POPS: a popularity-aware live streaming service

Karine Pires, Sébastien Monnet and Pierre Sens
Sorbonne Universités, UPMC Univ Paris 06, Equipe REGAL, LIP6, F-75005, Paris, France
CNRS, UMR_7606, LIP6, F-75005, Paris, France
Inria, Equipe REGAL, F-75005, Paris, France
Email: firstname.lastname @lip6.fr

Abstract—Live streaming has become very popular. Many
systems, such as justin.tv, have emerged. They aim to collect user
live-streams and serve them to the viewers using broadcasting
servers. However, the huge variation in the total number of
viewers and the great heterogeneity among streams popularity
generally implies over-provisioning, leading to an important
resource waste. In this paper, we show that there is a trade-off
between the number of servers involved to broadcast the streams
and the bandwidth usage among the servers. We also stress the
importance to predict streams popularity in order to efficiently
place them on the servers. We propose POPS: a live streaming
service using popularity predictions to map live-streams on the
servers.

I. INTRODUCTION

We are currently witnessing the emergence of two phe-
nomena: the popularization of video capture devices and the
explosion of network quality and the number of Internet users.
Indeed, nowadays, any laptop, netbook or even cell phone has
a camera. Full HD devices have become affordable, including
their mobile version. It implies that a large portion of the
population has the necessary equipment to create streaming
video.

Regarding networks, we have seen in recent years an
influx of users and a globally better coverage. In parallel
network quality in terms of latency and throughput improved
significantly, and this improvement continues, in particular
with the arrival of very high speed networks like the optical
fiber. In addition, connection charges have become reasonable,
and the vast majority of Internet users has unlimited access.
The mobile network coverage is extensive and of good quality.
The progression rate of the coverage of mobile broadband
(3G/4G) suggests that the most part of the population will
almost have a permanent access to a network of good quality
at a reasonable price.

Combined, these two phenomena, and the tendency of users
to expose portions of their lives led to the rise of a new type of
system: live video streaming systems. These systems, such as
justin.tv [1] or YouTube live [2] offer to users the possibility to
broadcast or to watch live video streams. The amount of data
to be processed is considerable. For example, every minute,
justin.tv platform must absorb more than 30-hour live video
stream created by thousands of contributors [3]. Streams must
be broadcasted to hundreds of thousands of viewers.

The main difficulty in such systems comes from: (i) the
scale, both in terms of video streams and in terms of number
of viewers; and (ii) the high popularity variation, among both
time, and streams. The problem of live streams diffusion is
different from Video on Demand (VoD): it is not possible to

replicate video files in advance on multiple servers, there is
no video file before the start of a stream. It also differs from
IPTV: compared to television, the number of different streams
is greater and the number of users per stream is extremely
variable, with some streams having very few viewers.

It is thus necessary to dynamically adjust the number of
streams of broadcasting servers to meet the demand. When
a stream becomes very popular, it is possible that the server
which distributes it reaches its maximum capacity, in that case
it must share the load with another server. This induces an
additional cost in terms of bandwidth consumption between
servers. To minimize this overhead, it is necessary to smartly
map the video streams on servers. In this paper, we propose
POPS, a popularity-aware live streaming service. Our approach
is based on a study of real traces that we collected on the
justin.tv and YouTube live platforms. It allows us to predict
the popularity of a video stream. POPS is based on these
predictions to dynamically provision broadcasting servers. Our
evaluation shows that when a history can be used to estimate
the popularity of a stream, POPS can decrease the amount of
bandwidth used among servers without using too many servers.

The remainder of this paper is organized as follows.
Section II details the context of this study and describes related
works. Section III presents our contribution: a placement strat-
egy using popularity predictions. Finally, Section IV describes
our evaluation before Section V concludes.

II. CONTEXT AND POSITIONING

This section details the context of our study and presents
related works.

A. Model

We focus on platforms broadcasting user generated live
video streams. Users of these services can play both roles:
some create video streams, they are called uploaders; some
watch live streams, they are called viewers. At a given time,
a user can play either one of the two roles, or both simul-
taneously. However, in our study, we focus on each role
separately. It is also possible for a user to watch multiple
streams simultaneously, even if it is not norm.

