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Abstract
This paper introduces Disaster-FD, a failure detector designed for
disaster-prone environments, focusing on real-time IoT network
monitoring. Inspired by Impact-FD, Disaster-FD features active and
federated monitoring to ensure network reliability under adverse
conditions. Tested on the IoT-LAB platform, Disaster-FD demon-
strates robust performance, enhancing IoT network resilience dur-
ing disasters. It assesses reliability thresholds, confidence levels,
and impact factors, ensuring efficient energy consumption and
maintaining high network trust. This paper details Disaster-FD’s
implementation, performance metrics, and experimental results,
highlighting its potential for effective support in disaster manage-
ment.

CCS Concepts
• Computer systems organization→ Fault-tolerant network
topologies; Reliability; • Networks→ Sensor networks; • Com-
puting methodologies→ Distributed algorithms.
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1 Introduction
Natural disasters represent one of the greatest threats to contempo-
rary society, causing devastating impacts ranging from disrupting
essential services such as water and power supply to significant
economic losses, damage to public and private properties, and most
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critically, the loss of human lives. These events afflict the world and,
particularly in Brazil, most natural disasters are climate-related.

According to a report by the National Confederation of Munici-
palities (CNM) in 2022, about 3,400 people in Brazil were directly
affected by natural disasters [11]. This challenging context under-
scores the urgent need to develop effective strategies for monitoring
and managing risks associated with these disasters. A promising
approach to address this challenge is to leverage remote monitoring
technologies based on the Internet of Things (IoT). The interconnec-
tivity of various objects in a network, provided by the IoT paradigm,
offers a unique opportunity to enhance disaster response.

However, the effectiveness of this strategy is often compromised
in large-scale disaster scenarios, where communication infrastruc-
ture, including IoT devices installed for monitoring, may fail. Such
failure can underestimate the severity of the disaster due to a lack
of data and prevent the issuance of critical alarms. Thus, it becomes
essential to develop robust algorithms capable of efficiently moni-
toring an IoT network, ensuring device availability, and establishing
a level of trust in the processes originating from this ecosystem.
Additionally, it is crucial to propose improvements in the manage-
ment of these sensors to ensure efficient and reliable monitoring,
even under adverse conditions.

In such scenarios, the importance of effective failure detectors
becomes evident. The work in [6], a pioneer in the study of unre-
liable failure detectors, highlights the importance of fundamental
properties such as completeness and accuracy in such systems.
These properties ensure that algorithms using failure detectors
maintain consistency in their decisions and do not become indefi-
nitely blocked [5].

This article is in the context of STIC-AMSud ADMITS project, a
cooperation with universities in Brazil, France, Uruguay, and Chile,
and aims to develop an algorithm for real-time monitoring of In-
ternet of Things networks. Inspired by the Impact Failure Detector
[14], or Impact-FD, the new proposed algorithm extends the latter
by adding certain features, such as active and federated monitor-
ing of IoT devices. The main goal is to monitor the availability
of IoT devices and establish a level of reliability for the network,
considering a specific set of monitored processes. The proposal also
evaluates the impact of Disaster-FD on the energy consumption of
IoT devices in the network.

The IoT-LAB [1], with over 1500 sensor nodes spread across
various locations in France, including Grenoble, Lille, Saclay, and
Strasbourg, stands out as one of the largest open testbeds available
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to the international scientific community. To facilitate experimen-
tation in complex IoT networks, the IoT-LAB supports a variety of
communication protocols.

Additionally, the IoT-LAB enables federated experiences. This
means that devices can be programmed and managed simultane-
ously acrossmultiple regions, providing an ideal platform for testing
algorithms and distributed applications in a network that simulates
the complexity of the global Internet.

The concept of federated monitoring in IoT networks refers to
the practice of integrating and managing multiple autonomous
IoT device networks that are geographically distributed or belong
to different administrative domains. This monitoring model is de-
signed to enhance the efficiency, security, and resilience of large
IoT systems, providing more effective supervision and a coordi-
nated response to incidents or failures. By monitoring different
regions simultaneously, it is possible to quickly identify when an
area begins to deteriorate due, for instance, to failures or anomalies.
Such a detection is crucial in critical infrastructures, such as power
networks, where a failure in one area can cascade to other regions.

In a federated system, each IoT network operates independently
but shares information with other networks to improve global
surveillance and management. This approach is emphasized by the
survey in [3], where authors discuss the need for collaboration
among devices and distributed systems.

The remainder of the paper is organized as follows. Section 2
introduces the system model and associated definitions. Section 3
describes Disaster-FD. Section 4 discusses the estimated arrival cal-
culation. Section 5 details the implementation, with the experimen-
tal evaluation in Section 6. Section 7 briefly compares Disaster-FD
to related work, and Section 8 concludes the paper.

