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n− 1 failures, our algorithm keeps its e�etiveness de-spite failures. It uses information provided by unreli-able failure detetors to dynamially detet rashes ofnodes. Performane evaluation experiments show theperformane of our algorithm ompared to Raymond'swhen faults are injeted.1 IntrodutionThe k-mutual exlusion problem is a fundamentaldistributed problem whih guarantees the integrity ofthe k units of a shared resoure by restriting the num-ber of proess that an simultaneous aess them. Itthen involves N proesses whih ommuniate via mes-sage passing and ask for aessing one of the k unitsof the shared resoure, i.e., to exeute a ritial setion(CS ). Hene, a distributed k-mutual exlusion algo-rithm must ensure that at most k proesses are in theCS at a given time (safety property) and that every CSrequest is eventually satis�ed (liveness property).Distributed k-mutual exlusion algorithms an belassi�ed into two families: permission-based [18℄, [17℄,[8℄, [9℄, [15℄ and token-based [20℄, [12℄, [2℄ [23℄. In thealgorithms of the �rst family, a node gets into the rit-ial setion only after having reeived permission fromall or a subset of the other nodes of the system. Inthe seond family, the possession of the single tokenor one of the tokens gives a node the right to enterinto the CS. The latter usually presents an averagelower message ost of messages, but is less fault toler-ant than permission-based algorithms whih, by using

broadast, are naturally more resilient to failures.Raymond's k-mutual exlusion algorithm [18℄ is anextension of Riart-Agrawala's [19℄ permission-based 1-mutual exlusion algorithm. When a node wants to en-ter the CS, it broadasts a message to the other (N−1)nodes of the system. The requesting node an enter theCS if no more than k−1 nodes are urrently exeutingthe CS. That is, only after gathering N −k permissionsfrom the other nodes.Even if Raymond's algorithm does not expliitlyonsider failure of nodes, the fat that it does not needto wait for a permission from all the partiipants im-pliitly renders it fault tolerant to some extent. It tol-erates up to k − 1 faults. In other words, if instead ofexeuting the CS, k−1 nodes were rashed, a node ask-ing to exeute a CS would still get it. However, eahrash redues the e�etiveness of the algorithm sinethe number of proesses that an onurrently exeutethe CS dereases by one. Therefore, we propose in thispaper to extend Raymond's algorithm in order to bothtolerate up to N −1 node rashes, instead of just k−1,and avoid that the algorithm degrades when failure o-urs, i.e., to ensure that it is always possible to have
k proesses in the CS simultaneously, despite failures.Another reason that motivates the urrent work is thefat that fault tolerant permission-based k-mutual ex-lusion algorithms whih don't use a quorum approahare quite rare in the literature.In order to get information about rashes of nodes,our solution exploits the information about the livenessof proesses provided by distributed unreliable failuredetetors. An unreliable failure detetor (FD) [4℄ is awell-known basi blok whih o�ers information aboutproess failures. It an be informally onsidered as aper proess orale, whih periodially informs the listof urrent proesses suspeted of being rashed. It isunreliable in the sense it an make mistakes. Our solu-1