In our model, illustrated by Figure 1, when a user creates a
video stream, he sends it to the platform. The platform consists
of a set servers. The number of involved servers may evolve
dynamically. Servers can be virtual machines in a cloud and be

\ incoming streams

l/ ‘MW

(server A)
JAVE RN

. 7N\

000 O @ 0000006
O Viewer @ unioader

Figure 1: Live stream overview.

server B

provisioned according to the load. The servers can be in a same
data center but they can also be geographically distributed, in
different data centers or located at the edge of the network.
We do not consider limits on the maximum number of servers
used by the platform, and we neglect the time it takes to
allocate a new server (servers can be pre-allocated, by pool).
Each stream is assigned to a server that is responsible for
broadcasting it to the set of viewers. A server can be assigned
to broadcast multiple streams. It is also possible that a stream
is supported by more than one server, when its popularity
(number of interested viewers) exceeds its server’s capacity.

We consider a dispatcher service that could be either
centralized or distributed. This service receives requests: (i)
to broadcast a new stream, from an uploader; (ii) to subscribe
to a stream, from a viewer. This service is responsible for
assigning a server to broadcast a new stream, it may either
choose an already existing one that has capacity left, or allocate
a new one. Then, the uploader sends its stream directly to the
assigned server. While receiving a request from a viewer, the
dispatcher service identifies the broadcasting server in charge
of its diffusion and returns it to the user. The server will then
send the stream directly to the viewer.

The design of the dispatcher service architecture is beyond
the scope of this paper. We here focus on the study of
placement choices that such a service has to do and their
consequences on the number of needed servers and on the
amount of inter-server bandwidth consumed. The number of
clients that can be served by one server depends on the
server capacity (in terms of outgoing bandwidth) and on the
served streams bit-rate. A server can therefore broadcast to:

server outgoing bandwidth desti . .
estinations. A destina-
Z#mmum ® bandwidth needed for viewer;

tion can be either a viewer, or another server when a stream
has to be served by multiple servers (see Section III). For each
stream it serves, a server preserves enough bandwidth to be
able to send one copy of the stream to another server in the case
new viewers arrive and it does not have the capacity to serve
them. We do not consider the incoming bandwidth limitation
in this paper: in most systems we observed around two orders
of magnitude more viewers than streams. That means that the
scalability problem is at the level of the outgoing bandwidth,
to serve a high number of viewers. We thus consider that the
incoming bandwidth is always sufficient.

The scales are important in our problem. The number of
users that these platforms must be able to handle at a given
time is of the order of several hundreds of thousands. Since

YouTube

— JUStin.tv

800 000 T T

600 000

400000

Viewers

200000

Uploaders
o
(=)
8
T
|

0 bt st e e Y B
0 10 20 30 40 50 60 70 80

Days

Figure 2: Number of users, viewers on the top and uploaders
on the bottom.

the information of each uploader identification is available in
the systems we crawled, we were able to compute the total
number of uploaders. At the end of the analysis period, over
one million different uploaders have been observed on justin.tv
and more than hundreds of thousands on YouTube. There are
always many video streams (thousands), but also many viewers
(hundreds of thousands spread over the different streams).
The information collected about viewers is presented in an
aggregated way: at any given time, for each stream, the total
amount of viewers is available. Therefore, we use and present
only the aggregated information, as for example the peak of
viewers. Computing the total number of unique viewers would
require more precise information, for example each viewer’s
identification, which is not provided by the platforms. Table I
summarizes these values. The distribution of viewers among
the streams is very heterogeneous: a few units to thousands
and even hundreds of thousands for some of the most popular
streams. Figure 2 shows the values during the period from
January 6 to April 6 (2014).

| justin.tv YouTube
Number of uploaders (total) 1,068,138 120,097
Number of incoming streams (total) 5,221,208 527,677

Uploaders peak 7,369 994
Viewers peak 823,227 657,087

Table I: Overview of justin.tv and YouTube scale

B. Positioning
We have identified four main categories of related work.

Measurements studies on video content. Many studies
focus on the analysis of video traffic. Authors of [4] studied
the YouTube traffic generated by mobile devices and compared
it to the one generated by standard PCs. They showed that
the access patterns remained comparable. In [5], YouTube
bandwidth and storage space needs are studied, as in [6] that
studies bandwidth from an Internet service provider point of

view. All these studies show the increasing importance of video
streams systems and the need to design scalable platforms to
broadcast this type of data. However, we did not find any,
freely available, large scale trace of user-generated content
live streaming platforms. That is why we have run our own
collection campaign on the justin.tv and YouTube systems (see
Section III).