2 System Model and Definitions
This section presents the system model and definitions related to
the scope of the work.

2.1 System Model
This work considers a distributed system consisting of a finite set of
processes Π = 𝑞1, . . . , 𝑞𝑛 , where |Π | = 𝑛, (𝑛 ≥ 2), and the existence
of only one process per node or sensor. Each node (or process)
has a unique identifier. The identifiers are consecutively ordered.
Processes can fail by crashing and do not recover. A process is
considered correct if it does not fail throughout the entire execution.

This distributed system is asynchronous, defined as a system
where there is no bound on the transmission time for messages or
execution time for a processing step, meaning there are no assump-
tions related to timing [8, 16]. In this type of system, no mechanism
can guarantee the failure of a remote process, as it is impossible
to differentiate a failed process from one that is merely slow or
experiencing slow communication.

The system has fair lossy communication channel. According
to [2], a lossy channel satisfies the property of integrity, meaning
that a process 𝑞 receives a message𝑚 from another process 𝑝 at
most once, and only if 𝑝 previously sent𝑚 to 𝑞. Practically, this
means that messages cannot be created spontaneously, and if a
message𝑚 is not lost, it is eventually received at its destination.
Additionally, channels can intermittently drop messages. Fairness

of losses requires that if a correct process 𝑝 sends a message𝑚 an
infinite number of times then the channel will deliver𝑚 an infinite
number of times.

2.2 Unreliable Failure Detectors
Fault detection is a key element for ensuring the reliability and sta-
bility of distributed systems, especially asynchronous ones. Failure
detectors can be used to circumvent the impossibility of the FLP
(Fischer, Lynch, and Patterson) theorem [5, 10], which shows that
in an asynchronous setting, where only one process might crash,
no distributed algorithm solves the consensus problem [4, 13] de-
terministically.

The work in [6] introduced the concept of unreliable failure
detectors, defined by two fundamental properties: completeness
and accuracy. Completeness characterizes the failure detector’s
capability of suspecting faulty processes, while accuracy charac-
terizes the failure detector’s capability of not suspecting correct
processes, i.e., restricts the mistakes that the failure detector can
make. In practice, these failure detectors produce an output list of
processes considered suspicious.

Disaster-FD, proposed in this paper, extends the definition of
failure detectors, using the same approach defined in [14]. In this
context, there is a process 𝑝 ∈ Π that monitors a subset 𝑆 of Π. Each
process in 𝑆 connects to 𝑝 via a communication channel.

Thus, unlike traditional detectors defined in [6], Disaster-FD,
similarly to Impact-FD, can be defined as an unreliable failure de-
tector that provides output related to the confidence level in the
processes in 𝑆 . If the confidence level is equal to or higher than
a threshold defined by the user, then the system is considered
reliable. The work in [14] discusses the equivalence between such
concepts and the definitions in [6].

3 Disaster-FD
By extending Impact-FD [14], Disaster-FD is a failure detector con-
ceived for disaster-prone environments with multiple regions that
provides intra and inter-region real-time monitoring.

Disaster-FD introduces the use of multiple monitor processes,
each deployed in a monitored region, as illustrated in Figure 1. In
this scenario, each region has a monitor process and a set of IoT
devices. The monitor of each region observes the devices in its
region and a subset of the processes in another region. Such an
arrangement enhances fault detection by preventing the complete
failure of a region from going unnoticed.

In this context, each process𝑞within the subset 𝑆 ⊂ Π is assigned
an impact factor. This factor, a positive integer value, reflects the
relative importance of the process within the system. For example,
in the scenario shown in Figure 1, a higher impact factor may be
assigned to monitors compared to the impact factor of sensors,
indicating that the failure of a monitor has a stronger consequence
on the good operation of the system than the failure of a sensor.

Each monitor process 𝑝 executes the Disaster-FD algorithm, i.e.,
regularly assesses the connectivity and calculates the confidence
level for each monitored process in the set 𝑆 , thereby establishing
the overall system reliability. This confidence level is determined by
the sum of the impact factors of the processes that, at that moment,
are not considered faulty.
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Figure 1: Example of a monitoring scenario with 2 regions
and 10 sensors.

In addition, a threshold must define the minimum level of re-
liability required by the system. Consequently, the values of the
impact factor must be chosen in such a way that the set of 𝑆 pro-
cesses controlled by each regional monitor gives a confidence level
below the threshold whenever the minimum reliability level is not
reached.

3.1 Formalization
This section formalizes the definitions and concepts used in this
paper. Disaster-FD follows the same nomenclature adopted in [14],
expanding the concepts to a multi-monitoring or federated monitor-
ing scenario. This incorporation enhances the system’s efficiency,
accuracy, and adaptability, essential requirements for addressing
the uncertainties and rapid changes in disaster scenarios.