tion basially relies on the unreliable detetor of lass T[7℄ sine it is the weakest one to solve the fault-tolerant1-mutual exlusion problem. Thus, a per proess fail-ure detetor T module periodially gives informationto the orresponding proess about the atual state ofthe system. Suh an information allows eah proessto dynamially update its knowledge about the atualnumber of running proesses and therefore our algo-rithm beomes more e�etive in presene of failuresthan Raymond's algorithm. Just at the initializationphase, our algorithm also needs an unreliable failuredetetor of lass S.The paper is organized as follows. Setion 2 de-sribes our model. The onept of unreliable FD andthe properties of the FDs of lass T are presented insetion 3. Setion 4 brie�y desribes Raymond's algo-rithm. Setion 5 presents our fault-tolerant algorithmwhile setion 6 outlines its proof. Some related workis given in setion 7. Simulation performane resultsare shown in setion 8. Finally, setion 9 onludes thepaper.2 System modelWe onsider a distributed system onsisting of a �-nite set of N > 1 nodes. The set of partiipants as wellas N are known by all nodes. There is one proess pernode and proesses ommuniate by message passing.No assumptions on the relative speed of proesses nei-ther on message transfer delays are made. Thus thesystem is asynhronous. Communiation hannels arereliable, but messages might be delivered out of order.A proess an fail by rashing and rashes are per-manent. A orret proess is a proess that does notrash during a run; otherwise, it is faulty. The maxi-mum number of proesses that may rash in the systemis equal to f (f < N).The number of units of the resoure is k. We assumethat k is known to every proess. The duration of theCS is bounded.As we onsider one proess per node, the words nodeand proess are interhangeable.3 Unreliable Failure DetetorsChandra and Toueg [4℄ have introdued the oneptof unreliable failure detetors whih are distributed or-ales that provide information about liveness of sys-tem's nodes. Eah proess has aess to a loal failuredetetor module whih outputs the list of proessesthat it urrently suspets of having rashed. A loalfailure detetor is unreliable sine it an make mistake

by erroneously adding to its list a proess whih is a-tually orret or not suspeting a rashed node. How-ever, if later the FD realizes its mistake it orrets itby either removing or adding the node to its list.Failure detetors (FDs) are formally haraterizedby two abstrat properties: (1) the ompleteness prop-erty whih haraterizes the FD apability of suspet-ing every faulty node permanently and the (2) aurayproperty whih haraterizes the FD apability of notsuspeting orret nodes.A lass of FD is a set of FDs that have both the sameompleteness and auray properties. The strongestone is the lass of perfet FD P . It is harater-ized by the strong ompleteness property whih de�nesthat eventually every faulty proess is permanently sus-peted by every orret proess and the strong au-ray property where no proess is suspeted beforeit rashes. The lass of FD S keeps the strong om-pleteness property but relaxes the auray propertyto weak auray whih states that some orret pro-ess is never suspeted.Delporte-Gallet and al. [7℄ have introdued the FDof lass T , also alled the trusting FD. The authorsproved that this lass of FD is the weakest one to solvethe fault-tolerant 1-mutual exlusion problem, i.e., theFD of lass T is su�ient and neessary to solve suh aproblem. This lass of FD has the strong ompletenessproperty and satis�es the following auray proper-ties:Eventual strong auray : There is a time after whihorret proesses are not suspeted by any orretproess.Trusting auray : Every proess j that is suspetedby a proess i after being trusted one by i (i.e., jwas never suspeted by i before) is rashed.FDs of lass T are stritly weaker than FDs of lass
P . Roughly speaking, T an temporarily suspet aorret proess, as long as it had never been removedfrom its list of suspets.Figure 1 depits a possible senario of failure dete-tion using the FD T . For sake of simpliity, the mes-sages exhanged between the four nodes are not shownin the �gure. H(i, t) denotes the set of proesses that
i suspets (does not trust) at time t.Initially, the FD at proess 1 outputs {2, 3, 4}, i.e.,proess 1 does not trust anyone, but itself. Thus, pro-ess 1 falsely suspets the other proesses sine no pro-ess has atually rashed. At time t2 > t1, proess 2and 3 get trusted by 1 (H(1, t2) = 4). However, afterthat, proess 3 rashes and proess 1 suspets it againat t3, after having trusted it at t2. Therefore, onsider-ing the trusting auray property of T , proess 1 an2
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H(1, t1) = {2, 3, 4} H(1, t2) = {4} H(1, t3) = {3, 4}
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4Figure 1: Example of exeution with FD Tbe sure of proess 3's rash. However, even if proesses4 has also rashed, proess 1 an not be sure of its rashsine it never trusts it.4 Raymond's algorithmIn Raymond's algorithm [18℄, when a node i wants toexeute the ritial setion, it broadasts a REQUESTmessage to the other (N − 1) nodes. Eah request istimestamped with Lamport's logial lok (sequenenumber) + the identity of the node [11℄. Upon reeiv-ing this message, if node j is not requesting a unit ofthe resoure, it immediately gives its permission to iby sending it bak a REPLY message. If j is in theritial setion, it defers the sending of the REPLYmessage till it ends the ritial setion. Finally, if jis also requesting a unit of the shared resoure, the se-quene numbers of both requests are ompared. If theyare equal, the identity of the nodes breaks tie. If i's re-quest takes priority, j sends it bak a REPLY message,otherwise j defers it till it releases the CS. When i hasgathered (N − k) REPLY messages it enters its CSsine it is sure that no more than (k − 1) of the othernodes are urrently exeuting the ritial setion, whihensures the safety property. The timestamp of requestmessages guarantees the liveness property of the algo-rithm sine it de�nes a total order for the requests.As previously said, Raymond's algorithm impliitlytolerates k − 1 rashes, i.e., the safety property stillholds until up to k − 1 failures our. Thus, even ifone or more nodes rash a seond node is still able toaess a unit of the resoure if it an ollet (N − k)permissions. On the other hand, eah time a failureours, the maximum number of proesses that anonurrently exeute the ritial setion dereases byone, reduing the e�etiveness of the algorithm.Figure 2 depits a possible senario of Raymond'salgorithm. The system onsists of 6 proesses and 2units of a shared resoure. At t1, node 6 has exlusiveaess to the �rst unit of the resoure. Node 3 thenrequests a unit of the resoure at t2 by broadasting arequest to all the proesses but itself. Sine nodes 1,2, 4, 5 are not requesting a resoure, they immediatelysend bak a REPLY message to 3. On the other hand,

