
A Failure Detector That Gives Information on the
Degree of Confidence in the System

Anubis Graciela de Moraes Rossetto
Cláudio Geyer

Institute of Informatics
Federal University of Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil
Email: {agmrossetto, geyer}@inf.ufrgs.br

Luciana Arantes
Pierre Sens

Sorbonne Universités, UPMC, CNRS, INRIA, LIP6
Paris, France

Email: {luciana.arantes, pierre.sens}@lip6.fr

Abstract—This work proposes a new and flexible unreliable
failure detector, denoted Impact Failure Detector (FD), whose
output gives the trust level of a set of processes. By expressing
the relevance of each node by an impact factor value as well as
an acceptable margin of failure in the system, the Impact FD
enables the user to tune the failure detection configuration in
accordance with the requirements of the application: in some
scenarios, the failure of low impact or redundant nodes does not
jeopardize the confidence in the system, while the crash resulting
from a high impact factor may seriously affect it. Either a softer
or stricter monitoring is thus possible. Performance evaluation
results using real PlanetLab [1] traces confirm the degree of
flexibility of our failure detector and that, due to the margin of
failure, the number of false responses may be reduced when it is
compared with traditional unreliable failure detectors.

I. INTRODUCTION

An unreliable FD can be seen as an oracle that gives (not
always correct) information, about process failures. Most of
them are based on a binary model, in which monitored pro-
cesses are either “trusted” or “suspected”. Thus, the majority
of existing FDs, such as those defined in [2] [3], output the
set of processes that is currently suspected to have crashed.
A non-binary approach is adopted in [4], the accrual failure
detector, which outputs a suspicion level on a continuous scale.

This paper presents a new unreliable failure detector, called
Impact Failure Detector (Impact FD), whose output is a trust
level concerning a set S of monitoring processes. The output
can be considered as the degree of confidence in S, i.e., the
confidence in the system as a whole. Hence, an impact factor
value is assigned to each process of the set. Furthermore, a
threshold parameter defines a limit value above which the
confidence degree of the set is not compromised. The impact
factor indicates the relative importance of the process in the set
S, while the threshold offers a degree of flexibility for failures
and false suspicions, thus allowing a higher tolerance of
instability in the system. For instance, in an unstable network,
although there might be many false suspicions, depending on
the value assigned to the threshold, the system might remain
trustworthy.

If the output value of the impact FD, denoted trust level,
is below the limit defined by the threshold, the user decides
which measures should be taken and whether the latter are
urgent or not, with regard to the value of the trust level. In the
concept of the Impact FD, the monitored processes can also

be grouped, based on some criterion such as process type (e.g.
nodes, sensors) or their relevance. It is worth remarking that,
together with the threshold, the group feature of the Impact
FD can characterize processes redundancy.

The Impact FD can be applied to different distributed
scenarios and is flexible enough to meet different require-
ments. It is suitable for environments where there is node
redundancy. For instance, in Ubiquitous Wireless Sensor Net-
works (WSNs), often used to monitor physical conditions of
geographical regions, sensors are usually of different types
(humidity control, temperature control, etc.) and the number
of sensors distributed in the region can vary. Sensors are
prone to failure and, in this case, redundancy guarantees the
coverage of the region and network connectivity [5]. Thus, the
region can be regarded as a single set in which the sensors of
the same type are grouped into subsets. Each sensor would
have an impact factor value equal to 1, and the threshold
would then be equal to the minimum number of sensors that
each subset must have in order to ensure connectivity and
application operations. Furthermore, if necessary, the degree
of redundancy of the sensor subsets can be easily configured
dynamically by simply changing the value of the threshold.
A second example might be a system with a main server that
offers a certain quality of service X (bandwidth, response time,
etc.). If it fails, N backup servers can replace it, since each
backup offers the same service but with a X/N quality of
service. In this scenario, both the impact factor of the main
server and the threshold would have the value of N ∗ Iback
where Iback is the impact value of the backup servers, i.e., the
system becomes unreliable whenever the primary server and
one or more of the N servers fail (or are suspected of being
faulty).

We should emphasize that the output of the Impact FD does
not depend on the identity of the processes. Thus, it is easily
configurable to the needs of the problem, type of accuracy
or system configuration. For instance, the Impact FD may be
applied to anonymous1 [6], non-anonymous, or homonymous
2 [7] systems.