Peer-to-peer systems for user-generated live video
streaming. In POPS, we focus on solutions based on multiple
servers to distribute video streams. Other studies adopt a
completely decentralized approach. A detailed state of the art
is given by [7].

However, the majority of these studies focuses on de-
centralization and the topology of the peer-to-peer overlay
network [8], [9]. It is important to consider an approach based
on a set of servers, because it is usually the one chosen
by commercial systems [3] and actually works on a large
scale, being able to attract a large number of users. There are
also solutions using networks such as CDN (Content Delivery
Networks) [10], [11], tailored for extremely popular streams. In
our opinion, this kind of approach is adapted to a small number
of extremely popular video streams, like what is observable in
the context of IP TV.

IP TV. The study presented in [12] provides an analysis of
one of the largest European live video stream provider: Zattoo.
In this paper, the authors have information on the architecture
of Zattoo from a provider point of view. However, Zattoo is
not really a large-scale system: the observed load peaks are
an order of magnitude below those we have seen in our data
collection. Other works, like [13], study the load of IP TV
systems. However, these systems have fewer channels than
systems offering user generated contents. The viewers of the
systems we target are spread over a large number of video
streams.

Video on demand delivery systems. Finally, there are
research efforts on the data placement for VoD systems. [14]
defines an approach that solves a mixed integer programming
problem in order to find the best placement for the videos. This
work however relies on video migration and caching, both out
of the live scope. Another caching strategy focused on energy
efficiency is proposed by [15]. The fact that the video streams
we consider are live changes the problem’s input. It is not
possible to place video files in advance on servers for instance.
Furthermore caching strategies would impose delays that are
not desirable on the live scenario. In this scenario there is an
important number of viewers watching the same stream at the
same offset, contrary to what can be observed in VoD systems.

III. MAPPING LIVE VIDEO STREAMS ON BROADCASTING
SERVERS

This section describes our contribution. We begin by briefly
present the lessons we have learned from the collection of
justin.tv [1] and YouTube [2] user traces. We study different
placement approaches to map video streams on broadcasting
servers. We present our approach based on stream popularity
prediction.

A. Justin.tv and YouTube trace analysis

Justin.tv and YouTube are user-generated live video stream-
ing platforms. Justin.tv is very popular: cumulative over three
months, there have been more than five million streams,
generated by more than a million uploaders. Everyday, several
hundreds of thousands of viewers are simultaneous using the
services. Furthermore, both platforms offers APIs providing
the ability to periodically collect streams and users informa-
tion. All the data we have crawled from justin.tv and YouTube
are available on demand.

user 1 user 2 —~ user 3 — user 4 user 5

600000 -
¢ 400000
[
=
2
>
200000 -
0- ol i dach
T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
Days
(a) YouTube
user 1 user 2 — user 3 — user 4 user 5
400000
300000 -
o
g
' 200000+
g |
100000 + l
| | !]‘ llﬁ
0- J e ll"“’.l:n,wtlhp*.“, s
Ll 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Days

(b) justin.tv

Figure 3: Uploaders sessions over the days of the five users
with biggest peak viewers

A complete analysis of the collected data is out of the scope
of this paper. The main lessons we have learnt from the data
are:

1) among video streams, the popularity is highly hetero-
geneous, the biggest part of the traffic being generated
by the few most popular ones, Figure 3 presents
five different users and the heterogeneity between
streams;

2) the global system load varies a lot during time,
remind Figure 2 that provides the viewers over the

collected days;

3) there are always many video streams; orders of mag-
nitude higher than the number of channels offered by
a classical cable TV, again the comparison of both
curves (viewers and uploaders) on Figure 2 illustrates
this point;

4) users behavior is predictable: it is possible to observe
a night and day oscillation, but also that a stream
popularity is highly correlated to the uploader that
creates it, and it tends to grow with the stream
length. That means that, popularity among uploaders
is highly heterogeneous, but the streams of a same
uploader have a similar peak popularity.

