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Abstract—Large-scale distributed systems gather thousands
of peers spread all over the world. Such systems need to
offer good routing performances regardless of their size and
despite high churn rates. To achieve that requirement, the
system must add appropriate shortcuts to its logical graph
(overlay). However, to choose efficient shortcuts, peers need
to obtain information about the overlay topology. In case of
heterogeneous peer distributions, retrieving such information
is not straightforward. Moreover, due to churn, the topology
rapidly evolves, making gathered information obsolete. State-
of-the-art systems either avoid the problem by enforcing peers
to adopt a uniform distribution or only partially fulfill these
requirements.

To cope with this problem, we propose DONUT, a mechanism
to build a local map that approximates the peer distribution,
allowing the peer to accurately estimate graph distance to other
peers with a local algorithm. The evaluation performed with
real latency and churn traces shows that our map increases
the routing process efficiency by at least 20% compared to
the state-of-the-art techniques. It points out that each map
is lightweight and can be efficiently propagated through the
network by consuming less than 10 bps on each peer.

Keywords-churn; overlays; long-range links; Small-World
graphs; routing; range queries; heterogeneous keyspaces;

I. INTRODUCTION

Over the last few years, several widespread large-scale
applications adopted a highly decentralized architecture [1],
[2], [3]. In such systems, the load is spread among the hosts,
which constantly need to interact using an overlay in order
to retrieve shared resources (information or services). While
looking-up for a resource in the overlay, peer’s request has to
be forwarded (i.e., routed) to several peers before reaching its
destination peer. As most of the distributed applications have
latency constraints, the resource discovery process must be
efficient. This implies minimizing the average graph distance
in the overlay1.

To do that, shortcuts or long-range links are added to
the base-graph of the overlay. Kleinberg has shown that the
optimal routing process is achieved in a grid if the probability
for a peer p to choose a peer q as its long-range link depends
on the graph distance between p and q. Kleinberg’s distribu-
tion of the shortcuts is called d-harmonic [4]. Therefore, to
reach this distribution, a peer needs to find peers that are at

1In the rest of the paper, we call graph distance the minimal distance, in
number of hops, between two peers in the overlay.

the appropriate graph distance in the overlay. It implies for
the peer to have some global information about the overlay
graph.

However, in large-scale distributed systems, having an
accurate global view of the topology is generally impossible,
because the number of participating entities is too large.
Furthermore, the graph constantly changes due to churn (i.e.,
peer connections and disconnections). Therefore, peers have
to enable a mechanism that approximates the graph distance
without locally maintaining the exact continuously changing
topology.

This problem has been mainly addressed by the Distributed
Hash Tables (DHTs [5], [6], [7]). Some DHTs manage to
build long-range links enabling efficient routing. However,
these systems rely on the use of a hash function to assign
peer/resource identifiers, which makes the identifier distribu-
tion uniform but breaks semantic relationships between re-
sources. Yet, such relationships are necessary for native range
query support, a widespread application requirement [8], [9].

A few works, e.g., Mercury [10] and more recently Os-
car [11], addressed the issue without the use of a hash
function. However, the proposed solutions present several
drawbacks. The main concern is that they do not monitor the
global system state. Yet, the system topology is constantly
changing under the churn impact. Therefore, these solutions
can only adapt afterwards by re-probing the system. More-
over, their probing mechanism is based on random walks,
and is thus suitable only for expander graphs [10]. Oscar, the
most efficient of these systems is detailed in the next section
and is then compared to our contribution (see Section V).

In this paper, we propose DONUT2, a mechanism that
provides, on each peer, a global map which allows to locally
estimate the graph distance to other peers. The main idea
is to either use existing lookup messages to piggyback
information or to provide a simple gossip algorithm in order
to construct, on each node, a fuzzy view of the whole
system peer distribution. This map is then used to build
efficient long-range links. Thanks to DONUT, the long-range
rewiring process is very lightweight, because the localization
of appropriate peers is made locally by using the map. In case
of modifications due to churn, the local map progressively
adapts itself to reflect the new density distribution, allowing

2DONUT: Density-aware Overlay for Non-Uniform Topologies.



peers to replace obsolete long-range links by new ones before
the performance degradation.

To the best of our knowledge, there exist no algorithm
to build long-range links based on a map that approximates
the global distribution of peers in the system. Yet, our map
may also be useful to other distributed system mechanisms,
such as efficient global load balancing, system monitoring,
network size estimation, etc. Therefore, the contributions of
this work are: 1) a distributed algorithm that locally provides
a fuzzy map of the whole system distribution and 2) an
algorithm that uses the map to build efficient long-range
links.

A detailed evaluation of DONUT was performed in a
discrete event simulator with the use of traces collected from
existing distributed systems to simulate realistic latencies and
churn (see Section V). The lessons learned from the work are:

1) DONUT accurately estimates the graph distances be-
tween peers, providing an optimized routing process in
heterogeneous peer distributions.

2) The maps are lightweight: average map size is of 2.2
Kbytes for 2500 nodes in our evaluation.

3) Efficient propagation of the map between peers may
be achieved with less than 10 bps of traffic on each
peer.

The rest of this paper is organized as follows: Section II
describes the needed background and discusses the related
work. DONUT, our contribution is described in Sections III
and IV: the former describes the density map construction
and the latter details the shortcut-wiring process. Section V
presents the evaluation before Section VI concludes.