This paper is structured as follows. Section II outlines
some basic concepts of unreliable failure detectors. Section

1The anonymous processes cannot be distinguished one each other: they
have no name and execute the same code

2Homonymous means that several processes may have the same identifier

20th IEEE Symposium on Computers and Communication (ISCC)

978-1-4673-7194-0/15/$31.00 ©2015 IEEE 1

III describes the Impact Failure Detector. Section IV presents
some preliminary evaluation results obtained from experi-
ments conducted with real traces on PlanetLab [1]. Section
V discusses some existing related studies. Finally, Section VI
concludes the paper and outlines some of our planned future
research work.

II. UNRELIABLE FAILURE DETECTORS

An important abstraction for the development of fault
tolerant distributed systems is the unreliable failure detector
[2]. The aim of the latter is to encapsulate the uncertainty of
the communication delay between two distributed entities.

In the following section of this article, we consider that
there is one process by node (site) or sensor. Thus, the word
process can mean either a node, a sensor, or a site. We define
a correct process the one which never fails during the whole
execution; otherwise it is faulty.

An unreliable FD can be seen as an oracle that gives
(not always correct) information about process failures (either
trusted or suspected). It usually provides a list of processes
suspected of having crashed. According to [8], an unreliable
FD module can make mistakes (1) by erroneously suspecting
a correct process (false suspicion), or (2) by not suspecting a
process that has actually crashed. If the FD detects its mistake
later, it corrects it. For instance, a FD can stop suspecting at
time t + 1, a process that it suspected at time t. Unreliable
FDs are characterized by two properties, completeness and
accuracy, as defined in [2]. Completeness characterizes the
failure detector’s capability of suspecting faulty processes,
while accuracy characterizes the failure detector’s capability
of not suspecting correct processes, i.e., restricts the mistakes
that the FD can make. FDs are then classified according to
two completeness properties and four accuracy properties [2]:

• Strong (resp. weak) completeness: Eventually every process
that crashes is permanently suspected by every (resp. some)
correct process.

• Strong (resp. weak) accuracy: No (resp. some) process is
suspected before it crashes.

• Eventual strong (resp. weak) accuracy: There is a time after
which correct processes (resp. some correct process) are
(resp. is) never suspected by any correct process.

In synchronous systems, there exist a known upper bound
on the time required for a message transmission between
two processes and on the relative speeds of processes. In
asynchronous systems, such bounds do not exist while in
partial synchronous systems, the bounds are known, but are
only guaranteed to hold eventually, i.e., after a some unknown
time t, denote Global Stabilization Time (GST) [2]. Therefore,
the type of accuracy of a FD depends on the synchronism of the
system. For instance, a strong accuracy requires synchronous
systems while an eventual strong accuracy relies on partially
synchronous systems.

III. IMPACT FAILURE DETECTOR

We consider a distributed system which consists of a finite
set 3 of processes Π = {q1, . . . , qn} with |Π| = n. Failures

3In this work, ‘set’ and ‘multiset’ are used interchangeably. Unlike a set,
an element of a multiset can appear more than once. This allows different
processes to have the same identity.

are only by crash. Other types of failures (e.g. misbehavior,
transient, etc) are the object of a study that will be carried
out in the near future. A crashed process never recovers. We
assume the existence of some global time denoted T . A failure
pattern is a function F : T → 2Π, where F (t) is the set of
processes that have failed before or at time t. The function
correct(F) denotes the set of correct processes, i.e., those that
have never belonged to a failure pattern (F), while faulty(F)
denotes the set of faulty processes, i.e., the complement of
correct(F) with respect to Π.

The Impact FD can be defined as an unreliable failure
detector that provides an output related to the trust level with
regard to a set of processes. If the trust level provided by the
detector, is equal to, or greater than, a given threshold value,
defined by the user, the confidence in the set of processes is
ensured. We can thus say that the system is trusted.