B. Popularity predictability discussion

The popularity prediction in live stream services is a key
aspect for resource provisioning but it is far from being trivial.
We extracted from the data that the users (the uploaders) pop-
ularity magnitude is predictable but not the precise popularity
(the number of viewers the future streams will gather).

It is not trivial task since among all the uploaders there are
extremely different behaviors. To illustrate this, Figure 3 shows
the popularity evolution over time for five selected users from
both services. We select the five users that reached the highest
peak of viewers over the collected period. Notice that, between
the two services (YouTube and justin.tv) there is already an
important difference: on justin.tv popular uploaders broadcast
more frequently than on YouTube. The popularity differences
between uploaders of a same service provider are clear. Taking
as an example users 2 and 5 on justin.tv, user 2 is about five
times more popular than user 5.

However, sessions (i.e., streams) that are made by a same
uploader have a tendency to be similar. While taking a closer
look at users 2 and 5 of justin.tv, it is easy to identify such trend
among each uploader’s streams. User 2 popularity stays around
250 000 viewers and user 5 around 80 000. To present such a
tendency we calculate the popularity coefficients of variation
presented by Figure 3. The coefficient of variation among all
streams is represented by a vertical line, while the coefficient
of variation for streams of each uploader are presented by the
cumulative distribution curve. For simplicity, we only take into
account uploaders with more than 12 streams, however cumu-
lative distribution curves made with other minimum numbers
of streams were similar. As previously discussed, the global
variation among all streams is much higher then the popularity
variation for streams of a same uploader. This result shows the
importance to take into account each uploaders information to
provide better popularity prediction for live content. However,
predicting the precise number of viewers a stream will gather
is beyond our reach, preventing us to be able to provision the
exact amount of needed resources.

C. Number of servers versus bandwidth usage trade-off

In our model, a server can only serve a limited number
of viewers depending on its bandwidth capacity and the bit-
rate of the served streams (see Section II). A naive approach
consists in assigning new streams to a server until it reaches its

1.00
c
K]
0.75 g
i]
L >
8 5
2 £
@ 0.50 Q
8 oS
o =
5 g
2 (8]
0.25 - =
Qo
o
>

0.00 -

1 1 1
0 10 20
Peak viewers coefficient of variation
(a) YouTube

1.00
c
ie]
=
0.75 g
’ IS
o >
o«
@) o
o 1=
@ 0.50 Q
B °
o =
5 g
> o
0.25 - =
Q
o
(2]

0.00 —

w_
o

l Ll
0 10 20
Peak viewers coefficient of variation

(b) justin.tv

Figure 4: Uploaders CDF, with at least 12 streams, of peak
viewers coefficient of variation.

maximum capacity. However, video streams popularity varies
upon time. An already loaded server can thus acquire new
viewers for streams it already broadcasts, it may then exceed
its capacity. In order to keep offering an acceptable quality of
service, it is necessary to use a secondary server, either a new
one, or one already serving other streams (but with capacity
left). The original server still has to broadcast the stream to
the viewers it already served, but it also has to send it to the
secondary server, using a preserved bandwidth dedicated to this
use (in red in Figure 5). This stream "replication” mechanism
is illustrated by Figure 5. Even if all the viewers can have an
acceptable quality of service using this mechanism, it has a
non negligible cost in terms of bandwidth. We can measure
this extra cost by summing the quantity of data transferred
across servers for stream replication, in bytes transfered.

As the number of viewers for a stream varies upon time
(either increasing or decreasing), it is possible that the phe-
nomenon described above leads to configurations for which
many streams have to be transferred among servers. In this
paper, we do not take into account the possibility to reconfigure

New viewer
® &6 & =« @ @ @
.L\ lvB (e A\ LB (
— —>
Server S Server S Server T
r N
Stream C Stream C
>
2
& | StreamB Stream B
x
©
E | steama Stream A
Stream C

(o)

Server T J

" C %" < ¥
Soo o ondob e DR o
Figure 5: Server S has reached its maximal load, a new viewer
for stream C implies a transfer on a new server (T).

the mapping: once a viewer is mapped on a server for a given
stream, it will always receive this stream from this server.
A reconfiguration would consist in migrating viewers among
servers.

