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ABSTRACT
With the advent of cloud architectures, virtualization has be-
come a key mechanism. In clouds, virtual machines (VMs)
o�er both isolation and 
exibility. This is the foundation of
cloud elasticity, but it induces fragmentation of the physical
resources, including memory. While each VM memory needs
evolves during time, existing mechanisms used to dynami-
cally adjust VMs memory are ine�cient, and it is currently
impossible to take bene�t of the unused memory of VMs
hosted by another host. In this paper we propose Puma, a
mechanism that improves I/O intensive applications perfor-
mance by providing the ability for a VM to entrust clean
page-cache pages to other VMs having unsused memory. By
reusing the existing page-cache data structures, Puma is very
e�cient to reclaim the memory lent to another VM. By being
distributed, Puma increases the memory consolidation at the
scale of a data center. In our evaluations made with TPC-C,
TPC-H, BLAST and Postmark, we show that Puma can sig-
ni�cantly boost the performance without impacting potential
activity peaks on the lender.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management

General Terms
Design, Experimentation, Performance

Keywords
Linux, Virtualization, Cooperative caching

1 Introduction
Clouds extensively use virtualization which forms the basis
to ensure 
exibility, portability and isolation. However, the
advent of virtualization tends to dramatically increase the
amount of unused memory. A physical node is partitioned;
its memory is split and distributed to multiple virtual ma-
chines (VMs). As it is very di�cult to predict the amount
of memory needed by an application, VMs memory is usu-
ally over-provisioned. The problem comes from the fact that
the amount of VMs memory is de�ned statically ; it is usu-
ally chosen among prede�ned con�gurations o�ered by cloud
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providers [Birke 2013]. On one physical host, the available
memory is thus fragmented among the hosted VMs, leading
to a global underuse of memory and inducing a huge extra
cost. Some VMs may lack memory while others could use
less without any (or only a little) performance degradation.
These VMs can either be hosted on the same physical node
or by di�erent ones. In this context, providing the ability
to pool unused memory at the scale of a data center would
improve the global performance.

Several research works aim at improving memory us-
age, like deduplication [Miller 2012, Mi l�os 2009, Wald-
spurger 2002], or at o�ering memory 
exibility like memory
ballooning [Hines 2009, Schopp 2006, Waldspurger 2002] and
hypervisor managed caches [Hwang 2014, Kim 2011]. How-
ever, these approaches exhibit severe limitations. Dedupli-
cation aims at optimizing only processes memory. Memory
ballooning provides the ability to re-dimension VMs memory
on a single host, but it was shown that it requires swapping to
disk memory pages to handle changing workloads over time
[Salomie 2013], which leads to a high response time. Finally,
hypervisor managed caches such as Mortar [Hwang 2014] or
XHive [Kim 2011] solve the problem of unused memory by
providing a shared pool of memory maintained by the hy-
pervisor, but assumes that: (i) VMs memory needs can be
correctly predicted so that it is not necessary to dynamically
resize it; or (ii) VMs memory can be dynamically resized
when needed without a negative impact on performance.

In this paper, we propose Puma, a system that is based on
a remote caching mechanism that provides the ability to pool
VMs memory at the scale of a data center. An important
property while lending memory to another VM, is the ability
to quickly retrieve the lent memory in case of need. Our
approach aims at lending memory only for clean cache pages:
in case of need, the VM which lent the memory can retrieve
it easily. We use the inactive LRU of the page cache to store
remote pages such that: (i) if local processes allocate memory
the borrowed memory can be retrieved immediately; and (ii)
if they need cache the remote pages have a lower than priority
the local ones.

We show through extensive experimentations that our ap-
proach allows input/output (I/O) intensive applications to
dynamically use free memory on remote VMs to boost their
performance. Our evaluation on the benchmarks TPC-C,
TPC-H, Postmark and BLAST using VMs localized either
on a same or on di�erent physical servers shows that:

� Puma can bring a 12% speedup by borrowing only
500 MB, and up to 4 times faster using 6 GB of re-
mote cache in the case of the TPC-C benchmark;

� Puma can retrieve borrowed memory quickly, up to 10



times faster than a ballooning-based approach;

� Puma is resilient to latency variations: by monitoring
the response time, it is able to decide if it should use
the remote cache or fall back on disk accesses;

� in presence of sequential workloads, it is hard to im-
prove performance, but Puma does not degrade it
thanks to a �lter that prevent Puma from using a re-
mote cache in such cases.

The rest of this paper is organized as follows. First, Sec-
tion 2 depicts motivating use cases for which Puma can bring
signi�cant improvements. Section 3 gives some background
information and details our remote cache design and im-
plementation. Section 4 presents the experimental results
obtained with Puma, then Section 5 shows the bene�ts of
Puma on the use cases presented in Section 2. Section 6
presents related works and outlines the main di�erences with
the Puma's approach. Finally, Section 7 concludes the pa-
per.