The Impact Factor assigned to each process corresponds to a
positive integer value that indicates its relative importance in the
system. The impact factor of each monitored process 𝑖 , (𝐼𝑖 ), along
with the unique identifier of the process, make up the set 𝑆 ⊂ Π of
monitored processes. Thus, the values in the set 𝑆 correspond to the
set ⟨𝑖𝑑1, 𝐼1⟩, ⟨𝑖𝑑2, 𝐼2⟩, . . . , ⟨𝑖𝑑𝑘 , 𝐼𝑘 ⟩ for each process 𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑘 .

For each monitored set 𝑆 , the subset 𝑇𝑆
𝑝 (𝑡) represents the pro-

cesses that the monitor 𝑝 suspects at the time 𝑡 . Complementarily,
the set 𝐹𝑆𝑝 (𝑡) represents the processes considered faulty by the
monitor 𝑝 at the moment 𝑡 .

The Trust Level indicates the confidence level of the monitor
process 𝑝 in the set of processes in 𝑆 at a given moment, calculated
by 𝑇𝐿𝑆𝑝 (𝑡). It represents the sum of the impact factors of the non-
faulty processes, that is, 𝑇𝐿𝑆𝑝 (𝑡) =

∑
𝑖 (𝐼𝑖 ),∀𝑖 ∈ 𝑇𝑆

𝑝 (𝑡).
Each monitor can track various subsets of processes, with dif-

ferent levels of trust and individual impact factors. The set 𝑆∗ en-
compasses the 𝑚 unique subsets being monitored, indicated by
𝑆∗ = {𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑚}.

Finally, the Threshold defines the minimum reliability limit for
each set in 𝑆∗, mathematically represented by {𝑇ℎ1,𝑇ℎ2, . . . ,𝑇ℎ𝑚},
where each 𝑇ℎ𝑖 is related to the minimum level of trust required
for a subset of processes 𝑆𝑖 .

The values in 𝑇ℎ𝑆∗ are used by the monitor to verify the trust
in the processes of the subsets in 𝑆∗. If, for each of the𝑚 subsets
of 𝑆∗, 1 ≤ 𝑖 ≤ 𝑚, the 𝑇𝐿𝑖𝑝 (𝑡) > 𝑇ℎ𝑖 , then 𝑆∗ is considered reliable
(trusted) at time 𝑡 by the monitor 𝑝 ; otherwise, 𝑆∗ is considered not
reliable (not trusted).

This class of algorithms introduces the concept of Flexibility
Property, which denotes the failure detector’s ability to tolerate a
certain margin of failures or false suspicions, that is, its ability to
consider different sets of responses that lead the system to states
to be considered trusted.

Table 1: Set 𝑆1 with processes𝑞𝑖 and respective impact factors.

Set 𝑆1 monitored by the monitor process of Region 1

⟨𝑞0, 10⟩, ⟨𝑞1, 10⟩, ⟨𝑞2, 10⟩, ⟨𝑞3, 10⟩, ⟨𝑞4, 10⟩, ⟨𝑞5, 10⟩, ⟨𝑞6, 10⟩,
⟨𝑞7, 10⟩, ⟨𝑞8, 10⟩, ⟨𝑞9, 10⟩, ⟨𝑞10, 60⟩, ⟨𝑞11, 20⟩, ⟨𝑞12, 20⟩, ⟨𝑞13, 20⟩

Table 1 presents an example with a set of monitored processes
similar to the scenario depicted in Figure 1. The set 𝑆1 of themonitor
in Region 1 comprises the processes 𝑞0 to 𝑞9 representing sensors
located in Region 1 (purple), the processes 𝑞11 to 𝑞13 representing
remote sensors under monitoring (green), and 𝑞10 as the monitor of
Region 2. The maximum value of 𝑇𝐿𝑆1𝑝 (𝑡) is ∑13

𝑖=0 𝐼𝑖 = 220,∀𝑡 > 0,
with

∑9
𝑖=0 𝐼𝑖 = 100 for local sensors and

∑13
𝑖=10 𝐼𝑖 = 120 for remote

sensors and monitor. In this situation, the chosen threshold should
reflect the monitoring objective. For example, to ensure that at least
one process from each region always responds, it is necessary to
have 120 < 𝑇ℎ1 ≤ 220 and 𝑇𝐿𝑆1𝑝 (𝑡) > 𝑇ℎ1,∀𝑡 > 0. The monitor of
Region 2 can adopt an equivalent strategy.