II. BACKGROUND AND RELATED WORK

Decentralized resource discovery is one of the major issues
of large scale distributed systems. In order to offer a satis-
fying performance, the discovery process should exhibit two
fundamental properties: 1) If the overlay contains a resource,
the process must necessarily find it3; 2) the process must
be efficient: for an overlay with n peers, it must generate
less than O(n) messages and must take less than O(n) time.
Early attempts to address the problem failed to satisfy these
requirements. In Gnutella, the resources were discovered
by flooding the overlay with search messages [12]. This
approach is costly in terms of messages and may fail since
the flooded messages have a limited time to live.

The first step to an efficient decentralized discovery
mechanism was the Key Based Routing layer (KBR [2],
[5]). Resources and requests are assigned a key in an d-
dimensional keyspace and each peer is assigned an identifier
in the same keyspace. In the rest of the paper, we define keys
of resources and identifiers of peers as their coordinates in
the keyspace. The distance between any couple of keyspace-
coordinates should be computable, i.e., the keyspace must
be a metric space. We note keyspace distance the euclidean
distance between two coordinates of the keyspace. The peer

3Its contrapositive is also important: a negative result must signify that
the resource does not exist in the overlay.

which identifier is the closest to a resource key is called the
root of the resource and is responsible for its storage.

However, one must find a way to locate that peer inside
the overlay. In other words, the overlay must ensure that
a decentralized greedy algorithm is always able to route a
message to the resource, by knowing only its coordinates in
the keyspace. The greedy routing strategy always chooses as
the next hop the peer that minimizes the distance to the target
coordinates [13]. The routing algorithm stops on the root of
the target coordinates. To simplify the routing process and
the overlay structure, most of the keyspaces are borderless,
which means that for each dimension of the keyspace, the
minimal value is close to the maximal value, and the routing
is performed with values reduced modulo the size of each
keyspace dimension.

Several topologies are able to support a keyspace, de-
pending on its dimension. For example, a ring enables
decentralized greedy routing for one dimensional keyspaces.
Topologies based on Delaunay triangulations or Voronoi
tessellations ([14], [15]) provide greedy routing for keyspaces
of two or more dimensions [13]. Some more randomized
topologies also exhibit the same property w.h.p. ([16], [17]).
We call KBR-overlays decentralized systems which topology
is able to support a keyspace. A KBR implemented on an
appropriate topology ensures the first requirement of resource
discovery.

The couple formed by a keyspace and its KBR-overlay
exhibits several important properties. 1) Each peer p is
responsible for a well delimited region of the keyspace
formed by the coordinates that are closer to the coordinates
of p than to other peers. 2) The graph distance between
two coordinates of the keyspace is equal to the distance in
hops between the two peers responsible for the coordinates.
3) By definition all coordinates have a root. Therefore, the
responsibility zones of the overlay peers form a partition of
the keyspace. 4) There is a correlation between the keyspace
distance and the graph distance: during the greedy routing
process, each hop decreases the keyspace distance and the
graph distance to the target.

The second requirement of efficient resource discovery is
known to be satisfied only for topologies that have small
characteristic path lengths, i.e., that have natural shortcuts in
their graph [18]. Such topologies are called “Small-world”
graphs by analogy with the small-world phenomenon [19].

Unfortunately, the topologies listed above do not belong
to that class of graphs. To enable the small-world property,
shortcuts need to be added to the original topology. There-
fore, each peer maintains a set of long-range links. Kleinberg
showed that, to obtain optimal routing properties in a d-
dimensional keyspace, the long-range links have to follow a
d-harmonic distribution. That is, for a bi-dimensional space,
let p be the peer that is choosing the links, and GD(i, j)
the graph distance between peers i and j. If the links l of
p are chosen with a probability proportional to GD(l, p)−2,
the link distribution is optimal and the routing process is
poly-logarithmic [4].



In practice, the d-harmonic distribution may be difficult to
build. Indeed, unlike keyspace distances, graph distances be-
tween peers are not straightforward to obtain locally without
having a real-time copy of the whole topology. Fortunately,
there is a correlation between the keyspace distance and the
graph distance between peers. In fact, in case of uniform
distribution, the keyspace distance is proportional to graph
distance on average.

DHTs such as PAST [6] or DHash [7] take advantage
of that proportionality to build long-range links that enable
logarithmic routing. These systems are built on a ring-based
KBR-overlay which assumes such a uniform distribution of
keys (ensured in practice by the use of hash functions to
generate keys for both data blocks and peers).

However, as keys are distributed according to some hash
function, the resources that are semantically close may be far
from each other in the keyspace. In other words, the semantic
relationship between resources is lost, which complicates
the retrieval of resources located in some semantic range.
Such multiple-resource requests are called range queries and
are necessary to many distributed applications4. To natively
support range-querying, the keyspace needs to be semantic.
In that case, the resource coordinates are not chosen by a
hash function, but defined by some semantic properties of the
resource. In the rest of the paper, we call semantic distance
the keyspace distance.

Unfortunately, many studies show that distributions of
existing semantic keyspaces are highly heterogeneous. For
instance, research on Massively Distributed Games shows
that the keyspace contains popularity hotspots where almost
all peers are gathered, whereas large portions of the keyspace
are almost deserted. The extreme non-uniformity of the
keyspace is also confirmed by studies about file sharing peer-
to-peer systems such as Gnutella [20]: exchanged file keys
tend to follow a Zipf distribution ([11], [21]).