2 Motivating scenarios
To illustrate the bene�t of Puma we consider scenarios based
on discussions we had with our industrial partners1;2. In the
scenarios, a company runs a VM that can sometimes lent
some unused memory. For example, a medium size IT com-
pany may need to run a VM with a database-based busi-
ness activity and another one with revision control software
such as Git or a continuous integration server to manage its
projects source code. The business activity performs a lot
of I/Os and may take advantage of a large cache while the
continuous integration server has to allocate large amounts
of memory during clone operations.

To emulate the business activity, we used the TPC-C
benchmark con�gured to use 150 warehouses, which gives
a dataset size of roughly 15 GB. This VM is con�gured to
use 10 GB of memory. On the second VM, for sake of sim-
plicity, we use a Git server that mirrors the Linux kernel
repository to emulate a development activity. With such ap-
plications, each git clone command would temporary ge-
nerate a memory peak load. This VM is con�gured to use
4 GB of memory to support such kind of peak loads.

Scenario 1. In the �rst con�guration we consider, the
company has bought a powerful multi-core node on which it
runs the 2 VMs. Table 1 shows the response time of the git
clone operations. The response time for the con�guration
with full isolation (i.e., without any sharing mechanism) are
given by the baseline line.

In this con�guration, for which both VMs run on the same
physical host, one may want to use the state-of-the art auto-
ballooning approach [Capitulino 2013]. This approach pro-
vides the ability to signi�cantly enhance the business activity
latency by dynamically balancing memory of the VMs. How-
ever, as it was shown before [Hwang 2014, Salomie 2013],
if the VM running the Git software suddenly needs a large
amount of memory it will be slowed down. As shown in
Table 1, 3 concurrent git clone operations take more than
twice the time they use to take in the full isolated con�gura-
tion3. The 4 GB VM has trouble to retrieve memory lent to
the 10 GB VM. In Puma, we detect the need of memory to
quickly retrieve the pages that were lent to the TPC-C VM.

1http://www.nuage-france.fr/
2http://en.oodrive.com/en/
3This experiment is presented in details in Section 5.

TPC-C 1 Git 3 Git

baseline 3.354s 215s 204s
Auto-ballooning 0.123sa 339s 447s

Puma 1.186s 184s 251s

aThe TPC-C VM was killed during the git clone due to out
of memory.

Table 1: Automatic ballooning response time.

Scenario 2. We now consider another con�guration in
which a bigger company runs its own private cloud, or rents
several nodes from a cloud provider. The company uses a
10 GB of memory VM to host its business activity, as in the
previous case. It also has another 10 GB of memory VM that
can be used as a spare VM if the �rst one fails. Meanwhile,
this VM can let the 10 GB VM use its memory to extend
its cache if needed. In that case, the memory ballooning
approach is not an option anymore: it can only work for
VMs running on a same physical host.

In this paper, we show how Puma can enhance the per-
formance of one VM by allowing it to borrow another VM's
memory to extend its cache without slowing down the other
VM memory allocation. We also demonstrate its ability to
operate both locally (for VMs running on top a one physi-
cal node) and remotely (for VMs running on di�erent hosts
connected through a high speed network).

3 System Design
The basic principle of Puma is to allow any cluster node to
bene�t of the memory of any other node to extend its cache.
Puma is designed using a client/server model, where a client
node may use available memory on a server node. Any node
can become a Puma client or a Puma server, and this can
change among time depending on the memory needs. How-
ever, it does not make sense for a node acting as a client
to also act as a server at the same time. This section �rst
gives the necessary background, and then it describes Puma's
design, discusses the technical issues, and outlines its imple-
mentation.

3.1 Background
Virtualization. Virtualization enables multiplexing the

computing resources of a physical server. A hypervisor
[Barham 2003, Kivity 2007, Velte 2010, Waldspurger 2002]
runs on a physical host and is responsible for managing Vir-
tual Machines (VMs). VMs can run guest operating systems
without any modi�cations, i.e., in full virtualization, but it
involves a performance degradation. Paravirtualization is a
virtualization technique that presents speci�c interfaces to
the virtual machines in order to reduce the virtualization
overhead. Paravirtualization is especially useful to improve
(I/O) performance.
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Figure 1 shows a typical virtualized con�guration with 2
hosts. Each host runs two guest operating systems on top of a
hypervisor (e.g. KVM), with a paravirtualized network (e.g.
virtio). Using a paravirtualized network improves the overall
network performance, but it also allows guests running on
a same host to communicate through a high performance
paravirtualized network.

Page cache. To enhance �le access performance, operat-
ing systems keep the data read from disk in a cache called a
page cache. In the Linux kernel, these pages are stored into
a per-inode radix tree. Page cache pages are often called
�le backed pages because there always exists a corresponding
image on disk. When the system load is low, most of the
memory is �lled by pages from the page cache. When the
system load increases, the memory is �lled mostly by pro-
cesses pages, the page cache is thus shrunken to make room
for the active processes. The process pages are called anony-
mous pages, i.e., pages that are not �le backed. In Figure 1,
we show the anonymous pages (a) and �le backed pages (b)
for each VM.