node 6 defers its reply sine it is in ritial setion.As soon as node 3 has reeived 4 (N − k) REPLYmessages, it enters the ritial setion.If a node other than node 3 had rashed at t1, node 3would be able to aess a resoure as it ould still olletfour permissions. However, the number of nodes thatwould onurrently exeute the ritial setion woulddrop to one. In this partiular ase, node 3 would needto wait node 6 to release the ritial setion in order toget the four permissions, whih degrades the e�etive-ness of the algorithm.
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critical section(d) t4: 3 enters ritial se-tionFigure 2: Example of Raymond's algorithm exeution5 The k-mutual exlusion problem inpresene of failures using FDsRaymond's algorithm has no information aboutnode rashes. The number of partiipants of the algo-rithm is �xed to N despite node failures. On the otherhand, in our algorithm every proess i keeps in its lo-al variable ni the urrent number of orret proesses.Whenever i is noti�ed about the rash of a node, itderements ni. Hene, ontrarily to Raymond's algo-rithm, the number of REPLY messages needed by arequesting proess is (ni −k), whih dereases at everynew rash of whih i is aware.In order to obtain information about node failures,our solution uses a FD of lass T . The trusting a-uray property of T guarantees that if a node j issuspeted by i of having rashed after previously beingtrusted by i, j is atual rashed. Notie that the FD
T is used by our algorithm all along its exeution for3