3.2 Quality of Service (QoS) Metrics
The evaluation of Disaster-FD is based on the work by [7], where
they define a set of metrics to assess the Quality of Service (QoS)
of fault detection algorithms. These metrics are centered around
temporal constraints, which refer to the time required to detect
a failure, to correct a mistake, and the interval between two false
suspicions. Specifically, the same QoS metrics used by Impact-FD
are adopted:

• Average Detection Time (TD): Measures the speed and
efficiency of the system in detecting failures. TD measures
the period from the moment a process 𝑞 fails until the failure
detector in 𝑝 begins to continuously suspect 𝑞. This metric is
critical for understanding how quickly the system responds
to incidents.

• Average ErrorRate (𝜇R): Represents the frequency at which
the failure detector makes errors per unit of time, serving
as an indicator of the detector’s reliability. This metric is
particularly important for assessing the system’s propensity
for false positives or false negatives.

• Accuracy Probability (PA): Assesses the likelihood that
the outputs of the failure detector are correct at a random
moment, providing a measure of the overall accuracy of the
system over time, derived from the total duration of the false
positive period relative to the total time under analysis.

4 Estimation of Heartbeat Arrival
The basic monitoring mechanism consists of receiving periodic
messages from the monitored processes, commonly referred to
as heartbeats (HB). The method proposed by [7] to estimate the
arrival of the next heartbeat (𝐸𝐴𝑘+1) is based on the history of the
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arrival times of previous heartbeats and includes a safety margin
(𝛽).

In the 𝐸𝐴𝑘+1 calculation, the process 𝑝 considers a sliding win-
dow with the 𝑤 most recent heartbeat messages received from
process 𝑞 represented by 𝑚1,𝑚2, ...,𝑚𝑤 . The values 𝑇1,𝑇2, ...,𝑇𝑤
are the respective reception times of these messages, according to
the local clock of 𝑝 . Thus, as defined in [7], we have Equation 1,
where Δ𝑖 corresponds to the interval between the sending of two
consecutive heartbeats.

𝐸𝐴𝑘+1 =
1
𝑤

𝑘∑︁
𝑖=𝑘−𝑤

(𝑇𝑖 − Δ𝑖 × 𝑖) + (𝑘 + 1) × Δ𝑖 (1)

Thus, the expected arrival time of heartbeat 𝑘 + 1 called 𝜏𝑘+1 is
defined by Equation 2, and the non-receipt of a heartbeat by the
time 𝜏𝑘+1 characterizes process 𝑞 as suspect.

𝜏𝑘+1 = 𝐸𝐴𝑘+1 + 𝛽 (2)

4.1 Comparison with Impact-FD
While both Disaster-FD and Impact-FD use Equations 1 and 2 to
calculate the estimated time of arrival of the next heartbeat, named
𝐸𝐴𝑘+1, the two proposals use slightly different approaches in inter-
preting and implementing the Equation 1.

The implementation of the Disaster-FD protocol uses the se-
quence number identifier of the heartbeat message to calculate the
difference between the actual arrival time and a theoretical arrival
time, defined in Equation 2 as the product of the identifier by the
fixed interval between consecutive heartbeats (Δ𝑖 ). The Impact-FD
protocol, on the other hand, does not directly use the sequence
number of the heartbeat, employing an incremental index to calcu-
late the difference between the arrival time of each heartbeat and
the expected arrival time, based on Δ𝑖 .

The methodology proposed by Chen is based on adjusting the
arrival time estimate using the history of arrival times of the pre-
vious 𝑤 messages, considering the difference between the actual
and expected arrival times, based on the regular interval between
heartbeats.

Thus, Disaster-FD is more aligned with Chen’s theory, as it
directly incorporates the concept of heartbeat sequentially (through
the sequence number), reflecting Chen’s approach of adjusting
estimates based on differences between actual and expected arrival
times. Although similar in structure, by using an incremental index,
the Impact-FD does not always capture sequentiality directly, and
thus may not accurately have the actual sequence of heartbeats.

In practice, as observed when analyzing the logs of Impact-FD
experiments, this means that Impact-FD has more difficulty han-
dling “gaps” in a sequence of heartbeats, which occur when some
messages are lost. As a result, the Impact-FD implementation re-
quires more time to detect a false positive, i.e., to realize that it has
erroneously suspected a correct process.

5 Implementation
Disaster-FD has been implemented in Java and utilizes the Cali-
fornium library [12]. It is distinguished by its federated and multi-
protocol monitoring, using CoAP (Constrained Application Proto-
col) requests for monitoring IoT devices and the ICMP (Internet

Control Message Protocol) to monitor nodes of neighboring fed-
erated regions. This dual approach provides flexibility and a more
comprehensive network state analysis.