Page frame reclaiming. When there is a need for me-
mory, for instance when a process tries to allocate memory
or when the kswapd kernel threads wake up, the Page Frame
Reclaiming Algorithm (PFRA) of the Linux kernel frees some
memory pages. To do so, both anonymous and �le backed
pages are linked together into two LRU lists. The PFRA
chooses victim pages to evict from memory. Most of the
time, clean �le-backed pages are evicted if possible because
doing so is inexpensive: they have an identical version on
disk and thus they just have to be freed. If page cache pages
are dirty (i.e., modi�ed), they must �rst be written to disk.
When anonymous pages are evicted, they also have to be
written to disk into the swap space.

3.2 Design Goals
Puma's main goal is to pool VMs unused memory for the
bene�t of other VMs having I/O intensive workloads. We
chose to handle only clean �le-backed pages through Puma

for the following reasons:

� If processes running on the server need to allocate me-
mory, the clean �le-backed pages of the client can be
removed without any synchronization.

� Writes are generally non-blocking, because writing
dirty pages to disk can be deferred, thus there is no
performance improvement to expect in handling writes
into the cache. In contrast, reading a block from disk
is blocking and as slow as disk latency.

� Managing dirty pages into a cooperative cache is com-
plex because consistency issues have to be handled in
case of failure. Having such an overhead without per-
formance increase is useless.

As we choose to handle only clean �le-backed pages, fault-
tolerance is straightforward since it is only necessary to de-
tect the failure of a Puma node. If a node crashes, an up-
to-date version of the pages remains available from the disk.
Hence, we consider that fault tolerance is out of the scope of
this paper.

Finally, Puma should be designed such that it can be used
with any �le system, block device or hypervisor.
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3.3 Puma Design
We want our cooperative caching mechanism to be general,
usable with block devices, but also by distributed �le sys-
tems. A straightforward method to build a low-level coope-
rative cache is to build a virtual block device on top of a real
one. The virtual block device can thus catch every attempt
to read from the disk, i.e., every miss from the page cache. It
can then make a lookup into the cooperative cache to try to
�nd the missing data. However, even if this solution is simple
and elegant, it severely limits the scope of the cache to block
devices only, and thus prevents distributed �le systems from
using it.

We prefer to adopt a more general approach. To do so,
we have to catch directly misses and evictions from the local
native page cache as shown in Figures 2 and 3 where VM1

and VM2 act as a client and a server respectively. Each
miss from the page cache can lead to a get operation while
evictions lead to put operations.

Get operation. In case of a miss on a clean page in the
local cache (step 1 of Figure 2), Puma checks in its local
metadata catalog if this page has been sent to the server (2).
This metadata catalog, maintained by the client, stores the
ids of the pages that have been sent to the server during a
put operation in order to avoid sending useless get requests
to the server. Thus Puma sends a request to the server (3),
only when the page id is present in the metadata catalog.
Then, the server sends back the page (4).

Put operation. When a victim page is chosen by the
PFRA in order to free some memory (steps 1 and 2 of Fi-
gure 3) it may induce a put operation (3) if Puma decides
it is worth if (according to the mechanisms described in sec-
tions 3.3.2 and 3.3.3). Then, Puma copies the page to a
bu�er while the freed page can be given back (4). Finally,
the page is sent to the server to store it (5).



3.3.1 Dealing with the memory
While implementing the get and put operations, it is neces-
sary to take memory contention into account. Indeed, the
put operation is called when the PFRA tries to solve a lack
of free memory. However the put operation needs memory,
at least to allocate the necessary data structures to send the
page, such as network bu�ers or local metadata. The put
operation should avoid allocating memory; this could lead
to make the PFRA trying to free some more memory pages,
leading to another call to the put operation, and so on. In
practice, this would end in a put failure: the evicted pages
will not be sent to the remote cache (however, this remains
correct since Puma only puts clean, �le-backed pages in the
remote cache).

To take into account the memory contention and to in-
crease the global performance of caching, Puma is based on
the following principles.

Preallocation of request bu�ers. We strive to send
the pages to the remote cache to give more chance for a
remote cache hit. To increase the probability that a put will
succeed, all the memory needed to handle requests is taken
from a preallocated pool of memory. Thanks to this, we do
not add pressure on the PFRA.

Aggregation of read-ahead get requests. To avoid
blocking processes each time a page is read, we aggregate all
the pages of the read-ahead window together within a single
get request sent to the server. Therefore, we have only one
blocking request operation for all these pages. Thanks to this
approach we bene�t from the existing read-ahead algorithm.

Aggregation of put requests. The memory reclaim
path generally chooses tens of victim pages to reduce the
number of calls to the PFRA. Sending tens of messages is
not very e�cient and consumes the memory we are trying to
release. To avoid the creation of many small messages, we
use a per-process message bu�er to merge messages together.

3.3.2 Dealing with response time
Puma relies on short response times. To avoid a performance
drop Puma monitors the latency and, in case of high latency,
it stops using the server and falls back on disk accesses.