We denote FD (IpS) as the Impact failure detector module
of process p. Let S be a set of processes. Each process q ∈ S
has an impact factor value (Iq|Iq > 0 : Iq ∈ R). Moreover,
the set S can be partitioned into m disjoint subsets. Notice
that the grouping feature of the Impact FD allows S to be
partitioned into disjoint subsets, in accordance with a particular
criterion. For instance, in a scenario where there are different
types of sensors, those of the same type can be gathered in
the same subset. Let then define S∗ = {S∗

1 , S
∗
2 , ...S

∗
m} as the

set S partitioned into m disjoint subsets where each S∗
i is a

set composed of the tuple 〈id, impact〉, where id is a process
identifier and impact is the value of the impact factor of the
process in question.

When invoked in p, the Impact FD (IpS) returns the
trust levelp

S value. The trust levelpS is a set that contains
the trust level of each subset S∗, i.e., it expresses the confi-
dence that p has in the set S.

An acceptable margin of failures, denoted as the
thresholdS , characterizes the acceptable degree of failure
flexibility in relation to set S∗. The thresholdS is adjusted
to the minimum trust level required for each subset, i.e., it is
defined as a set which contains the respective threshold of each
subset of S∗: thresholdS = {threshold1, . . . , thresholdm}.

We denote trustedp
S(t) = {trusted1, . . . , trustedm},

where each trustedi (1 ≤ i ≤ m) contains the processes
of subset S∗

i that are not considered faulty by p at time
t ∈ T . Similarly to S∗

i , each trustedi is composed of the tuple
〈id, impact〉. The trust level at t ∈ T of processes p /∈ F (t) of
S is the function trust levelpS such that trust levelpS(t) =
{trust leveli|trust leveli = sum(trustedi); 1 ≤ i ≤ m}.
The function sum(subset) returns the sum of the impact factor
of all the elements of subset.

The thresholdS is used by the application to check the
confidence in the processes of S. If, for each subset of S∗, the
trust leveli(t) ≥ thresholdi, S is considered to be trusted at
t by p, i.e., the confidence of p in S has not been compromised;
otherwise S is considered not trusted by p at t.

Two points should be highlighted: (1) both the impact
factor and thresholdS render the estimation of the confidence
in S flexible. For instance, it is possible that some processes in
S might be faulty or suspected of being faulty but S can still
be trusted; (2) the Impact FD can be easily configured to adapt

20th IEEE Symposium on Computers and Communication (ISCC)

2

Fig. 1. Example of FD (IpS) output: S∗ has three subsets

to the needs of the environment. The thresholdS can be tuned
to provide a more restricted or softer monitoring. This kind of
adaptability is essential in dynamic environments (such as the
ubiquitous one). Note that the Impact FD can also be applied
when the application needs individual information about each
process of S. In this case, each process must be defined as a
subset of S∗.

In Figure 1, we consider a set S, where S∗ is composed by
three subsets: S1, S2, and S3. The values of thresholdS define
that the subsets S1 and S2 (resp. S3) must have at least one
(resp. 2) correct process(es). The figure shows several possible
outputs for FD (IpS): the set S is considered trusted whenever,
for each subset S∗

i , trust leveli(t) ≥ thresholdi.

IV. PERFORMANCE EVALUATION

In this section, we firstly describe the environment in which
the experiments were conducted, the QoS metrics used for
evaluating the results and how to estimate the heartbeats arrival
time. Then, we discuss some of the results with different
configurations of node sets with regard to both the impact
factor and the threshold. We also compared the latter with
some results related to Chen FD [9], whose output is a list of
suspected processes.

A. Environment

We used realistic trace files collected from ten nodes of
PlanetLab [1]. The experiment started on July 16, 2014 at
15:06 UTC, and ended exactly a week later. Each site sent
heartbeat messages to other sites at a rate of one heartbeat
every 100 ms (the sending interval). We should point out
that these traces of PlanetLab contain a large amount of data
concerning the sending and reception of heartbeats, including
unstable periods of links and message loss which induce false
suspicions. Thus, they can characterize any distributed system
that uses FDs based on heartbeat. Furthermore, since the
sending and arrival times of each heartbeat are recorded in the
trace files, all the experiments were conducted with exactly the
same scenarios and history of heartbeats.