CoAP “CON” (Confirmable) requests enhance communication
reliability, as each message anticipates a response from the des-
tination device. Furthermore, the system implements a timeout
mechanism for these requests, ensuring that the monitoring re-
mains efficient even when a device does not respond within the
expected time. Disaster-FD uses the Californium library to handle
responses from CoAP requests asynchronously, managing success-
ful returns of heartbeat messages as well as handling errors, such
as the overflow of the calculated time for the next heartbeat recep-
tion and connectivity issues, allowing continuous monitoring and
uninterrupted analysis flow.

5.1 Implementation of CoAP Message Tracking
Initially, each IoT device is accessible via a unique URI (Uniform
Resource Identifier), based on its specific IPv6 address. Using this
URI, the CoAP client in the Disaster-FD implementation derives a
unique device identifier, used in generating the initial value of the
message sequence number, or MID (Message ID).

The MID is generated or retrieved for each device and incre-
mented with each new request, ensuring the uniqueness and trace-
ability of messages. In CoAP GET and CON requests, the MID is
explicitly defined in the header, allowing for a precise correlation
between the sent requests and the received responses.

6 Results
This study implements and tests the Disaster-FD failure detection
system in the Internet of Things (IoT) environment known as FIT-
IoTLAB [1], monitoring two interconnected regions, Grenoble and
Strasbourg, in a configuration similar to the example in Figure 1.
The choice of only these two regions is justified by connectivity
issues between the remaining regions within the infrastructure,
likely related to firewall configurations.

Table 2 shows the connectivity results of a simple experiment
where we deploy IoT devices in every region and issue ICMP re-
quests from each monitor node to every other available region. The
results show that only Strasbourg and Grenoble have full bidirec-
tional connectivity.

Table 2: Connectivity between pairs of FIT-IoTLAB regions.

From/To Grenoble Lille Saclay Strasbourg

Grenoble X X
Lille X X X
Saclay X X X

Strasbourg X X

Experiments rationale
The experiments were structured around the monitoring of 14
processes by each region monitor, including 10 sensors located
in the monitor’s region and 3 sensors and one monitor process
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Figure 2: Energy consumption with different request intervals.

in the other region. Each monitor uses the CoAP protocol for the
sensors and ICMP to track other monitors.

Requests to the sensors were made using the GET method of
the CoAP protocol at an interval of 5,000 milliseconds. This rate
was carefully selected aiming for efficiency in fault detection, mini-
mization of network load, and energy consumption on devices, as
shown in § 6.1.

The choice of the 𝛽 margin in calculating the estimated time for
the next heartbeat was also defined based on latency tests of sending
and receiving messages to devices in the two chosen regions. After
24 hours of testing, a value corresponding to the calculated standard
deviation was chosen, amounting to 1,500 milliseconds.

Such experiments aim not only to evaluate the effectiveness of
Disaster-FD in detecting faults in real-time in an IoT environment
but also to explore the interactions between network devices in
federated regions. The setting of the impact factors in each region
was defined similarly to that presented in Table 1, namely: the 10
sensors located in the local area of each region were set with an
impact factor of 10. In comparison, the 3 sensors in the neighboring
region received an impact factor of 20. Additionally, the monitor
in the neighboring region has an assigned impact factor of 60,
reflecting its importance in that area. Consequently, the trust level
for this set of processes can reach a maximum of 220 (10 × 10 + 3 ×
20 + 60).

The experiments evaluate the impact of Disaster-FD on IoT de-
vice power consumption, the individual device accumulated errors,
the accuracy of the estimated arrival time, as well as overall sys-
tem behavior based on the properties defined in Section 3.2 for
Disaster-FD and Impact-FD.

6.1 Energy consumption for IoT devices
Our goal is to investigate the impact of energy consumption on
IoT devices within request sending intervals. Using the IoT-LAB
platform, experiments were conducted in three distinct devices,
each configured to issue GET requests via the CoAP protocol.

Figure 2 illustrates energy consumption inwatts (W) for three IoT
devices at different sending intervals, varying from 10 milliseconds

to 60,000 milliseconds. The figure shows a greater consumption dis-
crepancy between 10 milliseconds and 1,000 milliseconds sending
interval. On the other hand, it is observed that, from 5,000 millisec-
onds onwards, energy consumption presents a tendency to stabilize,
similar to the values observed when the devices are not receiving
any CoAP request (“device stopped”).

When expanding the experiments to longer intervals, such as
10,000 milliseconds, 30,000 milliseconds, and 60,000 milliseconds,
we observe that the power consumption remains close to the 5,000
millisecond scenario. However, these larger intervals can be coun-
terproductive in contexts that require agile responses and frequent
data updates.

Evaluation results show that a sending interval of 5,000 millisec-
onds represents a good trade-off, mitigating energy consumption
without compromising the frequency of updates. This sending in-
terval represents an economy in energy consumption of 0.03 W, or
2%, compared to a 10-millisecond sending interval for each device.
Even though it represents a small energy save, this can be crucial
for devices operating in environments where access to power is
restricted or battery replacement is unfeasible.