deteting rashes. However, just at the initializationphase, our algorithm also needs a FD of lass S in or-der to guarantee that at the end of this phase, for eahorret proess i, there is at least one orret proessthat trusts i.
5.1 Description of the algorithmAlgorithm 1 is the omplete pseudo-ode of our faulttolerant k-mutual exlusion algorithm. We onsiderthat eah proess in�nitely exeutes the funtions Re-quest_resoure() to ask aess to one of the k units ofthe shared resoure, i.e., to exeute the ritial setion(CS ), and Release_resoure() to release it.There are �ve types of messages: (1) REQUESTmessages are broadast by a proess whih exeutes the
Request_resource() in order to inform the other pro-esses that it wants to aess one unit of the resoure.They inlude the identity of the sender and the urrentvalue of the loal logial lok. (2) REPLY messagesare permission ones sent by proesses in response toa REQUEST message. Multiple permissions an beaggregated into a single REPLY message whih thenarries an additional ounter whose value equals to thenumber of deferred replies inluded in the message. (3)An INIT message is sent one by eah proess duringthe initialization phase. When a proess reeives suha message, it aknowledges its reeption by returningan (4) ACK message. Finally, when a proess detetsa rash of a seond one, it broadasts a (5) CRASHmessages in order to inform the other nodes of the pro-ess failure.Proess i keeps the following loal variables:
• ni : the number of orret proesses of whih i isurrent aware
• statei: the urrent state of i (requesting,not_requesting, or CS)
• Hi: i's logial lok
• lasti : the value of Hi when i sent its last request
• perm_counti: the urrent number of permissionsreeived by i to its last request
• reply_counti[N ]: number of outstanding

REPLY messages still to be reeived fromeah other node. It is neessary for preventinga REPLY message of an earlier request to beonsidered as a reply to the urrent request
• defer_counti[N℄: number of replies that havebeen deferred by i to eah other node
• trustedi, crashedi: sets whih respetively keepthe set of nodes that i one trusted and the set ofrashed ones

Algorithm 1 Raymond's extended algorithm1: ni = N ; statei := not_requesting ⊲ Initialization2: Hi := 0; lasti := 03: perm_counti := 04: reply_counti[N ] := 05: defer_counti[N ] := 06: trustedi := ∅; crashedi := ∅7: send INIT (i) to all8: wait until reeive ACK from all j /∈ SiRequest_resoure(): ⊲ Node wishes to enter CS9: statei := requesting10: lasti := Hi + 111: perm_count := 012: for all j 6= i : j /∈ crashedi do13: send REQUEST (i, lasti) to j14: reply_counti[j] + +15: wait until (perm_counti ≥ ni − k)16: statei := CSRelease_resoure(): ⊲ Node exits the CS17: statei := not_requesting18: for all (j 6= i : defer_counti[j] 6= 0 and j /∈ crashedi) do19: send REPLY (i, defer_counti[j]) to j20: defer_counti[j] := 021: upon reeive REQUEST (j,Hj) do22: Hi := max(Hi, Hj)23: if (j /∈ crashedi) then24: if (statei = CS) or (statei = requesting and25: (lasti, i) < (lastj , j)) then26: defer_counti[j] + +27: else28: send REPLY (i, 1) to j29: upon reeive REPLY (j, x) do30: if (j /∈ crashedi) then31: reply_counti[j] := reply_counti[j] − x32: if (statei = requesting) and (reply_counti[j] = 0)then33: perm_counti + +34: upon reeive INIT (j) do35: wait until j /∈ Ti36: trustedi := trustedi ∪ {j}37: send ACK(i) to j38: upon reeive CRASH(j) do39: if (j /∈ crashedi) then40: crashedi := crashedi ∪ {j}41: if (statei = requesting) and (reply_counti[j] = 0)then42: perm_counti −−43: ni −−44: upon (j ∈ trustedi and j ∈ Ti) do45: ⊲ A rash of proess j is deteted46: trustedi := trustedi − {j}47: for all k 6= i : k /∈ crashedi do48: send CRASH(j) to kNode i an always interrogate its loal FD T and
S (initialization phase) about node failures. They pro-4