The simplest manner to limit the necessity to transfer/
replicate streams among servers is to over-provision, to provide
a margin as illustrated by Figure 6. It allows the server to
accept new viewers for the streams it already broadcasts,
diminishing the risk to have to replicate a stream to a sec-
ondary server. Of course, the extra bandwidths provisioned
for different streams on a same server are merged: at the start
of a stream, extra bandwidth is provision, however, this extra
bandwidth can be used to serve any stream broadcasted by
the server. Indeed, the goal is to avoid a much as possible
to replicate a stream on a secondary server. If the margin
provisioned for a very popular stream is already used ant if it
remains unused bandwidth capacity (provisioned at the start of
other streams), it would be a bad idea not to use it for the very
popular stream if it needs it (the other streams on the server
may not need it).

However, provisioning extra bandwidth reduces the number
of streams that can be served by one server, it thus implies
to allocate more servers. The trade-off between the number
of servers used and the inter-server bandwidth extra-cost can
be tune through the margin value. Other parameters are also
important, the server choice policy made by the dispatcher,
bestfit or worstfit, can have an impact on the number of servers
and on the inter-server bandwidth consumption.

D. Taking video streams popularity into account

The value of the provisioned margin has an important
impact on resources consumption. If it is too low, many streams
will have to be served by multiple servers, consuming a lot of
inter-server bandwidth, as argued above. On the opposite, if it
is too high, the system will involved many servers using only a
small part of their capacity. Therefore it is important,for each
stream, to set a margin close to what will effectively by needed.

Our approach, POPS, is based on the use of an estimator. It
gives an estimation of the future popularity of a stream which
is used to set the margin. The goal is to have a margin large

® o
SV
Server S Server T

Stream B margin
Stream A margin

Stream C margin

bandwidth

(e) |

Server T]

Y

New viewer
for C stream
3

o + o

AL

Server S Server T

Margin for
streams A and B

bandwidth

[Server §

4 4

Server T

oo do

Figure 6: The server S has reached its maximal load (taking
margins into account). It will not accept to serve a new stream,
however, a new client for stream A or stream B can be served
using part of the provisioned margins.

enough to diminish the risk to have to transfer the stream to
another server during popularity peaks, but not too large to
limit resource (server) waste. This is based on the finding that
the popularity of the video streams broadcasted by a same
uploader does not vary a lot. When a known uploader (having
already at least one previous uploaded stream in the system’s
history) uploads a new video stream, our approach aims at
provisioning enough resources to support its estimated viewer
peak. We consider three different estimators:

POPS estimates that a video stream will have the same
popularity as the previous video stream uploaded
by the same uploader.

A-POPS (for adaptive POPS) has been designed to take into
account uploaders having a growing popularity.
If the history contains at least two video streams
from one uploader, A-POPS expects the popularity
of this uploader to continue to grow exponentially
and computes the viewer peak of the next peak
accordingly. If it can not estimate the growth (e.g.,
missing historical data), A-POPS adds an arbitrary
10% margin to the last popularity peak of the
same uploader.

is the estimator that could be build if it was
possible look in the future. It knows in advance
the number of viewers that a stream will gather,
it can provision exactly the amount of resources
that will be needed.

Oracle

It is important to notice that even with a perfect oracle,
this solution does not give the optimum: it could be possible
to serve a short stream outside the peak load period using
a portion of the provisioned margin. To do so, it would be
necessary to be able to predict streams arrival times, streams
lengths and the evolution of the number of viewers during
the stream life. However, while predicting an approximate
popularity peak for a stream is doable (because the popularity
linked with the uploader of the stream), predicting when the
peak of viewers will occur in the stream life and for how long
remains beyond our reach.