To monitor the latency, Puma nodes periodically exchange
ping messages. They compute both a short-term Lshort (the
last 15 seconds) and a long term moving-average latency
Llong. The �rst one is used to detect a latency peak, and
the second one to measure the average latency.

When one of these averages reaches a certain threshold,
the Puma node stops sending put or get requests to the other
node and falls back on disk accesses. When the latency gets
below another threshold, the Puma node starts sending put
or get messages again. We use di�erent thresholds to provide
some hysteresis. We provide an analysis of this mechanism
in Section 4.5.

3.3.3 Dealing with sequential workloads
Disks usually support a bandwidth of hundreds of MB/s,
which might be higher than the network bandwidth available
to Puma. Moreover, such accesses are generally prefetched,
which means that disk access latency is amortized. In such
cases, Puma might slow down an application which does se-
quential I/Os. To avoid a performance drop with this kind of
I/O pattern, we introduced an optional �lter to Puma. The
�lter aims to avoid using the remote cache for sequential ac-
cesses and to focus only on random accesses.

When this option is enabled, Puma detects sequential ac-
cesses from disk, and tags the corresponding pages such that,
when they are evicted from the local cache Puma does not
send them to the remote cache. The bene�t of the �lter
option is twofold:

� the corresponding pages are not sent to the cache, this
means that we avoid the overhead due to a large put ;

� on a second access on these pages, they are not present
into the remote cache and can be retrieved e�ciently
from disk; hence Puma will not slow down the applica-
tion by fetching them from a remote node.

The �lter option is analyzed in details in sections 4.3 and
4.4.1.

3.3.4 Caching Strategies
In this section, we present two di�erent caching strategies
that we have implemented for Puma.

Exclusive. With the exclusive strategy, when a client re-
quests a page, it is removed from the server's memory. This
strategy does not require maintaining di�erent copies of a
same page. Moreover, since the remote cache is used in ad-
dition to the system one, the total available cache size is the
sum of the size of the local cache and the size of the remote
one. However, this strategy will make a client send a same
page to the server many times, particularly in workloads with
frequent read requests.

Non-Inclusive. The non-inclusive strategy aims at re-
ducing client and network loads in read dominant workloads.
In our implementation, the server keeps pages in its memory
even when they are sent back to a client. Thus, hot pages
remain in the server memory. This may prevent the client
from needing to send this page again to the server if it is later
chosen as a victim page. In contrast to a strictly-inclusive
caching strategy, a non-inclusive [Jaleel 2010, Zahran 2007]
caching strategy is a strategy where the inclusion property is
not enforced. Thus, the total cache size available is closer to
the exclusive strategy, while with a strictly-inclusive strategy
it would be the max between the size of the local cache and
the remote one.

3.4 Implementation Details
We implemented Puma in the Linux 3.15.10 kernel. Most
of our implementation is �8,000 lines of code inside a kernel
module. A few core kernel changes are necessary: �150 lines
to the memory management subsystem and �50 lines to the
virtual �le system layer.

3.4.1 Metadata management
A client keeps track of meta-information sent to the server in
a radix tree. Clients maintain a small amount of metadata
for each page cached by the server to handle consistency and
to be able to check locally if a given page is stored by the
server. This metadata includes some bits (i.e., present, busy)
to know whether or not the page is into the cache or if a page
is being sent. More bits might be used to locate the Puma
node where the page was previously sent.

Overall, for each page (4 kB) stored in the remote cache, a
client needs to keep only a few bits embedded into a single 64
bits integer, which means that we only need 2 MB of memory
(amortized) on client side to manage 1 GB of memory in the
remote cache. Moreover, a client has always the possibility
to reclaim the memory used by the metadata; in this case, it
invalidates the corresponding pages on the remote cache.



3.4.2 Server side implementation
A server o�ers its free memory to the remote cache. It han-
dles requests from a client. Pages on a server are stored
into an in-memory tree and linked together into the system
LRU lists and are accounted as inactive page cache pages.
Thus, remote cache pages reclaiming works in the same way
as local pages. However, as remote cache pages are added to
the inactive LRU list, if a process on the server VM needs
memory, either for caching I/Os or to allocate anonymous
pages, remote cache pages will get evicted before local pages.

3.4.3 Non-inclusive cache consistency

Clients only act on clean pages4 and we have no means to
detect if a given page has been modi�ed since the last time
Puma fetched it from the server. This means that the server
may have an old version of a modi�ed page, in which case
the client has to send it again to the server, even if it detects
that the page is already stored by the server. To solve this
problem, we chose to add a dirtied 
ag to each page, in
addition to the existing dirty bit, in order to catch every
time a page is set dirty. We can then check this dirtied 
ag
when the page is evicted from the page cache.

Moreover, due to bu�ering a dirtied (i.e., updated) page
may be queued into the message bu�er while a process is
trying to get that page (as Puma bu�ers pages to be sent to
the server). This may lead to a scenario in which a request
for the page reaches the server, potentially storing an old
version of the page, before the page itself. We solve this
race condition by adding a busy synchronization bit on the
metadata.