Table I shows information about the heartbeat messages
received by site number 1 (the monitor node). We observed that
the mean inter-arrival times of received heartbeats was very
close to 100 ms. However, in some sites, the standard deviation
is very high, like in site 5 which the standard deviation was
310.958 ms with a minimum of 0.006 ms, and a maximum of

TABLE I. SITES AND HEARTBEAT SAMPLING

Site Messages Mean (ms) Min (ms) Max (ms) Stand. Dev.(ms)

0 5424326 100.058 0.025 26494.168 19.525
2 1759989 100.415 0.031 509.093 9.275
3 5426843 100.012 0.027 1227.349 1.709
4 5414122 100.247 0.003 1193.276 18.595
5 5413542 100.258 0.006 657900.226 310.958
6 5426700 100.015 0.003 3787.643 2.557
7 5424117 100.062 0.006 59603.188 31.229
8 5424560 100.054 0.027 11443.359 100.714
9 5422043 100.100 0.004 30600.076 18.798

657900.226 ms. Such a behavior shows that, for a certain time
interval during execution, the site stopped sending heartbeats
and started again afterwards. Note also that Site 2 stopped
sending messages after approximately 48 hours and, therefore,
there are just 1759990 received messages.

B. QoS Metrics

For evaluating the Impact FD, we used three of the QoS
metrics proposed by [9]: detection time, average mistake rate,
and query accuracy probability. Considering two processes, q
and p, where p monitors q, the QoS of the FD at p can be
evaluated from the transitions between the “trusted” and “not
trusted” states with respect to q.

• Detection Time (TD): the time that elapses from the moment
that process q crashes until the FD at p starts suspecting q
permanently.
• Average Mistake Rate (λR): represents the number of mis-

takes that FD makes in a unit time, i.e., the rate at each a
FD makes mistakes.
• Query Accuracy Probability (PA): the probability that the

FD output is correct at a random time.

C. Implementation of the Imapct FD

The implementation of Impact FD for the evaluation was
based on Algorithm 1 presented in [10]. This algorithm em-
ploys the timer-based approach which uses Chen’s heartbeat
estimation. Moreover, we consider an asynchronous system
with message losses. In the timer-based strategy, FD imple-
mentations make use of timers to detect failures in processes.
Every process q periodically sends a control message (heart-
beat) to process p that is responsible for monitoring q. If p
does not receive such a message from q after the expiration of
a timer, it adds q to its list of suspected processes.

In order to calibrate the timer, we applied the estimation
of heartbeat arrivals presented in [9], as described below.

D. Estimation of heartbeat arrivals

Aiming at reducing both the number of false suspicions and
the time needed to detect a failure, Chen et al. [9] propose an
approach to estimate the arrival of the next heartbeat which
is based on the history of the arrival time of heartbeats and
includes a safety margin (β). The timer is then set according
to this estimation.

The estimation algorithm is the following: process p takes
into account the n most recent heartbeat messages received
from q, denoted by m1, m2, . . . , mn; A1, A2, . . . , An are their

20th IEEE Symposium on Computers and Communication (ISCC)

3

TABLE II. SET CONFIGURATIONS

Config Impact Factor of each site

Set 0 I0=7; I2=3; I3=20; I4=20; I5=3; I6=20; I7=3; I8=7; I9=7;

Set 1 I0=7; I2=20; I3=20; I4=3; I5=3; I6=20; I7=3; I8=7; I9=7;

Set 2 I0=20; I2=7; I3=3; I4=3; I5=7; I6=3; I7=7; I8=20; I9=20;

Set 3 I0=7; I2=3; I3=20; I4=3; I5=3; I6=20; I7=7; I8=20; I9=7;

Set 4 I0=10; I2=10; I3=10; I4=10; I5=10; I6=10; I7=10; I8=10; I9=10;

actual reception times according to p’s local clock. When at
least n messages have been received, the theoretical arrival
time EA(k+1) for a heartbeat from q is estimated by:

EA(k+1) =
1

n

k∑
i=k−n

(Ai −∆i ∗ i) + (k + 1)∆i

where ∆i is the interval between the sending of two q’s
heartbeats. The next timeout value which will be set in p’s
timer and will expire at the next freshness point τ(k+1), is
then composed by EA(k+1) and the constant safety margin β:

τ(k+1) = β + EA(k+1)

For the estimation of the arrival time, the authors suggest
that the safety margin β should range from 0 to 2500 ms. For
all experiments, we set the window size to 100 samples, which
means that the FD only relies on the last 100 heartbeat message
samples for computing the estimation of the next heartbeat
arrival time.