IV. EVALUATION

As discussed in Section III we have identified some trends
on the uploader popularity. Our evaluation starts by showing
how much taking the uploader popularity into account is
important. To do so, we compared two alternatives for the
uploaders popularity prediction: (i) a very naive approach
using the global average number of viewers per stream (called
average), and (ii) an approach that assumes that the next
streams of the same uploader will have a similar popularity
then the previous ones, based on A-POPS (called history).

Figure 7 presents the comparison between the two ap-
proaches. We called viewer error the difference between the
prediction and the real values (the real number of viewers).
For the average approach, the prediction values are the services
averages which are 81 for YouTube and 21 for justin.tv. For the
history the prediction for one stream is calculated based on the
previous streams from the same uploader. We consider that the
popularity for one stream will be the same as the previous one
times the increase (if any) between the two previous streams
(A-POPS). We present in the figure the sum of the viewer
errors over the period. The positive values represents the over-
provisioning of both predictions and the negative values the
viewers not served. This figure confirms that a simplistic
approach, such as using a global average, does not fit live
popularity prediction and that an uploader history can indeed
improve predictions and therefore the delivery provisioning.

Parameters ‘ Values
Traces justin.tv, YouTube
MAX_SERV 2Gbps
Allocation Policy FirstFit, BestFit, WorstFit
Approaches Replication, POPS, A-POPS, Oracle

Stream Margin 0%,10%....,50% of MAX_SERV

Table II: Simulation parameters

To further evaluate the approaches we set up several pa-
rameters summarized by Table II. We used the traces collected
in the justin.tv and the YouTube platforms. The maximal
broadcasting capacity MAX_SERV of each server has been set
to 2Gbps, which is a conservative value considering nowadays
network cards. This limit is 2G'bps of outgoing bandwidth for
each server where for each stream we consider the bitrate as
2Mbps. We calculate the server cost in servers—h: one server
used one hour counts for 1 server — h and the network cost
in bytes transfered between servers.

over provision

10000000 =

] -
—10000000 -
—20000000 =

under provision

Viewers error sum

1 l
Average History
Comparison choice

(a) YouTube

over provision

under provision

100000000 -

0

—100000000 =

Viewers error sum

—200000000 =

T T
Average History
Comparison choice

(b) justin.tv

Figure 7: Sum of the viewers provision errors, comparison
between global average viewers and history

To choose among multiple servers to which one a stream
will be given, we have evaluated the three well known alloca-
tion policies: FirstFit, BestFit and WorstFit. Concerning server
provisioning, we have evaluated four approaches: Replication,
POPS, A-POPS, and Oracle. Replication consists in the basic
strategy using a fixed margin for each stream instead of a
popularity estimator, illustrated by Figures 5 and 6: when the
bandwidth needed for a stream (viewers * bitrate) exceeds
the fix margin, the server forwards the stream to another
server. POPS is our approach in which the margin is estimated
considering that uploaders have a constant popularity. A-POPS
takes into account uploaders popularity growth as described in
Section III. Finally, Oracle gives the results POPS could have
if the prediction was perfect (for each stream, we provision
exactly the needed resources to face the viewer highest peak).
This is possible because we know in advance the trace used
to fit our simulator.

We vary the fixed margin from 0% to 50% of the total
server capacity. Those fixed margins are used for Replication,
POPS, and A-POPS approaches. In the case of POPS and A-
POPS the fix margins are used when no prediction can be done,
in absence of uploader history. As our simulation started with
an empty history, a fixed margin is used for the first streams of
each uploader. For the next streams POPS and A-POPS will
estimate the margin. The traces we use are limited in time (two

weeks). More the historical data covers a long period, more
POPS and A-POPS will be able to use an estimated margin.