4 Evaluation
In this section, our objective is to evaluate how Puma be-
haves in various situations. First, we describe the experi-
ment setup; then we evaluate the raw performance of Puma
with micro and applicative benchmarks and we analyze the
bene�t of both caching strategies. Then, we compare the per-
formance of Puma with SSD caching, and we analyze how
Puma is able to dynamically reclaim memory when needed.

4.1 Experiment setup
4.1.1 Setup
All the experiments were run on the high-end Paranoia clus-
ter from the Grid'5000 platform [Bolze 2006], where each
node is a 2 � 8 cores Intel Xeon E5-2660v2, with 128 GB
of memory and a 10 Gb/s Ethernet card. These nodes also
have 5 600 GB SAS disk, that we con�gured in RAID0.

We deployed the benchmarks on VMs under the Linux
KVM [Kivity 2007] hypervisor that we con�gured according
to best practices [IBM 2010]. Each VM uses 2 virtual CPUs
with the ext4 �le system, and all I/O are done through the
Virtio [Russell 2008] paravitualization framework. Each ex-
periment is done on a freshly booted VM after a warm-up
phase long enough to �ll the system page cache and the re-
mote cache. We run each experiment 10 times and then we
compute the average and the con�dence interval using the
student's t-distribution with a 95% con�dence level. We al-
ways observed a small standard deviation.

4.1.2 Workloads
We used the following benchmarks in the experiments:

4Dirty pages are written to disk before put() is called.

Random reads workload: we use the random reads
workload from the Filebench5 benchmark. This workload
starts one thread reading from a single �le at non-aligned
random o�sets. We con�gured it to use a 4 GB �le with a
read size of 4 kB. We measure the number of completed I/O
per second.

Sequential reads workload: we use the sequential reads
workload from the Filebench5 benchmark. This workload
reads a single 4 GB �le multiple times from the beginning,
and reports the resulting bandwidth (MB/s).

Scienti�c workload: BLAST [Altschul 1990] is a bioin-
formatics tool used to �nd regions of similarity between
a query sequence and a database of sequences. Basically,
BLAST scans the database to �nd sub-sequences which are
similar to the query. A large part of the I/O pattern gener-
ated by BLAST is sequential. For our experiments, we used
the patnt database, which is roughly 3 GB in size. We ex-
tracted 5 sequences of 600 characters from this database, and
we measure the runtime needed to �nd similar sequences in
the database.

Write-intensive workload: Postmark [Katcher 1997] is
a benchmark which measures the performance of �le systems
over a workload composed of many small �les, typical of e-
mail services. This workload can generate a mix of data and
metadata operations, and is thus composed of many small
writes to the �le system. Postmark de�nes a transaction as
a read or an append to an existing �le, followed by a �le
creation or deletion, and reports the number of completed
transactions per second. We use an unfriendly con�gura-
tion of Postmark where more than 80% of I/Os are writes.
We con�gured Postmark to generate 20; 000 transactions on
25; 000 �les. We chose �le size ranging from 512 bytes to
64 kB to generate a working set of around 3.5 GB. Files are
distributed among 10 subdirectories. I/Os are unbu�ered
and done with 4 kB I/O size. We con�gured postmark to ge-
nerate transactions with the same ratio of reads over append,
and with the same ratio of creations over deletions.

Database workloads: we use TPC-H 6 and TPC-C 6 as
database benchmarks. Both of them were run on the version
9.3.1 of the PostgreSQL database server.

The �rst one de�nes a set of 22 complex business-oriented
ad hoc queries and concurrent data modi�cations. Most of
the workload is read-only. It models queries executed in large
scale enterprise that examine large volume of data to give
answers to critical business questions. We con�gured it with
a scale factor of 3, giving a data set size of around 3 GB. TPC-
H reports a throughput in terms of number of completed
queries per hour.

TPC-C simulates a complete computing environment of an
online transaction processing marker. We con�gured it to use
40 warehouses, giving a data set size of roughly 4 GB. TPC-C
measures the number of \New-Order" transactions executed
per minute and reports their response time. In our evalua-
tion, we only consider the response time (90th percentile) of
this transaction.

4.1.3 Metrics
In all the experiments we used the previously described
benchmarks to evaluate Puma. To this end, we vary the size
of the available Puma cache and we compute their speedup
relative to a 1 GB VM with no additional cache. Thus, we

5http://filebench.sourceforge.net
6http://www.tpc.org

http://filebench.sourceforge.net
http://www.tpc.org


(a) Number of gets (b) Number of puts

Figure 4: Number of gets/puts for the random read bench-
mark.

used 2 VMs for Puma: VM1, where the I/O intensive bench-
marks runs, which has 1 GB of memory; and VM2, which
o�ers its free memory to VM1 through Puma.

4.2 Random reads and caching strategies
In this section, we study the random reads benchmark perfor-
mance and show Puma's exclusive and non-inclusive caching
strategies behavior.