E. Set Configuration

We defined a set composed of sites 0, 2, 3, 4, 5, 6, 7, 8
and 9 (S= {{0, 2, 3, 4, 5, 6, 7, 8, 9}}). Site 1 was the monitor
node (p). Table II shows the five configurations with regard
to impact factor values that have been considered for S in the
experiments. The sum of the impact factor of the processes is
90 for all configurations.

In order to decide about the impact factor value to assign
to each site, we have evaluated the stability of the sites. To
this end, we monitored the sites individually using Chen’s
algorithm with β=400ms. Figure 2 shows the cumulative
number of mistakes for each site during the whole trace period.
We can observe that site or link periods of instability entail
late arrivals or loss of heartbeats and, therefore, mistakes by
the monitor node. For example, site 9 had a large number of
cumulative mistakes at hour 48. After that, there is a stable
period with regard to this site. It should also be noted that site
2 stopped sending messages after approximately 48 hours (it
crashed) and, consequently, the monitor node made no more
mistakes about it after this time. Finally, we can say that,
considering the whole period, sites 3 and 6 (resp., 8 and 9)
are, in average, the most stable (resp., unstable) sites.

F. Experiments

1) Experiment 1 - Query Accuracy Probability: The aim of
this experiment is to evaluate the Query Accuracy Probability
(PA) with different threshold values (64, 70, 74, 80, and

Fig. 2. Cumulative number of mistakes of each site

83) and different impact factor configurations (Table II). We
considered the safety margin as being β=400ms.

Figure 3 shows that the PA decreases when the threshold
increases. It should be remembered that the threshold is a limit
value defined by the user and if the FD trust level output
value is equal to, or greater than, the threshold, the confidence
in the set of processes is ensured. Hence, the results confirm
that when the threshold is more flexible, the Query Accuracy
Probability is higher.

On the one hand, except for threshold 83, “Set 0” con-
figuration has the highest PA for most of the thresholds due
to the assignment of high (resp., low) impact factors for the
most stable (resp., unstable) sites. On the other hand, “Set 2”
and “Set 4” have the lowest PA since unstable sites have high
impact factor values assignment. For instance, the hight impact
factor value of sites 8 and 9 degrades the PA of these sets.

“Set 4” shows a sharp decline when the threshold = 83.
This behavior can be explained since, in this set configuration,
all sites have the same impact factor (10) which implies that
every false suspicion renders the trust level smaller than the
threshold (83), increasing the mistake duration. Therefore, the
PA decreases.

Notice that site 2 failed after approximately 48 hours.
Thus, after its crash, the FD output, which indicates trust level
smaller than the threshold, is not a mistake, i.e. it is not a false
suspicion. Hence, in “Set 1”, where the impact factor of site
2 is 20 (high), the PA is constant for a threshold greater than
70: after the crash of site 2, the FD output is always smaller
than the threshold and false suspicions related to other sites
do not alter it. The average mistake duration in the experiment
is thus smaller after the crash, which improves the PA.

Finally, we have compared the PA of the Impact FD and a
FD approach that monitors processes individually by applying
Chen’s algorithm with WS=100 and β=400ms. The mean PA

obtained was 0,979788. This result shows that, regardless of
the set configuration, the Impact FD has a higher PA than
Chen FD since the former has enough flexibility to tolerate
failures, i.e., the mistake duration only starts to be computed
when the trust level provided by Impact FD is smaller than
the threshold, in contrast with individual monitoring, such as
that by Chen FD, where every false suspicion increases the
mistake duration.

20th IEEE Symposium on Computers and Communication (ISCC)

4

Fig. 3. PA vs. threshold with different set configurations

Fig. 4. λR vs. TD with different thresholds

The results of this experiment highlight the fact that the
assignment of heterogeneous impact factors to nodes can
degrade the performance of the failure detector, especially
when unstable sites have a high impact factor.

2) Experiment 2 - Average mistake rate: In the second
experiment, we evaluated the average detection time (TD)
vs. the mistake rate (λR) (mistakes per second). In order to
obtain different values for the detection time, we varied the
safety margin (Chen’s estimation) with intervals of 100 ms,
starting at 100 ms. For this experiment, we chose the “Set
0” configuration since it presented the best PA in Experiment
1. We also evaluated the (λR) and TD for Chen’s algorithm,
which outputs the set of suspected nodes.

