision by 87%. This find
suggests that Hermes largely outperforms caching, and
provides still better than AREN under heavy load con-
ditions.
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V. RELATED WORK

Our related work is two-fold: Internet videos and
adaptive replication schemes.

Internet videos: Recent studies [6], [14] have drawn
attention to reach a better understanding of Internet
videos properties, such as popularity growth. They point
out that well-known popularity characteristics are appli-
cable to multimedia content. For instance, Internet videos
popularity distribution follows power law, and popularity
bursts have a short duration and are quite likely to
happen just after the content publication. Dobrian et



al. [5] shed some light on the performance of Internet
videos provision on CDNs. They show that average
birate plays an important role in videos availability. Liu
et al. [9] make a case for a video control plane that
can use a global view of client and network conditions
to dynamically optimize the video delivery in order to
provide a high quality viewing experience despite an un-
reliable delivery infrastructure. However, the granularity
of their server selection mechanism is at a CDN, ignoring
edge network resources. Hermes addresses this issue by
adapting replication close to the viewers. Thus, Hermes
can be play a important role in collaborating with an
Internet control plane.

Adaptive replication schemes: Non-collaborative
caching remains the simplest approach to provide
popularity-aware replication of web content through
cache replacement policies[8]. However, we showed
when we adapt the number of replicas according to the
Internet video popularity properly, cache replacement
policy becomes redundant. EAD [12] and Skute [2]
adapt the number of replicas by using a cost-benefit
approach over decentralized and structured P2P systems.
EAD creates and deletes replicas throughout the
query path with regard to object hit rate using an
exponential moving average technique. Similarly,
Skute provides a replication management scheme
that evaluates replicas price and revenue across
different geographic locations. Despite presenting an
efficient framework for replication, they provide an
inaccurate bitrate provision, hence inappropriate for
high-quality video delivery. AREN [13] overcomes
these issues by combining bandwidth reservation and
collaborative caching successfully. Yet, its functioning
depends on modification of the network stack. Hermes
solves this issue through analysing the request arrival
process, performing accurate predictions of Internet
videos popularity, and maintaining replication degree
accordingly.

VI. CONCLUSIONS

In this work, we presented Hermes, an adaptive
replication scheme for offering highly available Inter-
net videos on hybrid CDNs. To adapt replication, we
proposed a learning model that tracks popularity growth
curves based on lightweight measurements of the request
arrival process. Simulations with YouTube traces showed
that our predictions are accurate. That allowed Hermes
to maintain the replication degree of Internet videos
properly. Our evaluation results highlight that Hermes

increases the average birate provision by roughly 90%,
contributing decisively to enhance viewing experience
of users. Our future work will mainly cover a proof-
of-concept prototype for evaluating Hermes using a real
testbed.

REFERENCES

[1] Akamai acquires red swoosh.
http://www.akamai.com/html/about/press/releases/
2007/press 041207.html, 2007.

[2] N. Bonvin, T. G. Papaioannou, and K. Aberer. A self-
organized, fault-tolerant and scalable replication scheme for
cloud storage. In SOCC, 2010.

[3] Cisco visual networking index: Forecast and methodology,
2011-2016. www.cisco.com, 2012.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 1995.

[5] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam,
J. Zhan, and H. Zhang. Understanding the impact of video
quality on user engagement. In SIGCOMM, 2011.

[6] F. Figueiredo, F. Benevenuto, and J. M. Almeida. The tube
over time: characterizing popularity growth of youtube videos.
In WSDM, 2011.

[7] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. In
Proceedings of the Second European Conference on Computa-
tional Learning Theory. Springer-Verlag, 1995.

[8] S. Jin and A. Bestavros. Popularity-aware greedydual-size web
proxy caching algorithms. In ICDCS, 1999.

[9] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica,
and H. Zhang. A case for a coordinated internet video control
plane. In SIGCOMM, 2012.

[10] A. Montresor and M. Jelasity. PeerSim: A scalable P2P
simulator. In P2P, 2009.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 2011.

[12] H. Shen. An efficient and adaptive decentralized file replication
algorithm in p2p file sharing systems. IEEE Transactions on
Parallel and Distributed Systems, 2010.

[13] G. Silvestre, S. Monnet, R. Krishnaswamy, and P. Sens. Aren:
a popularity aware replication scheme for cloud storage. In
ICPADS, 2012.

[14] G. Szabo and B. A. Huberman. Predicting the popularity of
online content. Communications of the ACM, 2010.

[15] B. Vamanan, J. Hasan, and T.N. Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). SIGCOMM, 2012.

[16] The tube over time: Characterizing
popularity growth of youtube videos.
http://www.vod.dcc.ufmg.br/traces/youtime/data/, 2013.