Replication =ssss BestFit = = = FirstFit s WorstFit
POPS BestFit FirstFit WorstFit
A-POPS wauss BestFit = = = FirstFit s WorstFit
~ T T T T
/M 53
[a ¥ pAY
-’ .
3 e :
5 b
“;J' -
g
ﬁ 0.5
< Oracle
=
A 0 \ \ ! !
0% 10% 20% 30% 40% 50%
Fixed margin
T T T
100000 |- z =
- -~
= -
/ - A Ll e Fe s ampgagupasannsannnnns
g — ?:Ecg.l‘ﬁ A O L T L L LT Y]
2 50000 P e
o
»n
0 \ \ \ \
0% 10% 20% 30% 40% 50%
Fixed margin
(a) YouTube
Replication wsuus BestFit = = m FirstFit s WorstFit
POPS BestFit FirstFit WorstFit
A-POPS ssuss BestFit = = = FirstFit s WorstFit
) T T T T
/m .
= 20 | |
fo v
el DR Y
8 XY
R} "‘\
z 3
8 10 Frre2s -
4= SR R R e]
=) \
= A L P
O Ormcle e — s ettt
0% 10% 20% 30% 40% 50%
Fixed margin
T T
2000000 —
=
5
—
1)
Z
o 1000000 =
w
Oracl Al b W R W R W R W R W R
racle b L
0 \ \ \ \

0% 10% 20% 30% 40% 50%

Fixed margin

(b) justin.tv

Figure 8: Comparing approaches.

We compare all the strategies in Figure 8. For each one,
we compute the server cost (servers — h) and the inter-server
bandwidth cost (bytes transfered). An horizontal line shows
the Oracle strategy cost.

The first result of Figure 8 is that the allocation policy

(FirstFit, BestFit or WorstFit) has a great impact. For the
Oracle strategy, we only show the best of the three policies,
the WorstFit one, for legibility reasons. The BestFit policy, as
expected, has the lowest server cost. The FirstFit policy has
a similar performance. However, these two strategies lead to
many inter-server transfers.

Another observation is that increasing the fixed margin
induces a proportional increase of the number of broadcasting
servers used. However, in terms of bandwidth, above 25% of
margin, the gain becomes negligible.

While comparing the results obtained with the different
traces (justin.tv and YouTube) we see that that they are
significantly different. This stresses the importance to work
with multiple workloads. We can observe that the gain bring
by POPS in terms of server cost is more important in the
justin.tv case. This is due to the fact that justin.tv uploaders
tend to produce more frequent streams while in the YouTube
case the inter-broadcast delay of a given uploader is greater. In
the case of justin.tv, the proportion of streams for which the
system already knows the uploader is thus greater, allowing
POPS to use more often its estimated margin instead of the
fixed one.

However, we have detected that some justin.tv uploaders
have an increasing popularity. Which means that their consec-
utive streams are more and more popular. POPS does not add
an extra margin, thus, it is not tailored for such an increasing
popularity. It just considers that a stream will have the same
popularity as the last stream from the same uploader. This
affects the bandwidth (bytes transfered) for justin.tv’s FirstFit
and BestFit policies. A-POPS, which takes into account the
popularity growth, provides the ability to decrease the amount
of bandwidth used (specially in the case of justin.tv) while
having a cost close to the Oracle one in terms of servers, as
illustrated by Figure 8.

To better understand the first results, we studied the
evolution of the system with the four approaches. Figure 9
presents the evolution during time. For each approach we
selected their best set of parameters regarding bandwidth cost
(WorstFit allocation with 20% margin). As expected, POPS
and A-POPS efficiency improves along time, as the history
becomes bigger, allowing them to use an estimation instead
of a fixed margin like with the Replication strategy. In a real
system, most uploaders are already known. Users broadcasting
a video stream for the first time are rarely popular. However,
our collected traces start at an arbitrary time in the system’s
life.

The benefits of POPS are significant and the results are
similar to the ones obtain with the Oracle strategy on both
traces. The Replication strategy performs poorly on justin.tv
traces, where we have a large number of uploaders. The diver-
gence between POPS and the Replication strategy, concerning
number of servers cost, is due to the growing number of
streams coming from already known uploaders; which is more
important in the justin.tv case than in the YouTube one. A-
POPS offers slightly better performances compared to POPS,
thanks to the fact that it takes into account the uploaders
popularity growth.