In these highly non uniform distributions, the semantic
distance is no longer proportional to the graph distance. Yet,
it is still possible to exploit semantic distance to build a d-
harmonic distribution. For that, the peer must be somehow
aware of the keyspace distribution. It has been proven that the
Kleinberg approach can be used in non uniform keyspaces
if the distribution function of peers in the keyspace is
known [22].

Several systems are implicitly incorporating knowledge
about the density distribution in the long-range rewiring
process. Mercury [10] and Oscar [11] probe the keyspace,
making an approximation of its density. These works are the
closest to ours. We now focus on Oscar because it proposes
a more accurate probing mechanism than Mercury [11].

Oscar [11] uses a local algorithm (that we call the log-
partition algorithm) to form log2(n) sets of the peer popula-
tion (see Figure 1). Let p be the peer executing the algorithm.
All peers are locally sorted according to their graph distance
to p. Peers which distance to p is bigger than the median

4E.g., a player of a multiplayer game may need to retrieve all the objects
located inside a specified area of the game-map [9].

form the first set of the partition (the set 1 in Figure 1).
Then, the set of peers which distance to p is lower than
the median is halved the same way. The process is repeated
until the subset contains only the close range neighbors of
p (the set 4 of Figure 1 is the last step of the algorithm).
Finally, p chooses uniformly at random a long-range link in
each subset. The formed set of links follows the Kleinberg’s
distribution [11].

Since it is impossible for p to retrieve information about
the graph distance to all peers, Oscar estimates the subset’s
population by using random walks. At each step of the
partition algorithm, it performs a constant number c of
bounded random walks inside the current interval. The result
after c × log(n) bounded random walks is a partition of
the keyspace built by taking into account the distribution
of peers. However, no global peer distribution is actually
built. Evaluations of Oscar described in [11] show that

Set 1: 8 peersSet 2: 4 peers

Set 3: 2 peers

Set 4: 1 peer

p

Figure 1. Population partition formed by the log-partition algorithm.

it outperforms other systems over heterogeneous-keyspace
overlays. Yet, in case of churn, Oscar is not able to de-
tect the modifications of the density distribution until a
lookup performance degradation is perceived. This happens
because no keyspace monitoring is performed. Furthermore,
Oscar’s approach (as well as Mercury) is limited to expander
graphs [10], because it heavily relies on random walks to
perform the population estimations. It is known that random
walks over a graph are guaranteed to be rapidly mixing (i.e.,
to converge to a uniform distribution in a poly-logarithmic
number of hops) only for expander graphs [10].

III. BUILDING A GLOBAL KEYSPACE DENSITY MAP

This section describes the algorithms used to build a
keyspace density map.

Overview. On each DONUT-peer, the map is implemented
by using a tree that locally indexes each region of the map.
Since we choose to implement a bi-dimensional keyspace
to illustrate our contribution, we need to use a quadtree to
correctly index all the regions of the map5. Each node of the
quadtree is responsible for a square region of the map. A
leaf of the tree may engender four children representing the
four cardinal directions. In that case, its region is split in four
equal subsquares, and the responsibility for each subsquare
is given to the corresponding child (e.g., the upper left square
is given to the North Western child). Thus, the union of the
subsquares forms a partition of the keyspace (see Figure 2).
Each leaf of the tree also contains information about the peer
density inside the region it is responsible for. When a leaf

5For instance, one dimensional spaces only require a binary tree, while
3D spaces need an octree.



is split, its children inherit its density value. Therefore, the
set of the quadtree’s leaves forms an approximation of the
keyspace density distribution function.

However, at the bootstrap, a peer holds no information
about the keyspace distribution: the map has to be filled with
density information. There are two possible ways for a peer p
to complete the map: 1) use local information and 2) receive
information from other peers.

First, the only available information is local information.
As the peer joins the overlay, it is assigned coordinates in
the keyspace by the distributed system and is routed to its
location in the overlay according to these coordinates. During
the process, it obtains the coordinates of its overlay neigh-
bors. Thanks to that, it is able to determine the density of
the keyspace that contains its coordinates and its neighbors’
ones. The density is obtained by computing the surface of
a circular portion of the keyspace centered on the peer’s
coordinates coord, with a radius rad equal to its distance
to the farthest neighbor’s location. This area is then divided
by the number of neighbors of the peer to obtain a density d.
The triplet (coord,rad,d) forms the local information about
the keyspace density.

After the insertion of the local information, every peer
locally stores a map of the keyspace with an estimation of its
surrounding density (see Figure 2.left). The union of all the
peer maps forms an accurate density mapping of the whole
keyspace (see Figure 2.right). Therefore, to fill their maps,
peers need to exchange their local information.

The first step of the map completion is performed by
Algorithm 1, and the insertion of the information received
from other peers is done by Algorithm 2. It is important
to highlight that once the density information has been
received, no operation is performed on the network. All the
steps of Algorithms 1 and 2 are executed locally and nodes
composing each quadtree should be distinguished from peers
forming the overlay.

Adding new information. Initially, the map contains no
density information and the root of its quadtree has no
children. Thus, the local responsibility of the whole keyspace
is given to the root, and a default density value6 is assigned
to the root. The triplet (coord, rad, d) is then locally inserted
in the quadtree following Algorithm 1.