It can be observed in Figure 4 that for a high threshold and
detection time close to 250 ms, the mistake rate of the Impact
FD is higher, regardless of the threshold, because the safety
margin (used to compute the expected arrival times) is, in this
case, equal to 100 ms, which increases both the number of
failure suspicion and mistake duration. However, when TD is
greater than 400 ms, the mistake rate of Impact FD is smaller
than that of Chen. This behavior can be explained by the fact
that the higher the safety margin, the smaller the number of
false suspicions, and the shorter the mistake duration which
confirms that, although failures are detected faster when the
timeout is short, there is an increase in the likelihood of having
false detections [11].

3) Experiment 3 - Cumulative number of mistakes: In this
experiment, we evaluated the cumulative number of mistakes

Fig. 5. Cumulative number of mistakes for “Set 0” configuration

for the “Set 0” configuration during the whole trace period,
considering β=400ms and the threshold value of 80 and 83.

We can observe in Figure 5 that the cumulative number of
mistakes is greater for the threshold value 83 (2754 mistakes)
when compared to threshold value 80 (179 mistakes). The
former made few mistakes until approximately the hour 48
(when the site 2 crashed). After that, the number of cumulative
mistakes significantly increased because, as the threshold is
high (83) and the failure of 2 was detected, false suspicions
of any other site induce a trust level value smaller than 83
in most cases. For instance, site 8 is highly unstable and has
impact factor value of 7. Whenever there is a false suspicion
about it, after the crash of site 2, the trust level value is 80.
On the other hand, for the threshold 80, we can observe that
there were fewer instability periods since the crash of site 2
does not have much impact on the confidence of the system.
At hour 48, there was an increase in the cumulative number
of mistakes due to the unstable period of site 9, as shown in
Figure 2. From hour 50 to 100, the FD made fewer mistakes.
Such a behavior can be explained since, as observed in the
same figure, all sites, with exception of site 8, also had this
same period of stability. After hour 108, there was a greater
number of mistakes which is related to the instability of sites
0, 7, and 8 (see Figure 2).

4) Experiment 4 - Query Accuracy Probability vs. Time:
In this experiment, we divided the execution trace time by
fixed intervals and computed the average (PA) for each of
them. We chose the “Set 0” configuration, β=400ms, and the
threshold values of 80 and 83. Similarly to the cumulative
number of mistakes (Experiment 3), we can note in Figure
6 that instability periods have an impact on the PA. For
instance, for the threshold = 80, from hour 108, the cumulative
number of mistakes increases very fast. Consequently, the PA
decreases. The period of instability of site 9 is the responsible
for the important reduction of the PA at hour 60 (i.e., from
hour 48 to 60) when threshold = 83. A new degradation of the
PA happens at hour 120 (i.e., from hour 108 to 120), due to
unstable periods of the sites 0, 7, and 8.

V. RELATED WORK

Bertier et al. [3] introduced a failure detector principally
intended for LAN environments. They propose a different
estimation function, which combines Chen’s estimation with
another estimation, due to Jacobson [12] and developed in
a different context. It adapts the safety margin each time it

20th IEEE Symposium on Computers and Communication (ISCC)

5

Fig. 6. PA vs. Time

receives a message. The adaptation is based on the error in
the last estimation. Its proposition provides a shorter detection
time, but generate more wrong suspicions than when Chen’s
estimation.

Most of the unreliable fault detectors in the literature are
based on a binary model and provide as output a set of process
identifiers, which usually reveal the number of processes
currently suspected of having failed ([2] [3]). However, in
some detectors, such as class Σ (resp., Ω) [13], the output
is the set of processes (resp., one process) which are (resp.,
is) not suspected of being faulty, i.e., trusted.

The φ Accrual failure detector [4] proposes an approach
where the output is a suspicion level on a continuous scale,
rather than providing information of a binary nature (trusted or
suspected). It is based on an estimation of inter-arrival times
which assume that the latter follow a normal distribution. The
suspicion level captures the degree of confidence with which
a given process is believed to have crashed. If the process
actually crashes, the value is guaranteed to accrue over time
and tends toward infinity. In [11], the authors extended the
Accrual FD by exploiting histogram density estimation. Taking
into account a sampled inter-arrival time and the time of the
last received heartbeat, the algorithm estimates the probability
that no further heartbeat messages arrive from a given process,
i.e., it has failed. The aim of Accrual failure detectors is to
decouple monitoring from interpretation.