With a random read access pattern, the hit ratio grows
linearly with the available cache. However, as the Figure 5a
shows, the performance of the cache depends on the access
time of the slow device (in case of a miss). For instance, 1%
of misses is enough to drop the performance. This is why we
observe a threshold e�ect when the entire working set �ts in
the cache.

To analyze the bene�t of each caching strategies, we study
the number of pages sent to (put) and fetched from (get) the
remote cache of this benchmark.

Figure 4a shows the number of get per I/O of the random
read benchmark. The average number of pages get from the
remote cache increases linearly with the memory available
for caching. We see that the exclusive strategy does more get
requests (i.e. remote hits) than the non-inclusive one until
the whole working set �ts in the cache. This is consistent with
the performance results in Figure 5a, where the exclusive
strategy is better than the non-inclusive one because the total
cache size available is higher.

Figure 4b shows the number of puts per I/O for the ran-
dom read benchmark. With a non-inclusive strategy, we ob-
serve that the number of pages sent to the remote cache
decreases as the cache size increases, while it remains con-
stant with the exclusive strategy. This is because this bench-
mark is read-only, which allows the non-inclusive strategy to
avoid sending back pages which are already present to the
remote cache. However, as the Figure 5a shows, the exclu-
sive strategy performs better than the non-inclusive one until
the entire working set �ts in the cache, which illustrates the
overhead of Puma's put operation.

4.3 Filtering sequential I/O
In this section, we analyze the performance of the sequential
reads benchmarks, and we show that with the �lter option,
Puma is able to detect sequential patterns to avoid a negative
impact on the performance.

As the nodes we are using high performance SAS disks
con�gured in RAID0, it is hard to improve the performance
of a sequential I/O pattern. This is con�rmed by the perfor-
mance results of the sequential reads benchmark presented
in Figure 5b. First, we can see that Puma is thrashing un-
til the whole �le can �t in the cache, thus we always pay
the price without any bene�t. Next, when the cache is large

(a) Average read/transaction (b) Average writes/transaction

Figure 6: Accesses to block device with Postmark.

enough, the exclusive strategy does not help because half of
the network bandwidth is used to send the pages to Puma,
while with the non-inclusive strategy the pages stay in the
cache.

However, when the �lter option is enabled, sequential ac-
cesses are detected and go directly to the disk so that Puma
does not slow down the accesses.

4.4 Applicative benchmarks performance
4.4.1 BLAST: partially sequential workload
As we saw for the sequential reads workload, it is di�cult
to improve I/O performance for a sequential pattern due to
cache thrashing and amortized disk latency. As expected,
the speedup of BLAST presented in the Figure 5c shows that
Puma with no �lter option degrades the performance of the
application if the database does not �t in cache. However,
when the cache is large enough, Puma is able to improve the
performance of BLAST up to +30%.

Surprisingly, if we enable Puma's �lter option, Puma is
able to improve the performance up to +45%. This is due to
the fact that, as we explained in section 3.3.3, the �lter option
has a double bene�t: (i) the application is not slowed down
due to the higher bandwidth of the storage device compared
to the network bandwidth, and (ii) we give more room to
quickly send random get requests by not overloading Puma's
message queues.

4.4.2 Write-intensive workload
Postmark is designed to simulate the workload of applications
like e-mail services that makes an intensive use of writes,
which could be a worst case for a read-only cache like Puma.
However, as the Figure 5d shows, Puma can still improve the
performance even if it is not designed to handle dirty pages:
a small amount of cache is enough to get around 10% of
performance improvement. We can improve the performance
up to 3 times compared to the baseline when all the dataset
�ts in cache.

To understand how Puma can improve write intensive
workloads, we report the number of I/O sent to the block
device per transaction executed into the Figure 6. As ex-
pected, we observe that Puma reduces read accesses (Fi-
gure 6a), however we can see that it also reduces the number
of writes (Figure 6b). This phenomenon is due to the fact
that in this benchmark, writes are bu�ered, thus they are
sent to the block device if the PFRA needs to 
ush them to
free memory. However, as it takes time to write data, the
PFRA has to reclaim clean pages �rst. Thus, by increasing
the cache size, more writes can be delayed, which reduces
the I/O load. With Puma, clean pages are sent to the Puma
node, which gives more memory to delay the writing of dirty
pages.



(a) Random reads. (b) Sequential reads. (c) BLAST.

(d) Postmark. (e) TPC-H. (f) TPC-C.

Figure 5: Speedup relative to a 1 GB VM obtained with various benchmarks and applications: (a) 4 kB random reads, (b)
sequential reads, (c) BLAST, (d) Postmark, (e) TPC-H and (f) TPC-C.

4.4.3 Database workload
The TPC-H and TPC-C benchmarks are highly concurrent
I/O workloads that are very dependent on cache size. As the
Figures 5e and 5f show, Puma is able to improve the perfor-
mance of both of them even with a small cache size: at least
+5% for TPC-H and +12% for TPC-C. The concurrency of
these benchmarks can be observed by the exclusive caching
strategy with the �lter option enabled that reaches its limit
very quickly. This is due to the combination of two factors:

� Most of the I/Os are a mix of random accesses and
medium sized sequences. With the non-inclusive stra-
tegy (with �lter), once a page is accessed randomly, it
stays in the cache even when it is accessed a second
time sequentially. In the case of the exclusive strategy
(with �lter), pages are removed from the remote cache
when accessed.