The goal of the algorithm is to approximate the circular
density area by a set of squares. The size of the squares may
be variable, but in order to achieve a reasonable approxi-
mation accuracy, their size must be smaller than the circle.
Therefore, the algorithm needs to find suitable squares in the
quadtree and assign correct density values to each square. It
explores the quadtree in search of leaves which squares 1)
intersect the circle and 2) are smaller than the circle.

The algorithm progressively “zooms” on the square that
contains the origin of the circle (loop from line 2 to 15).
If the square that contains the origin is bigger than the

6This value is set to zero in our evaluations, but an approximation of the
mean overlay density may help.

Figure 2. Left: After local execution of Algorithm 1 on a void
map. (the greyscale represents the density, black being the highest).
Right: Approximation of a keyspace with three density zones.

circle, it is split (lines 3 to 4). Then, the value coef ,
which is the proportion of the surface occupied by the
intersection with the circle, is computed for each of the
current node’s subsquares except the next subsquare on the
path of the zooming process (lines 8 to 14). The influence of
the circle’s density on the updated density of the subsquare
is proportional to coef (line 10). If the child responsible for
the subsquare is a leaf, its density value is simply updated
(line 12). Otherwise, the value is propagated to its children
(line 14). The propagation to the children is also performed
by calculating the intersection with the circle for each of the
descendants. The zooming process stops when the side of the
square that contains the origin of the circle is smaller than
the diameter of the circle.

Once the center of the approximation has been found, the
algorithm ends by computing its new density (lines 16 to 22).
This is done by calculating its intersection with the circle
(lines 16 to 18), and propagating the value if the central
square is not a leaf (line 22).

Algorithm 1: Upon the insertion of (coord, rad, d) in
the quadtree.

Result: Information about the local density is incorporated to the map.
currentSq = rootOfQuadTree ;1
while currentSq.sideSize > 2× rad do2

if isLeaf (currentSq) then3
currentSq.splitNode ();4

next = currentSq.subSquareContaining (coord);5
foreach child in currentSq.children do6

if child is not next then7
intersection = overlapCircleSquare (child,coord,rad);8
coef = intersection / child.surface ;9
newDensity = coef× d +(1− coef)× child.density;10
if isLeaf (child) then11

child.density = newDensity ;12
else13

child.propagateToChildren (newDensity);14

currentSq = next ;15

intersection = overlapCircleSquare (currentSq,coord,rad);16
coef = intersection / currentSq.surface ;17
newDensity = coef× d +(1− coef)× currentSq.density;18
if isLeaf (currentSq) then19

currentSq.density = newDensity ;20
else21

currentSq.propagateToChildren (newDensity);22

Exchanging information between peers. On each peer,



information about the density of a map region r is held by the
subtree which root is responsible for the area that contains
r. Thus, a peer a willing to share information about r with
a peer b sends to b a message containing the corresponding
subtree. Upon the receipt of the update message from a, b
executes Algorithm 2 in order to merge the received subtree
with its local quadtree.

First of all, b needs to locate the region of its map that
is concerned with the update. Each node in the quadtree is
in charge of its own region of the keyspace map, and two
nodes cannot be responsible for the same region. Thus, a
region referenced by a node of the tree may be identified by
the location of its node in the tree. As b receives an update
for a region of the map, it is able to locate the corresponding
node in the local quadtree (lines 4 to 7). However, the node
responsible for that region may not exist in the local quadtree.
In that case, the merge algorithm splits the quadtree until the
node is created (lines 5 to 6).

Then, the merging process may begin. Let u be the root of
the subtree received in the update message, and l the local
node in charge of that region on the map. There are four
possibilities at this stage of the algorithm: 1) u and l are
both leaves. In that case, the density value of u is simply
assigned to l (line 10); 2) l is a leaf and u is not. Then the
subtree of u is assigned to l (line 12); 3) u is a leaf and l is
not. Then, the subtree of l is deleted (line 15) and the value
of u, more up-to-date, is assigned to l; 4) none of the nodes
are leaves: the merge algorithm is recursively called on each
child of the nodes (line 18). At the end of the algorithm, the
local map of b holds new information about the density in the
region r of the keyspace. Algorithm 2 is designed to erase
obsolete information (line 15), which is important since the
density of the keyspace is likely to evolve over time.

Algorithm 2: Upon the receipt of a quadtree update from
a distant peer.

Result: The distant update has been merged with the local tree.
currentSq = rootOfQuadTree ;1
receivedRoot = root of the received update-subtree;2
mergeSubtree3

while not representSameRegion (currentSq,receivedRoot) do4
if isLeaf (currentSq) then5

currentSq.splitNode ();6

currentSq = currentSq.subSquareContaining (coord);7

if isLeaf (currentSq) then8
if isLeaf (receivedRoot) then9

currentSq.density = receivedRoot.density ;10
else11

currentSq.subtree = receivedRoot.subtree ;12

else13
if isLeaf (receivedRoot) then14

currentSq.deleteSubtree ;15
else16

for childId in NW, NE, SW, SE do17
mergeSubtree (currentSq.child [childId ],18
receivedRoot.child [childId ]);

end mergeSubtree19

Means of propagation. We implemented two distributed
mechanisms to propagate the subtree-updates among peers.