Starting from the premise that applications should have
information about failures to take specific and suitable recovery
actions, the work in [14] proposes a service to report faults
to applications. The latter also encapsulates uncertainty which
allows applications to proceed safely in the presence of doubt.
The service provides status reports related to fault detection
with an abstraction that describes the degree of uncertainty.

Considering that each node has a probability of being
byzantine, a voting node redundancy approach is presented
in [15] in order to improve reliability of distributed systems.
Based on such probability values, the authors estimate the
minimum number of machines that the system should have
in order to provide a degree of reliability which is equal to or
greater than a threshold value.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new unreliable failure
detector, the Impact FD, which provides a single output value
related to a set of processes and not to each one individually.

Both its impact factor and threshold concepts offer a degree of
flexibility since they enable the user to tune the Impact FD in
accordance with the specific needs and acceptable margin of
failures of the application. In some scenarios, they also might
weaken the rate of false responses when compared to tradi-
tional unreliable failure detectors. The performance evaluation
results show that the assignment of a high (resp. low) impact
factor to more stable (resp. unstable) nodes increases the Query
Accuracy Probability of the failure detector.

In a future study, we intend to extend the Impact FD
so that it addresses the question of misbehavior failures.
We are also working on the reduction and equivalence of
Impact FD and other detectors, which will require some new
assumptions and/or new definitions. A third aim is to conduct
other experiments on different networks such as WiFi or LAN.

REFERENCES

[1] PlanetLab, “Planetlab,” http://www.planet-lab.org, 2014.
[2] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable

distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[3] M. Bertier, O. Marin, P. Sens et al., “Performance analysis of a
hierarchical failure detector.” in DSN, vol. 3, 2003, pp. 635–644.

[4] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The ϕ accrual
failure detector,” in SRDS. IEEE, 2004, pp. 66–78.

[5] D. Geeta, N. Nalini, and R. C. Biradar, “Fault tolerance in wireless sen-
sor network using hand-off and dynamic power adjustment approach,”
Journal of Network and Computer Applications, vol. 36, no. 4, pp.
1174–1185, 2013.

[6] F. Bonnet and M. Raynal, “The price of anonymity: Optimal consen-
sus despite asynchrony, crash, and anonymity,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 6, no. 4, p. 23, 2011.

[7] S. Arévalo, A. Fernández Anta, D. Imbs, E. Jiménez, and M. Raynal,
“Failure detectors in homonymous distributed systems (with an appli-
cation to consensus),” in ICDCS. IEEE, 2012, pp. 275–284.

[8] N. Hayashibara, X. Défago, and T. Katayama, “Two-ways adaptive
failure detection with the φ-failure detector,” in WADiS. Citeseer,
2003, pp. 22–27.

[9] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service of
failure detectors,” Computers, IEEE Transactions on, vol. 51, no. 5, pp.
561–580, 2002.

[10] A. G. Rossetto, C. F. Geyer, L. Arantes, and P. Sens, “Impact:
an unreliable failure detector based on processes relevance and the
confidence degree in the system,” Tech. Rep., 2015, iNRIA N
hal-01136595. [Online]. Available: https://hal.inria.fr/hal-01136595

[11] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A new adaptive
accrual failure detector for dependable distributed systems,” in ACM
SAC. ACM, 2007, pp. 551–555.

[12] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM
Computer Communication Review, vol. 18, no. 4. ACM, 1988, pp.
314–329.

[13] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos,
P. Kouznetsov, and S. Toueg, “The weakest failure detectors to solve
certain fundamental problems in distributed computing,” in PODC.
ACM, 2004, pp. 338–346.

[14] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish, “Improving
availability in distributed systems with failure informers,” in NSDI,
2013.

[15] Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic, “Smart redun-
dancy for distributed computation,” in ICDCS, 2011, pp. 665–676.

20th IEEE Symposium on Computers and Communication (ISCC)

6