� Sequential accesses are not as fast as in the sequen-
tial read benchmark or the BLAST application because
multiple concurrent streams generates concurrent se-
quential I/Os that involve a lot of disk seeks. Hence,
such I/Os are more subject to a performance improve-
ment.

4.5 Resilience to network latency
In this section, we show that network latency is a critical
issue and that Puma is able to control itself to avoid a nega-
tive impact on applications performance. To show the prob-
lem, we used Netem [Hemminger 2005] to inject network la-
tency between Puma nodes, and we measure the speedup of
the benchmarks with Puma relative to a 1 GB VM without
Puma (as in previous sections). Figure 7a shows the results
of these experiments.

As we can expect, most of the overall speedup of the ap-
plications with Puma decreases as the network latency in-
creases. Benchmarks that are the most I/O intensive are
slowed down compared to the baseline: Postmark perfor-
mance is reduced with an additional network latency of

500�s, 1ms is enough to slow down the sequential read bench-
mark, and TPC-C response time skyrockets o� the chart with
more than 1:5ms.

Figure 7b shows the results of these experiments with
Puma latency management mechanism enabled. We con-
�gured (empirically) Lshort to [1:5ms; 40ms] and Llong to
[1ms; 1:5ms]. Overall, we observe that this mechanism helps
Puma to not slow down applications performance in case of
high latency. The only notable exception is Postmark with
500� of network latency, where in this case Tshort and Tlong
need to be more aggressive.

4.6 Comparison with SSD caching
In this section, we compare Puma's performance against SSD
caching.

For these experiments, we used a Samsung 840 Pro 128GB
with the dm-cache module from Linux kernel. dm-cache is a
device-mapper target which creates a virtual block device on
top of both a real device (HDD) and a cache device (SSD).
Basically, when an I/O is issued to the virtual block device,
dm-cache �rst tries to execute this I/O on the cache device.
We con�gured dm-cache inside a VM to use a 5 GB cache
device backed by the SSD, i.e., the working set of our bench-
marks �ts in the cache. We also run Puma with a non-
inclusive strategy and 5 GB of remote cache.

The results of these experiments are presented in table 2.
These results show that under random read workloads, Puma
performs much better than a SSD cache, while we expected
to have more or less the same result from both. The reason
is that the virtualization overhead is a known issue [Har'El
2013], especially for I/O: while we got around 150�s latency
between VMs for Puma, which is pretty high, we measured
more than 200�s of access latency to the SSD from the VM.

With BLAST, since it has a sequential pattern, the SSD is
not impacted by the latency, and the SSD cache is roughly
as fast as Puma.

TPC-H generates a mixed sequential/random workload
with writes. With this benchmark, Puma is still faster than
the SSD cache, but since we do not handle writes and writes



(a) Puma without latency management. (b) Puma with latency management.

Figure 7: Speedup and slowdown (logarithmic scales) of benchmarks with latency injection between VMs, without (a) and with
(b) latency control support.

Random read (IO/s) Postmark (T/s) BLAST (s) TPC-H (throughput)

baseline 166 64.7 42.3 248
Puma 6310 100.5 17 791

dm-cache 3250 695.2 21.3 566

Table 2: Performance comparison between SSD caching and Puma, both with 1 GB of local memory and 5 GB of additional
cache.

to an SSD are much faster than writes to a magnetic disk,
the gap between the SSD cache and Puma is reduced.

Finally, with Postmark, as we could expect the SSD cache
is much faster than using Puma since we do not handle
writes, and thus we have to write them to a slow HDD. It
shows us the cost of writes into the HDD: dirty pages are
all eventually written to the slow HDD, while with an SSD
cache, which is persistent, they can only be written to the
SSD. To summarize, SSD caching performs well under write
workloads and it's even better to commit writes to an SSD
than to delay them in memory.

4.7 Dynamic memory balancing
In this section, we evaluate Puma's dynamic memory man-
agement, which is detailed in Section 3.4.2, then we measure
its impact with varying workloads compared to a memory
ballooning approach.

We deployed the random read benchmark described in Sec-
tion 4.1 with a 64 KB block size on a VM with 1 GB of
memory. Another VM with 4.5 GB is available for caching
with Puma's non-inclusive strategy. On this second VM, we
inject a memory workload after 10min, which consists on al-
locating small chunks of memory each second, emulating an
application need for anonymous memory. The size of the
chunks is chosen such that all the memory of the VM is allo-
cated in 10min. We write into each allocated memory chunk
to ensure that the pages are really mapped into the VM.
Then, this benchmark sleeps for ten minutes before freeing
the allocated memory in a few more minutes.

We measure the memory consumption and the cache activ-
ity for both VMs. On the �rst VM we also measure random
reads performance, and on the second we study the latency
of each memory allocation.