First, we used a slightly modified gossip algorithm. An
important property of our mechanism is the fact that peers
that are semantically close to each other have extremely
correlated maps. Thus, the updates between them would be
nearly useless. For this reason, in our gossip protocol, a
peer p locally assigns priorities to its overlay neighbors. The
priority of a neighbor is inversely proportional to its graph
distance to p. It means that a peer is likely to propagate
updates only through its long-range links. Second, taking into
account that the keyspace distribution follows data popularity,
and is therefore likely to evolve over time, our mechanism
should avoid to propagate outdated information about the
distribution. Therefore, the data propagated to the neighbors
during the gossip process is selected by novelty: recent
information is propagated first.

Another possibility is to use join messages of arriving
peers. As a peer j joins the overlay, it first connects to an
entry point peer e that may be semantically located anywhere
in the overlay. Semantic coordinates are then assigned to j
according to some attribution mechanism. The coordinates
of j are usually semantically far from e, and j has to
reach its semantic neighbors through the overlay. A join
request is routed by e to the semantic coordinates of j.
At each step, it is possible to add some information about
the density surrounding the current-hop peer. Each time the
request reaches another peer on its route, the latter can benefit
from the knowledge accumulated inside the request during
the previous hops. It is rather an efficient way to propagate
density knowledge. However, our evaluation shows that the
amount of exchanged data increases with churn, while the
increase is very moderate for the gossip propagation.

Using one of the mechanisms described above is necessary
to assimilate changes in the key distribution that occur over
time. On the other hand, a node that just joined a fully
bootstrapped overlay has no need to rebuild a full map from
scratch. The map is relatively lightweight (see Section V)
and can be recovered from an overlay neighbor during the
join process.

IV. DRAWING DENSITY-AWARE LONG-RANGE LINKS

Thanks to the collective use of the algorithms described
in the previous section, peers progressively acquire an ap-
proximate map of the keyspace density distribution. This
section describes how this knowledge may be used to build
efficient long-range links in order to decrease the latency of
the message routing.

Graph distance estimation. Thanks to the algorithms
described in the previous section, each peer owns a density
map of the bi-dimensional keyspace. This information allows
it to locally estimate its graph distance to any coordinates of
the keyspace. Namely, having the density distribution and the
semantic distance, a peer is locally able to approximate the
graph distance to the coordinates.

Let src be the coordinates of the peer, dest the coordinates
of the keyspace on which the estimation is performed,
d[src,dest] the semantic distance and GD[src,dest] the graph



distance between them. If the key distribution is uniform
all the way from src to dest, GD[src,dest] is roughly pro-
portional to d[src,dest]. More precisely, the semantic dis-
tance is equal to the number of hops to reach dest in the
graph multiplied by the mean euclidean distance of one
hop multiplied by a shrinking constant k, i.e., d[src,dest] =
GD[src,dest] ×meanHopDist× k.

The constant k is added because geometrically, the eu-
clidean distance between src and dist is shorter than the
sum of the lengths of all the hops in the graph. The exact
value of k depends on the topology of the graph, but can
be empirically approximated. For instance, for the Delaunay
graphs used in our simulations (see Section V), we have
k = 0.5. We now need to calculate meanHopDist, the mean
euclidean distance of one hop.

Assume n points uniformly distributed inside a square
SQ of size S = side × side. It is possible to approximate
the mean euclidean distance between two points that are
neighbors in the square. Let meanDistx and meanDisty
be the projections of that mean distance on the x-axis
and the y-axis. Since the nodes are uniformly distributed
across SQ, we have meanDistx = meanDisty = side

n .
That allows us to compute the mean distance between two
neighbors in the square which is meanHopDistSQ =√

meanDist2x + meanDist2y .
In case of heterogeneous distributions, regions crossed

by the line [src, dest] have different densities, so that the
graph distance is no more proportional to euclidean distance.
Therefore, the peer has to retrieve from the map information
about the density distribution on the way from src to dest.
The peer first determines the set S = {sq1, sq2, ..., sqn}
of map square-zones that intersect the segment [src, dest].
Let L = {l1, l2, ..., ln} be the set of segments of [src, dest]
formed by its intersections with S. It is important to notice
that:
• L forms a partition of [src, dest]. Therefore we may

assume GD[src,dest] =
∑n

i=1 GDli .
• The quadtree contains one density-value per square,

so the density inside each square is considered to be
uniform. Therefore, ∀i, GDli can be computed by the
peer.

Thanks to the two previous assertions, the peer is able to
approximate the graph distance locally.

The rewiring process. We use the log-partition algorithm
described in Section II to achieve a d-harmonic distribution of
long-range links. However, no random walks are performed.
Instead, at each step of the algorithm, our system locally es-
timates the subset’s population using the technique described
above. To bootstrap the rewiring process, a peer p needs to
find coordinates k in the keyspace that are estimated to be
the farthest in terms of graph distance. This is done in order
to reach as many peers as possible with the future long-range
distribution7.

7This procedure also gives an estimation of the graph diameter, and thus
of the overlay size, which may be useful.

The localization of the farthest coordinates in terms of
graph distance is not straightforward. Indeed, with heteroge-
neous distributions, the coordinates with the highest semantic
distance are not necessarily the farthest in terms of graph
distance if the keyspace has more than one dimension.
As random uniform sampling of the map in search of the
maximal distance is inefficient, another technique has to be
employed. We propose to use the following property: if a
node Y is the farthest from a node X in terms of graph
distance, X and Y are responsible for opposite semantic
values in at least one dimension of the keyspace.