6.2 Accumulated Errors in Strasbourg
Figure 3 shows the accumulated number of errors that occurred
per monitored device during the 24 hours of monitoring in the
Strasbourg region.
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Figure 3: Accumulated Errors per device in Strasbourg.
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Devices 0 to 9 correspond to local sensors, devices 11 to 13 corre-
spond to sensors in the Grenoble region, and device 10 represents
the monitor in Grenoble.

The detector did not register any failures for devices 5 and 7,
while the IoT devices 0, 1, 2, 3, 4, 6, 8, and 9 showed only a few errors,
reflecting the stability of the Strasbourg region. In contrast, in the
neighboring region of Grenoble, both the monitored IoT devices
(11, 12, and 13) and the monitor (device 10) showed a significant
number of errors, indicating instability in that area.

Notably, device 10, which serves as the monitor in the Grenoble
region, registered several errors. This device also acts as the central
node or edge router and is crucial for managing network traffic
in Grenoble. The errors observed in device 10 suggest connectiv-
ity problems, compromising communication and the operational
efficiency of the region’s IoT network. Therefore, the instability
of device 10 is a critical factor that can affect the performance of
the Grenoble network, causing interruptions in functionality and
failures to respond to requests sent by the Disaster-FD monitor.

6.3 Accumulated Errors in Grenoble
In a similar manner to the previous section, Figure 4 shows the
accumulated number of errors for each monitored device over 24
hours in the Grenoble region. Devices 0 to 9 correspond to local
sensors, devices 11 to 13 correspond to sensors in the Strasbourg
region, and device 10 represents the monitor in the Strasbourg
region.
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Figure 4: Accumulated errors per device in Grenoble.

The results provided by the Disaster-FD failure detector reinforce
the observations in the previous section and Figure 3, especially
regarding the network instability in the Grenoble region. While the
Strasbourg monitor identified instability in Grenoble, the monitor-
ing in Grenoble also detected a high incidence of errors in its own
devices (devices 0 to 9) in Figure 4 and few in Strasbourg (devices 10
to 13) in Figure 4, corroborating the mutual perception of network
performance between the two regions.

6.4 Actual and Estimated Arrival Times in
Strasbourg

Figure 5 analyses the behavior of device 5, located in Strasbourg,
during the 24-hour monitoring period. The choice of this device for
analysis is justified by its operational robustness, as evidenced by
its stable performance, which is also highlighted in Figure 3. The

blue curve indicates the arrival time and corresponds to the differ-
ence between two consecutive heartbeats. The red curve indicates
the estimated arrival time, i.e., the maximum time a heartbeat is
expected to arrive before the device is considered faulty.
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Figure 5: Arrival and Estimated Times for Device 5 in Stras-
bourg.

As discussed in the introduction of Section 6, themonitor adopted
a safety margin of 1500 milliseconds and intervals of 5000 millisec-
onds for sending requests. A comparative analysis between the
estimated arrival times (in red) and the actual heartbeats arrival
times (in blue) revealed the stability of the system, demonstrated
by the small variation in the time intervals between the estimate
and the actual reception of the heartbeats. Additionally, the preva-
lence of red points over the blue points indicates that the heartbeats
arrived at the monitor before the estimated time.
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Figure 6: Comparison of Actual and Estimated Arrival Times
in Strasbourg.

Figure 6 emphasizes the relation between actual and estimated
message arrival times in Strasbourg, using a Cumulative Distribu-
tion Function (CDF) plot. The X-axis represents the time in mil-
liseconds, while the Y-axis shows the cumulative probability. The
blue curve indicates the actual arrival time of events, with 50% of
events occurring before 5,000 milliseconds and 100% before 8,000
milliseconds. The red curve, representing the estimated time with
a safety margin of 1,500 milliseconds, shows that the estimated
times are greater than the actual times, showing the accuracy of
the arrival time estimates and indicating a conservative approach
in the estimates and the precision of the Disaster-FD system in
predicting message arrival times.
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Figure 7: Network statistics in Strasbourg.
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Figure 8: Network statistics in Grenoble.

6.5 Network Statistics in Strasbourg
The experiment was conducted under an established threshold
value of 160 (dashed red line in Figure 7), which serves as a safety
limit for the network in the Grenoble and Strasbourg regions, as
detailed in the discussion of the values in Table 1 in Section 3.1.
This value of 160 corresponds, for example, to situations where all

nodes in Strasbourg are not suspected, and at least the monitor in
Grenoble is responding.

The analysis, depicted in Figure 7, provides a statistical perspec-
tive on the network behavior regarding the trust level (𝑇𝐿𝑆𝑝 (𝑡)) (red
curve).