Many improvements are still to be done. For instance, it
should be interesting to take into account an estimation of

== Replication POPS === A-POPS Oracle

] w
o o

Data Transfered (TB)
=

'S
(=
o
IS)

Servers-h

2000

Days

(a) YouTube

= Replication POPS === A-POPS Oracle

T
100

80

60

Data Transfered (TB)

100 000

80000

60000

Servers-h

40000

20000

Days

(b) justin.tv

Figure 9: Approaches behavior upon time.

streams length. A study of growing popularity curves could
also help the placement strategy by allocating small streams
aside of longer streams that grows slowly.

V. CONCLUSION

The popularization of both networks and video capture
devices has lead to the birth of user-generated content live
streaming platforms. These platforms have to face a high
number of simultaneous video streams that they have to collect
and distribute to an even higher number of viewers. In this

paper, we show that taking into account the future popularity
of incoming streams is important while mapping them to a set
of servers. This may help to prevent stream partition across
multiple servers, inefficient in terms of inter-server network
cost. We base our study on real datasets collected on the
YouTube and the justin.tv platforms. We study the number of
servers versus inter-server bandwidth usage trade-off. Our new
approach, POPS uses popularity peak estimation of uploaders
while placing new streams on broadcasting servers.

In this work we did not consider the possibility to migrate
viewers across servers. At the end of viewer peaks, it should
be interesting to migrate viewers and streams in order to
be able to shutdown servers. This is part of our ongoing
work. Furthermore, we plan to use enhanced mechanisms (e.g.
learning) to try to predict the popularity evolution during the
life of a stream.

REFERENCES

[1] “Justin.tv,” http://www.justin.tv/, (January, 2014).

[2] “Youtube,” http://www.youtube.com/live/, (January, 2014).

[3] T. Hoff, “Gone fishin’: Justin.tv’s live video broadcasting architecture,”
High Scalability blog, Nov. 2012, http://is.gd/SocNz2.

[4] A. Finamore, M. Mellia, M. M. Munafo, R. Torres, and S. G. Rao,
“Youtube everywhere: impact of device and infrastructure synergies on
user experience,” in IMC. ACM, 2011.

[5] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang, “Counting youtube
videos via random prefix sampling,” in IMC. ACM, 2011.

[6] V. K. Adhikari, S. Jain, and Z.-L. Zhang, “Youtube traffic dynamics
and its interplay with a tier-1 isp: an isp perspective,” in IMC. ACM,
2010.

[71 X. Zhang and H. S. Hassanein, “A survey of peer-to-peer live video

streaming schemes - an algorithmic perspective,” Computer Networks,
vol. 56, no. 15, pp. 3548-3579, 2012.

[8] A. Ganjam, S. G. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang,
“On-demand waypoints for live p2p video broadcasting,” Peer-to-Peer
Networking and Applications, vol. 3, no. 4, pp. 277-293, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s12083-009-0059- 1

[9] A. B. Vieira, P. Gomes, J. A. M. Nacif, R. Mantini, J. M. Almeida, and
S. V. A. Campos, “Characterizing sopcast client behavior,” Computer
Communications, vol. 35, no. 8, pp. 1004-1016, 2012.

[10] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li,
“Design and deployment of a hybrid cdn-p2p system for live video
streaming: experiences with livesky,” in ACM Multimedia. ~ACM,
2009. [Online]. Available: http://doi.acm.org/10.1145/1631272.1631279

[11] M. Liebsch and F. Z. Yousaf, “Runtime relocation of cdn serving points
- enabler for low costs mobile content delivery,” in 2013 IEEE Wireless
Communications and Networking Conference (WCNC), April 2013, pp.
1464-1469.

[12] H. Chang, S. Jamin, and W. Wang, “Live streaming performance of the
zattoo network,” in IMC. ACM, 2009.

[13] T. Qiu, Z. Ge, S. Lee, J. Wang, J. J. Xu, and Q. Zhao, “Modeling user
activities in a large iptv system,” in IMC. ACM, 2009.

[14] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K.
Ramakrishnan, “Optimal content placement for a large-scale vod
system,” in CoNEXT. ACM, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1921168.1921174

[15] C. Jayasundara, A. Nirmalathas, E. Wong, and C. A. Chan, “Energy
efficient content distribution for vod services,” in Optical Fiber
Communication Conference. Optical Society of America, 2011.
[Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=
OFC-2011-OWR3