Formally, let U be a n-dimensional borderless semantic
keyspace, mindim and maxdim the minimal and the max-
imal value of U for the dimension dim. Consider x =
(x1, x2, ..., xn) and y = (y1, y2, ..., yn) the coordinates in
U of two nodes X and Y of the topology supporting U .

Property. If Y is the farthest node from X in terms of
graph distance, then Y is responsible for coordinates c =
(c1, c2, ..., cn) of the keyspace such that: ∃dim ∈ [1..n] :
|xdim − cdim| = (maxdim+mindim)

2

Proof:
1) Each dimension dim of U is borderless (i.e., mindim

is semantically close to maxdim). Due to the modulo,
the maximal semantic distance achievable in dim is
dmaxdim = (maxdim+mindim)

2 .
2) Let X and Y be two nodes and ddim the value which

is at a distance dmaxdim from X in dim ∈ [1..n] with
|ddim−xdim| = dmaxdim. Let M be the farthest point
from X belonging to (XY ) in the direction of Y . Then,
∃i such that M = (m1, ..., di, ...,mn). Assume that
Y is not responsible for M . Therefore, M is located
farther from X than any coordinates of (XY ) owned
by Y . Thus, whether a) M is not owned by any node or
b) M is owned by another node Z. The supposition a)
is impossible because all the coordinates have a root.
The supposition b) implies that thanks to the greedy
routing, the graph distance to reach Z from X is higher
than the graph distance to reach Y i.e., Y is not the
farthest from X in terms of graph distance. By 1) and
the contrapositive of 2), the property is correct. �

In our case, the two dimensions have the same size, therefore
min1 = min2 = min, max1 = max2 = max and dmax =
(max+min)

2 . Let P be a peer of the overlay with coordinates
p = (p1, p2), and S = {x ∈ U : max(|p1−x1|, |p2−x2|) =
dmax}. The property implies that ∃M ∈ S such that M is
owned by the peer that is the farthest from P in the graph.
The coordinates of S form a square centered on P with a
side of size dmax.

The peer P uses a Monte Carlo method [23] on its density-
map to uniformly sample a set of coordinates that belong to
the square formed by S. Then, the samples are ordered by
their estimated graph distances to the peer. The sample M for
which the estimated graph distance is the highest is supposed
to be owned by the farthest peer. A shortcut-request is routed
to these coordinates in the overlay, and the peer responsible



for it becomes the longest link of the routing table.
Then, P determines by dichotomy the coordinates MID

that belong to the segment [PM ] for which the estimated
graph distance is the half of the estimated graph distance
to M 8. A long-range request is routed to MID and the
process is repeated with the segment [P,MID]. Similarly
to Oscar, the process ends when one of the close neighbors
of P is reached (or when the wanted number of links has
been created).

If the process has ended without achieving the wanted
number of long-range links, a random member of S is
selected, and the process is repeated until the wanted number
of shortcuts is reached. At the end of the algorithm, the
peer has the wanted number of long-range links that are
distributed following an approximation of the d-harmonic
distribution.

Putting aside the cost of the density map maintenance
protocols, the rewiring process is extremely lightweight: all
estimations are done locally. Therefore it requires only one
routing process per long-range link. Since the number of
links to add follows log(n) and the routing process is still
efficient during the rewiring of a peer, the overall cost in
number of messages is expected to grow following log2(n).

V. EVALUATIONS

This section presents a detailed evaluation of DONUT. We
first describe the evaluation environment. Then, we compare
the long-range rewiring process of DONUT to state-of-the-
art rewiring techniques. Finally, the behavior of the map
maintenance algorithms is studied. All the systems have
been evaluated in PeerSim, a widespread discrete event
simulator [24].

A. Evaluation environment

To perform our evaluations, we use a bi-dimensional
keyspace. The keyspace forms a square, each side of which
is bound to the opposite side to ensure the modulo. We
choose to use a Delaunay triangulation topology to support
the keyspace. This choice is believed to be relevant because
1) the greedy routing algorithm is proven to work for all
Delaunay based topologies [13]; 2) such topologies are
already used by overlay designers [15]; 3) the triangulation
is generalizable to higher dimensions.

The environment of our simulation is dynamic: peers join
and leave the overlay. We use both real and synthetic traces.
Our synthetic churn model follows an exponential law for
disconnections and a Poisson law for joins. This model
is widely used in the literature to simulate the availability
of electronic components. The parameters of the two laws
are bind to ensure a roughly constant overlay size. In our
evaluations with that model, we vary the mean session time
of peers from 10 minutes to 6 hours. The mean session times

8I.e., the segment [PM ] is divided in two semantically equal parts. If the
graph distance of the semantic middle is less than half of the graph distance
to M , the second interval is taken, and so on.

we observed in the peer-to-peer churn traces is bound by
these values.

Our semantic keyspace is formed by three high density
zones that contain 90% of the overall peer population. The
distribution of peers inside each density zone follows a
Zipf-law. The rest of the population is uniformly distributed
between the hotspots. Such distributions seem to be rather
common for existing keyspaces (see Section II). For in-
stance, this density distribution is shown to be comparable
to the population distribution of Second Life, a popular
MMOG [25].