vide the list of suspeted nodes in Ti and Si sets re-spetively.The Initialization phase (lines 1-8) is exeuted oneby eah proess at the beginning of the algorithm. The"wait" ondition of line 8 and the use of failure detetorof lass S ensure that at the end of this phase eah or-ret proess is inluded in at least one trusted set. Bythe strong ompleteness property of S, eventually allproesses not in Si are orret. Thus, these proesseseventually reeive the INIT message of i. Upon re-eiving it, they will exeute lines 34 to 37. Notie thatby the weak auray property of S, there is at leastone orret proess that is never suspeted whih im-plies that the "wait" ondition will not blok, i.e., i willreeive at least one ACK message from this proess.When node i requests a unit of the resoure (lines9-15), it broadasts a REQUEST message to all otherproesses it believes to be orret. It then inrements
reply_count[j] for eah node j 6= i and waits for
(ni − k) REPLY messages before entering the CS,(perm_counti ≥ ni − k).Upon reeption of a REQUEST message (lines 21-28), node j updates its logial lok and sends bak a
REPLY message (line 28) only if it is not in the CS orif its urrent request has no priority over i's one. Oth-erwise, it defers the request (line 26). When i reeives a
REPLY message from j it derements reply_counti[j]and if j has replied to all the previous requests sent by
i (line 32), perm_count is inremented.When i exits the CS by alling the
Release_resource() (lines 17-20), it replies to allthe deferred requests of those nodes that it believes tobe orret.If a node rashes, at least one proess exeutes lines44-48. It thus broadasts a CRASH message to allthe other proesses it supposes to be orret. When
i reeives a CRASH message whih informs that j isfaulty, if i was not already aware of it, it derementsthe number of urrent orret proesses (line 43). Inaddition, if j had previously given its permission to
i, suh a permission is aneled, i.e., perm_counti isderemented (line 42).
5.2 Example of executionFigure 3 depits a possible exeution of our algo-rithm. The system onsists of N=4 proesses and k=2units of a shared resoure. The initialization phase isnot shown. We onsider that node 2 is in CS sine t0.Node 1 requests a unit of the resoure at t1 by broad-asting a REQUEST message to all the other pro-esses. At t2, node 3 sends a REPLY message to 1and node 4 rashes. When node 3 inquires its loal FD
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T module, the ondition of line 44 (4 ∈ trusted3 and
4 ∈ T3) is veri�ed. Hene, node 3 learns that node 4is faulty and it then broadasts a CRASH message to
1 and 2. At time t4, node 1 reeives this message andthus exeutes lines 38-43 of the same algorithm where
n1 is deremented and the ondition to enter ritialsetion (perm_count1 ≥ 3 − 2) is veri�ed (line 15).Node 1 an then exeute its ritial setion. It is worthremarking that if we onsidered the same senario withRaymond's algorithm, node 1 would have to wait tillnode 2 exited its CS in order to reeive the two (N−k)permissions neessary to get into the CS.6 Sketh of proofWe must prove that our algorithm satis�es the safetyand liveness properties. Notie that in our approah,we onsider that proesses do not rash before the ini-tialization phase. On the other hand, if they rash dur-ing the initialization, the safety property would still beensured up to k − 1 failures.
6.1 SafetyLemma 1. No more than k di�erent proesses are intheir ritial setion at the same time.Proof. Let us suppose that more than k proesses anbe in the CS at the same time. Assume that at time
tc, m > k nodes are exeuting the CS. Let the pairs(S,N)= (sequene number, node identity), inluded inthe REQUEST messages, be the sequene used bythe m nodes to gain aess to the CS. These pairs de-�ne a total order. Hene, the nodes in ritial setionare labeled with N1, . . . , Nk, Nk+1, . . . , Nm suh that
(SN1

, N1) < · · · < (SNk
, Nk) < (SNk+1

, Nk+1) < · · · <
(SNm

, Nm). Consider the node Nk+1. In order to enterthe CS, Nk+1 has reeived (n − k) REPLY messages,i.e., at most k − 1 nodes did not send a REPLY mes-sages to Nk+1. Thus, among the k nodes N1, . . . , Nkone of them NX(≤k) sent a reply to Nk+1. Considerthe reeption of the REQUEST (SNk+1
, Nk+1) by NX .Four ases are possible:5



• Case 1. NX is in the state not_requesting or
requesting with sequene number (SNX