Specifically, the trust level is influenced by the network stabil-
ity parameters and, during the testing period, the accuracy of the
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Table 3: Extract of the logs for the monitors in Strasbourg and Grenoble.

Monitor Region Trust Level Devices Trust Array Probability of Accuracy Timestamp

Strasbourg 100 T T T T T T T T T T F F F F 0.8061 04-01-2024 03:17
Strasbourg 100 T T T T T T T T T T F F F F 0.9756 04-01-2024 16:17
Grenoble 120 F F F F F F F F F F T T T T 0.9963 04-01-2024 03:17
Grenoble 120 F F F F F F F F F F T T T T 0.9676 04-01-2024 16:17

Disaster-FD system showed a progressive improvement as the mon-
itored devices maintained stable operations.

Figure 7 also shows that the Probability of Accuracy (PA), iden-
tified by the blue curve, remains above 95% from 8:50 onwards,
highlighting the monitor’s ability to accurately indicate the system
state.

Finally, it is noteworthy, from the analysis of the same figure,
that the regions under analysis were considered unreliable between
15:50 and 16:50 when the trust level fell below the established
threshold. In a real deployment, this situation could indicate a
possible disaster, necessitating emergency actions for the affected
regions.

Additionally, Table 3 presents two critical points extracted from
the monitor’s log in Strasbourg where the trust level recorded a
value of 100, i.e., below the established threshold. Notably, the
sequence of “Device Trust Array” ‘TTTTTTTTTTFFFF’ indicates a
failure (value ’F’) in the four devices of the neighboring network in
Grenoble, devices 10 to 13, with impact factors of 60, 20, 20, and 20,
respectively.

6.6 Network Statistics in Grenoble
Figure 8 corroborates the results presented in Figure 4, indicat-
ing that the network in the Grenoble region experienced periods
of instability. This conclusion is evidenced by the analysis of the
trust level (𝑇𝐿𝑆𝑝 (𝑡)) (in red), which at various times approached the
established safety threshold for the network (dashed red line).

Furthermore, as shown in Table 3, there were failures in the
local devices of Grenoble, resulting in an unreliable network classi-
fication. This can be observed by the value of the complementary
“Devices Trust Array” of ‘FFFFFFFFFFTTTT’, shown in Table 3 for
the same time in the Grenoble region, meaning the 10 devices in
Grenoble are perceived as faulty (’F’) by the region monitor, at the
same time that the 3 devices and the monitor in Strasbourg remain
trusted (’T’).

6.7 Comparison with Impact-FD in Strasbourg
Figure 9 illustrates the statistics for Strasbourg with results for
Impact-FD. The network statistics using the Impact-FD implemen-
tation of Equation 1, showed that the Probability of Accuracy (P.A)
varied between approximately 0.40 and 0.90 over time. The average
PA remained above the threshold of 0.40, initially lower than that
of Disaster-FD, but indicating an improvement in failure detection
accuracy throughout the experiment. The network safety thresh-
old was maintained at 160. The trust level varied between 80 and
220, showing moments of instability during the period, especially
around 15:50 to 16:50, when there was a significant drop in con-
fidence. In a real scenario, this could indicate a possible disaster,

triggering emergency actions for the affected regions, a scenario
also presented by the Disaster-FD failure detector.

Comparing the network statistics for Strasbourg using the Impact-
FD andDisaster-FD formulas, it is observed that Disaster-FD demon-
strated a probability of accuracy varying between 0.70 and 0.95,
reaching 0.95 early on, as observed in Figure 7. In contrast, Impact-
FD showed greater variability, with the PA ranging between 0.40
and 0.90, reaching 0.90 only at the end of the experiment.

Thus, Disaster-FD was more stable and adapted quickly to net-
work instabilities, while Impact-FD was less stable and adapted
more slowly. Equation 1 implementation in Disaster-FD is responsi-
ble for the observed stability. Disaster-FD considers the message ID
instead of a simple counter to calculate the estimated arrival time
of the next message, contributing to greater accuracy and stability
in failure detection.

6.8 Comparison with Impact-FD in Grenoble
Figure 10 illustrates the statistics for the Grenoble region using the
Impact-FD implementation of Equation 1. For the Grenoble network,
using the Impact-FD formula, the PA ranged from approximately
0.02 to 0.80. The network safety threshold was maintained at 160.
The trust level varied between 120 and 200, with more pronounced
instabilities throughout the experiment, which was expected due
to the region’s higher instability. The lower PA during critical mo-
ments indicated a lower reliability in failure detection, resulting in
a higher occurrence of false positives.