In real life, the dynamicity of the environment impacts
the characteristics of the keyspace. When a peer joins the
overlay, it is inserted in the keyspace with new coordinates.
The coordinates may be defined by the overlay e.g., the
peer joins the most overloaded region, helping to support
the load. It is also possible that the coordinates are user-
defined (in a distributed game, the player chooses to join
a particular region). As the application load varies in time,
and popularity zones may evolve, the density of the semantic
keyspace changes over time. In order to study the adaptive
capabilities of DONUT, the coordinates of all the density
hotspots periodically change. The mean session time also
impacts the keyspace: once the hotspot coordinates have
changed, it determines the new hotspot growth-speed.

Finally, to make our simulations more realistic, we use:
• A matrix containing real-latency traces.
• Real-system churn traces.
We use real latencies that were measured by Madhyastha

et al. between 2500 hosts spread over the Internet [26]. We
use churn traces collected from several existing distributed
systems, such as Overnet [27] or Skype [1]. Traces of desktop
personal computer usage were also injected [28].

Since the latency matrix has 2500 entries, except for
Figure 4, all synthetic evaluations were performed with an
overlay size of 2500. We simulate one week of activity.
The gossip map-maintenance protocol period is set to ten
minutes, and is allowed to propagate 60 Kbytes to three direct
neighbors per period. For the propagation by lookups, each
lookup message may contain 10 Kbytes of map data. The
rewiring protocol occurs once per hour, and the coordinates
of all hotspots change once per 24 hours.

B. The rewiring process evaluation

We compare DONUT to several techniques of long-range
link construction, namely:
• Random approach: n coordinates are selected uni-

formly at random in the keyspace.
• Uniform Kleinberg approach: the log-partition algo-

rithm described in Section II is used, and the keyspace is
assumed to be uniform. Therefore, the graph distances
are supposed to be proportional to semantic distances.

• Near Optimal approach: the peer locally has a real-
time copy of the current topology. The estimated graph
distance equals the real graph-distance.



• Oscar: algorithm described in [11] (see Section II).
However, the original Oscar algorithm is designed for
one-dimensional keyspaces. Therefore, we have ex-
tended Oscar to our bi-dimensional keyspace.

Each time we measure the performance of the routing
process9. The evaluation shows that DONUT outperforms
all the strategies (except the Near Optimal one) by at least
20%.

A first important result concerns the Oscar strategy, which
exhibits poor results in our bi-dimensional keyspace. For
each measurement, Oscar had only slightly better results than
the random strategy. In particular, Figure 4 shows that the
number of hops during the greedy routing linearly grows with
the overlay size. The result is a bit surprising, because the
system performed well in one-dimensional keyspaces [11].
We believe that the problem comes from random walks used
by Oscar to sample the keyspace. This sampling technique is
successful only on graphs that have good expansion proper-
ties [10]. Flaxman showed that the graph used by Kleinberg
(a bi-dimensional lattice with d-harmonic shortcuts) is not an
expander. We believe that Delaunay graphs with d-harmonic
shortcuts are not expanders. This results in non uniform
sampling of the keyspace, skewing the estimation. Indeed,
when the random walks are replaced by a cheat mechanism
that uniformly picks random nodes from the node-set of the
simulator, Oscar shows much better performance.
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Figure 3. Mean route length as a function of the mean session time,
lower is better. Lower session time means higher churn.

Figure 3 describes the evolution of the route length while
varying the mean session time. We can see that the churn rate
has no significant influence on the Near Optimal, Uniform
Kleinberg and DONUT approaches. For the Near Optimal
technique, it happens because each peer locally has a real-
time graph of the topology and is therefore perfectly aware
of the topology for any churn rate. The Uniform Kleinberg
approach assumes the uniformity of the keyspace and thus
behaves the same way despite the churn rate increases. On
the other hand, the fact that the efficiency of DONUT does
not decrease shows that the map adapts itself on time and
is again accurate when the rewiring is performed. Figure 4

9Both latency and number of hops.
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Figure 4. Scalability test: Mean route length in function of the
overlay size.

shows that except the random strategy and Oscar, all the
rewiring processes scale well. The increase of the path-
length seems to be logarithmic for DONUT as well as for
the Uniform Kleinberg and the Near Optimal approaches.
Like in the other evaluation results, DONUT is the closest
to the Near Optimal approach, showing that most of the graph
distance estimations performed by DONUT are accurate.
The bad scalability of the random approach comes from
the fact that the coordinates of future long-range links are
chosen uniformly across the keyspace. The links are thus
likely to “miss” most of the density hotspots, increasing
the inefficiency of the approach. The positive impact of
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Figure 5. Evolution of routing latency with the Overnet trace.

the density map on the rewiring process is confirmed while
using real traces. Figure 5 shows the evolution of the mean
routing latency while using churn traces from Overnet. The
graph distance estimation provided by DONUT is almost as
efficient as the use of a real-time graph. One may notice
that DONUT is sometimes even better than the Near Opti-
mal strategy. However, the difference is very slight, and is
probably due to the standard deviation of the measurements.
Figure 6 recapitulates the average latencies and the standard
deviations for all the strategies while injecting the Overnet
churn trace.

C. Global map propagation evaluation
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Figure 7. Measurements of density map propagation. (a): Sent data per node in function of the mean session time; (b): Evolution of the
network load with the Overnet trace; (c): Cumulative distribution function (cdf) of mean routing latencies for an overlay of 2500 nodes.