, NX) >
(SNk+1

, Nk+1). Upon reeiving the REQUESTmessage, SNX
beame ≥ SNk+1

. Hene NX ouldnot be in the CS at time tc with (SNX
, NX) <

(SNk+1
, Nk+1)

• Case 2. NX is in the state CS or requesting withsequene number (SNX
, NX) < (SNk+1

, Nk+1). Inthis ase, NX would defer replying to Nk+1.
• Case 3. NX is exeuting or attempting to ex-eute the ritial setion in a previous requestwith sequene number R suh that (R, NX) ≤

(SNX
, NX) < (SNk+1

, Nk+1). Hene SNX
wouldbeome ≥ SNk+1 and so NX ould not be in theCS at time tc with (SNk

, Nk) < (SNk+1
, Nk+1).

• Case 4. Nx rashes. Obviously it an not reply to
Nk+1.Thus, it is impossible for any node NX(≤k) to reply tothe request of node Nk+1.

6.2 LivenessLemma 2. If a orret proess requests to exeute theritial setion, and it has the most priority requestthen at some time later the proess exeutes it.Proof. Suppose that a orret proess i is requesting aunit of the resoure at some time tc with lasti = li, i'srequest has priority over all the others, and i is neverin its ritial setion after tc, i.e., i never reahes line16 of algorithm 1. Thus, i is bloked at a �wait� lauseeither at line 8 or at line 15.The �wait� of line 8 an not blok the proess due tothe strong ompleteness property of S. Eventually allproesses not in Si are orret. Therefore, these pro-esses eventually reeive the INIT message of i. Uponreeiving suh a message, they exeute lines 34-37. Fur-thermore, by the weak auray property of S, there isat least one orret proess that is never suspeted.Hene, i waits for the reply of at least one orret pro-ess. By the eventual strong auray property of T ,every orret proess is eventually trusted by all or-ret proesses. Hene, the �wait� lause of line 35 isnot bloking, and the proesses add i to their trustedset and send bak an ACK message to i, unblokingthe �wait� lause line 8.Consider then that i is bloked at the �wait� lause ofline 15 after having sent a REQUEST (i, lasti) messageto all proesses suh that j 6= i and j /∈ crashedi. Fourases are possible for j:

(a) Proess j is in the state not_requesting. The on-dition of line 25 is not satis�ed and the proesssends a permission (line 28).(b) Proess j is in the state requesting. Sine i haspriority over all the others requests, j sends bakits permission.() Proess j is in its ritial setion. The duration ofthe ritial setion is bounded so it will eventuallysend bak a reply message to i when exeuting theRelease_resoure() routine (lines 17-20).(d) Proess j rashes. By the trusting auray prop-erty of T , some orret proess m eventually andpermanently will suspet it. In other words, theondition of line 44 is eventually satis�ed at someproess m for j (j ∈ trustedm and j ∈ Tm). Thus,
m will send a CRASH message to all orret pro-esses and every orret proess will eventually re-eive it. Upon reeiving the CRASH(j) message,
i derements the number of partiipating nodes ni,and, if it had already reeived a permission from j,it also derements the number of reeived permis-sions. Thus, the ondition of line 44 will informthe new state of the system, sine ni eventuallyrepresents the number of orret proesses. Hene
i will eventually reeive exatly ni replies, with
ni haraterizing the number of orret proesses.But i is bloked at line 15. It's a ontradition.Thus as proess i is never bloked at the "wait" ofline 8 neither at the "wait" of line 15 of algorithm 1, itreahes line 16 and thus exeutes the ritial setion.Lemma 3. If a orret proess requests to exeute theritial setion, then at some time later the proess ex-eutes it.Proof. By lemma 2, the proess that has priority overthe others will eventually exeutes its ritial setion.One it exits the ritial setion, the proess's requestwas satis�ed and will not be onsidered anymore. Sinerequests are totally ordered, eah of them will eventu-ally have the highest priority, obtaining then right toexeute the ritial setion.Theorem 1. The algorithm 1 solves the fault tolerant

k-mutual exlusion problem using FDs of lass T and
S, in an environment εf with f < N − 1 faults providedthat no proess rashes before the initialization.Proof. The theorem 1 follows diretly from Lemmas 1and 3.6