When comparing the graphs for the Grenoble region, Figure 8
demonstrates that Disaster-FD maintained a higher and more stable
accuracy (PA), ranging from 0.60 to 0.95. At the same time, Impact-
FD showed greater variability, with PA ranging from 0.02 to 0.80.
Grenoble experienced more network instabilities during the experi-
ment compared to Strasbourg. Disaster-FD quickly adapted to these
instabilities, unlike Impact-FD, which had slower adaptation and
inconsistencies in detection. The safety threshold was maintained
at 160 for both formulas.

The trust level in the Disaster-FD formula also exhibited a clear
advantage in terms of stability and less variability. Using the mes-
sage ID in the Disaster-FD formula resulted in a more accurate
arrival time estimate, improving accuracy (P.A) and significantly
reducing the probability of false positives.

7 Related Work
The field of failure detection in Internet of Things (IoT) networks has
seen significant advancements, with several notable contributions
aimed at improving the reliability and efficiency of such systems.
This section reviews the literature on failure detection technologies,
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Figure 9: Network statistics in Strasbourg using Impact-FD.
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Figure 10: Network statistics in Grenoble using Impact-FD.

focusing on their methodologies, strengths, and limitations in the
context of disaster-prone environments.

• Impact-FD [14] is a solution that proposes a new failure de-
tector called Impact FD, which provides an output expressing
the confidence of the failure detector about the system (or set
of processes) as a whole. The confidence is configured by the
impact factor, allowing the user to define the importance of each

node within an acceptable margin of failure. Additionally, some
flexibility properties are defined, which characterize the ability
of Impact FD to tolerate a certain margin of failures or suspicions.
The Disaster-FD extends Impact-FD, focusing on failure detection
and network reliability assessment in IoT environments, with
an emphasis on real-time monitoring. Additionally, Disaster-FD
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performs federated monitoring across different regions and con-
siders additional aspects such as device energy consumption.

• Medley [17] is a decentralized solution for failure detection in
IoT operating in ad-hoc networks, employing spatial selection to
send ping messages, and prioritizing nearby nodes. It uses mul-
tiple votes from various devices to assess a node’s condition to
reduce false positives. The SWIM protocol, integrated with Med-
ley, ensures scalable and tolerant failure detection. On the other
hand, Disaster-FD focuses on real-time monitoring and analysis
of IoT networks, especially in disaster situations, prioritizing
system reliability assessment.

• Stab-FD [15] is a solution that proposes a failure detector for
distributed systems, especially suitable for wide area networks
(WAN), which dynamically adjusts within a safety margin to
adapt to variations in the quality of communication links. Ad-
ditionally, Stab-FD has a cooperative version, where nodes ex-
change information about link stability and the list of suspected
nodes [15]. Disaster-FD stands out in IoT environments, espe-
cially in disaster scenarios, using an algorithm to assess network
reliability. Techniques proposed in Stab-FD for adaptation and
reduction of false positives are orthogonal and could be applied
to Disaster-FD.

• SWIM, the Scalable Weakly-consistent Infection-style Member-
ship protocol, introduced by [9], is designed for failure detection
in large-scale distributed systems. SWIM employs a combination
of pinging and indirect probing to detect node failures efficiently.
It is known for its scalability and robustness in large networks.
While SWIM’s principles of scalability are valuable, Disaster-FD
integrates these concepts within the context of IoT networks,
ensuring that the system remains efficient and reliable even in
the face of large-scale disasters.

8 Conclusion
The presented study details the development and evaluation of
Disaster-FD, a failure detector designed for disaster-prone environ-
ments, focusing on real-time monitoring of IoT networks. Inspired
by Impact-FD [14], Disaster-FD introduces features such as feder-
ated monitoring and continuous network reliability assessment.

The results of tests conducted on the FIT-IoT-LAB platform
demonstrate the effectiveness of Disaster-FD in detecting failures
and monitoring network reliability in various scenarios, including
communication instability situations. Disaster-FD’s ability to main-
tain a stable trust level and high failure detection accuracy, even
in unstable networks like Grenoble, highlights its robustness and
applicability in real-world natural disaster scenarios.

Comparison with Impact-FD showed that Disaster-FD is more
efficient in adapting to IoT network instabilities, resulting in less
variability in trust levels and fewer false positives. Using the mes-
sage identifier in estimating heartbeat arrival times contributes to
the system’s accuracy and stability. Therefore, Disaster-FD presents
itself as a tool with the potential for monitoring IoT networks in
disaster-prone environments, with greater resilience and consis-
tency, essential for early failure detection and rapid response to
adverse events.

Future work on Disaster-FD includes analyzing failure frequency
to identify trends and determine the need for preventive mainte-
nance; implementing failure-based notifications to anticipate po-
tential natural disasters; applying the ComputeMargin function
inspired by the Stab-FD project [15] to adjust monitoring timers
based on communication link stability dynamically; and integrating
with Telegram to send automatic alerts to system administrators in
cases of network instability.
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