Strategy Average Latency Standard Deviation
Random 464.5 41.1
Oscar 438.2 44.6
Unif. Kleinberg 370.2 31.8
DONUT 300.7 27.3
Near Optimal 295.6 18.9

Figure 6. Average latency and standard deviation (in milliseconds)
for all strategies with the Overnet trace and the real latency matrix

The first part of the evaluation showed that our density map
was helpful to the rewiring of the overlay. However, the
construction of a global map may seem to be a costly process.
Therefore, it is important to measure the network cost of
DONUT.

The coordinates and the size of each region are determin-
istically defined by the path in the tree from that region to the
root. One integer value is sufficient to store that information
for most of the paths. In addition to that, each leaf of the
tree stores a double value representing the density of its
region. For an 2500-node overlay and the density distribution
described above, the average quadtree contains 77 nodes and
232 leaves. As a regular quadtree node is stored on 4 bytes,
and a leaf is stored on 8 bytes the average quadtree size is
about 2.2 Kbytes only.

This size is comparable to other maintenance meta-
information such as for instance, bloom filters in PAST [6].
Moreover, a peer is able to control the fuzziness of the map in
order to optimize its size. A quadtree node is responsible for
a region formed by the union of its children’s regions. If the
densities of the subregions are equivalent, the children may
be suppressed and their mean density value may be affected
to their parent.

Figure 7.a shows the network load of DONUT mainte-
nance for the two different propagation strategies described in
Section III. We can see that the Lookup Propagation strategy
significantly increases as the session time decreases. This is
due to the fact that the information is propagated inside join
messages, which number increases with churn. Moreover, at
each step of the join-message routing, the forwarding node
adds its local information even if it has been already prop-
agated before. Therefore, the lookup messages are always

full of density information. For a mean session time equal
to 30 minutes, the network load of the propagation is of 0.6
Kbytes per second per node. This cost is still affordable,
and the approach does not require the implementation of
a dedicated dissemination protocol. For these reasons, the
lookup propagation may interest designers of systems with
mean session times below 30 minutes.

On the other hand, the modified gossip algorithm has a
near-constant network load because: 1) the protocol is not
related to join messages and 2) peers only propagate new
information: the gossip messages most of the time contain
much less information than the maximal allowed size. Thanks
to that, regardless of the churn rate, the network cost of
gossiping the density map is below 10 bytes per second per
node, which is very low.

Figure 7.b shows the evolution of the network load while
using the Overnet churn trace. Here again, the Lookup
propagation uses more bandwidth than the gossip algorithm.
Moreover, the lookup propagation strategy induces important
variations of the network load over time, which may be
harmful to the overlay. Results of evaluations with other real
churn traces are omitted due to a lack of space but exhibit
the same characteristics.

Figure 7.c has been realized by using the real latency
traces. It shows the cumulative distribution function of rout-
ing latencies. As expected, the Near Optimal strategy exhibits
the best distribution characteristics. This is due to the fact
that all peers have the same accurate local graph. DONUT
significantly outperforms the other techniques, approaching
the Near Optimal strategy10. The mean routing latency of
DONUT is less than 500ms for 67% of the peers. On the
other hand, only 0.006% have the same mean latency with the
random approach. The Uniform Kleinberg approach behaves
slightly better than random: 11% of the peers have less than
a 500ms mean routing latency, which is still much less than
DONUT. 98% of the peers implementing DONUT have a
mean routing latency less or equal to 1s, while less than a
half (45%) exhibit the same characteristics for the random

10In DONUT case, the lookup propagation and the gossip algorithm are
both equally efficient, so Figure 7.c makes no distinction between the two
strategies.



strategy. These values show that the propagation of the
density map is efficient for a large population subset. Thanks
to that, and regardless to their position in the keyspace, most
of the peers are able to build efficient shortcuts in the overlay.

VI. CONCLUSION

A growing number of distributed applications require a
support for efficient range querying. In range query overlays,
the uniformity of resource-key distribution is not guaranteed
and studies show that existing distributions are heteroge-
neous. Furthermore, the distributions evolve under the churn
impact. Providing an efficient routing service in such condi-
tions is difficult, because peers need to be locally aware of
the topology to accurately choose shortcuts in the overlay.
Existing solutions do no monitoring of the topology evolution
and are only able react when the routing performance drop.

We propose DONUT, a mechanism that builds a map of
the peer distribution and uses the map to create efficient
shortcuts in the overlay. DONUT’s map adapts itself to the
evolution of the distribution, providing to each peer a mean
to estimate graph distance to any coordinates of the keyspace.
Our evaluations show that: 1) Obtained shortcuts offer a
scalable routing process; 2) shortcuts built with the map
increase routing performance by more than 20% compared
to Uniform Kleinberg, thus approaching the near optimal
algorithm; 3) the density maps are extremely lightweight:
the mean map size is of 2.2 Kbytes only for 2500 nodes
and efficient map propagation consumes less than 10 bps of
bandwidth on each peer.

As for the DONUT’s perspectives, we believe that the
keyspace density map can be useful to other important
distributed system mechanisms such as reactive load balanc-
ing, network size estimation, optimized routing algorithms,
or global system monitoring. These applications will be
developed in our future work.
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