7 Related workSeveral authors have proposed fault-tolerant exten-sions both to token-based [16℄,[13℄,[5℄ and permission-based 1-mutual exlusion algorithms [1℄,[3℄. The latterusually use the quorum approah.Similarly to Raymond's algorithm [18℄, the token-based k-mutual exlusion algorithm proposed by Sri-mani and Reddy [20℄ naturally supports failures. Itis inspired in Suzuki and Kasami's algorithm [21℄ andontrols k tokens. If a node holds one of the k tokens,it an enter the ritial setion. However, likewise Ray-mond's, eah rash redues the number of nodes thatan onurrently exeute the ritial setion.The majority of fault-tolerant permission-based k-mutual exlusion found in the literature use quorums[8℄,[9℄,[6℄,[10℄,[15℄. Some of these algorithms exploit the
k-oteries approah [9℄,[15℄,[10℄. Informally, a k-oterieis a set of node quorums, suh that any (k+1) quorumsontain a pair of quorums interseting eah other. Aproess an enter a ritial setion whenever it reeivespermission from every proess in a quorum. The avail-ability of a oterie is de�ned as the probability that aquorum an be suessfully formed and it is losely re-lated to the degree of fault tolerane that the algorithmsupports. On the other hand, Chang et. al propose in[6℄ an extended binary tree quorum for k-mutual exlu-sion whih imposes a logial struture to the networkand tolerates in the best ase up to (n−k∗(log2(2n/k)))node failures. Although quorum-based algorithms areresilient to node failures and/or network partitioning,the drawbak of suh approah is the omplexity ofonstruting the quorums themselves.Two other k-mutual exlusion algorithms, [22℄ and[14℄ provide fault tolerane but for wireless ad-ho net-works. The authors in [22℄ propose a token-base algo-rithm whih indues a logial diret ayli graph onthe network whih dynamially adapts to the hangingtopology of ad-ho networks. Mellier et al. addressin [14℄ the problem of at most k exlusive aesses toa ommuniation hannel by nodes that ompete tobroadast on it, i.e., at most k mobile nodes an simul-taneously broadast on it. Message ollision problemsare solved by the protool. However, neither of thealgorithms tolerate node failures, but just link failures.8 Performane evaluation
8.1 EffectivenessIn order to evaluate the e�ieny of Raymond's al-gorithms and our algorithm, we have developed a simu-lator. The initial number of nodes N is equal to 15 and

Figure 4: E�ieny omparison of Raymond algorithmand our extensionthe number of resoure's units k is �xed to 5. Both al-gorithms exeute the same senario. Faults are injetedduring the run (signaled by a triangle in Figure 4).For both algorithms, we have measured the numberof resoure's units that an be simultaneously in use.We an learly observe in Figure 4 that in Raymond'salgorithm at every rash, the maximum number of on-urrent aesses is deremented by one. When faultsstart being injeted, some of the requests an still besatis�ed provided that the total number of rashes issmaller than k = 5. However, after this bound, no newrequest is satis�ed. On the other hand, our algorithmgoes on progressing till N − 1 = 14 failures. Further-more, the maximum number of units of the resoureonurrently in use is not bounded by the number offailures. It just dereases beause the number of on-urrent requests dereases as well when faults are in-jeted.
8.2 Number of messagesIn our algorithm, at the initialization, eah proesssends one between N−1 and 2(N−1) messages. Whenno rash ours, the number of messages per CS ofour algorithm is equivalent to Raymond's algorithm,i.e., between 2N − k − 1 and 2N − 1 messages. Inthe presene of rashes, N − 1 − |crashedi| messagesare sent by node i whih detets the failure. However,in this ase, the number of REQUEST messages perCS dereases to N − 1− |crashedi| and the number of7
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