Figure 8a shows the memory usage of the client VM run-
ning the random read benchmark. We observe that when
the server reduces its cache size, the memory used for lo-
cal caching increases. This is due to the fact that there is
less metadata to store on client side (the metadata being

used to recall which pages are stored remotely) freeing some
memory that can be used for caching. Before starting the
memory allocation workload on the server side, the amount
of local memory used for caching is stable. However, when
the memory workload starts (at 10'), this amount of me-
mory is more variable because the remote cache is reducing
the available memory for remote-caching, and thus the entire
working set (4 GB) does not �t in cache and the client, using
the non-inclusive strategy, has to send pages to the remote
cache.

Figure 8b shows the memory usage of the VM which of-
fers the Puma remote cache. At 10', it starts the memory
workload and, dynamically, reduces the remote cache size to
allow pages of the memory intensive process to be allocated.
When this process frees its memory, the memory is immedi-
ately available again for the bene�t of the other VM. Note
that, as explained in section 3.4.2, Puma links remote cache
pages directly into the system LRU to improve memory re-
claiming and that they are accounted as cache pages. This is
why the cached memory curve is high when the VM stores re-
mote cache pages, while it drops when the memory workload
starts.

Figure 8c shows the performance of the random read work-
load. Before the Puma remote cache node starts the memory
workload, all the data set �ts in the cache (local+remote)
and the performance is at its maximum. When the memory
workload starts, the performance quickly collapses, because,
as we saw in Section 4.2, only a few disk accesses are enough
to slow down such kind of workload. When the memory
workloads frees the memory on the remote cache node, the
remote cache is progressively �lled, which increases the hit
ratio and the performance.

We report on the Figure 9 the latency of each memory
allocation for a con�guration using KVM memory auto-
ballooning and for Puma. We also report these values for
a single VM with 4.5 GB of memory (ideal). With this con-
�guration, memory allocations take less than 1ms, with a
standard deviation of 0.1.



(a) Client side memory (b) Server side memory (c) 64KB random read workload with vary-
ing memory load on server side.

Figure 8: Memory usage with dynamic memory management and varying memory load on server side.

(a) Ideal (b) Ballooning (c) Puma

Figure 9: Memory allocation latencies.

With dynamic memory ballooning, memory allocations
take 20ms on average, with a standard deviation of 76 (some
values, not represented in this �gure, are above 1s). This is
because the VM running the random read benchmark took
all of the memory for its own cache, and it is not possible to
de
ate the balloon of the VM running the memory workload
without swapping. This is due to the semantic gap between
the hypervisor and the VM: the host does not know that the
memory is used for caching and can be reclaimed.

With Puma, the logic is embedded inside the VMs, and
we are able to get back the memory used for caching without
the need of the hypervisor. In average, we measure 1:8ms of
latency for memory allocations, with a standard deviation of
2:2.

5 Back to the scenarios
In Section 2 we presented 2 scenarios in which existing so-
lutions are either non-e�cient (locally) or non-existent (re-
motely). In this section, we show that Puma is able to dy-
namically use free memory of other VMs, hosted locally or
on another host, to improve the performance of I/O intensive
applications, without impacting potential activity peaks.

5.1 Co-localized VMs
In our �rst case study presented in Section 2, we show how
Puma can be used to improve the performance of consoli-
dated applications into a single server. The results of these
experiments are presented in Table 1. As we can see, au-
tomatic ballooning helps to improve the performance of the
TPC-C response time. However, it cannot return the me-
mory to the Git VM because of the semantic gap: most of
the memory used by TPC-C is for caching purpose and could
be reclaimed with almost no overhead. This leads to a huge
performance drop of the Git VM (219%). With Puma, the

Figure 10: Available memory on the git server with Puma

and auto-ballooning. While it is idle, all the memory of the
VM is used for the bene�t of the TPC-C VM. On activity,
Puma quickly reclaims the memory lend to the other VM.

performance of the TPC-C VM is still improved (282%), but
not as much as automatic ballooning. The performance of
the Git VM is still impacted (23%), but it is much more
acceptable than what we observe using the auto-ballooning
approach.

To explain why automatic ballooning fails, and how Puma

is able to succeed, we report the amount of memory avail-
able to the Git VM in both cases in Figure 10. With Puma,
we represent the amount of free memory available into the
VM, minus hosted remote cache pages, while we report the
amount of available memory (i.e. memory hot-plug) in the
auto-ballooning. For the �rst part of these curves, almost no
memory is available: free memory is either used for remote
cache pages (Puma) or directly given to the other VM (auto-
ballooning). In the second part of these curves (1'30\), the
git clone has started and the Git server has to allocate me-
mory. In the case of Puma, the memory is quickly reclaimed
and the application can progress. Using the auto-ballooning
approach the host is not able to reclaim the memory used
by the TPC-C VM, and it has to swap to give the memory
needed by the Git VM, which is a very slow process. These
results are consistent with what we have observed in the pre-
vious experiments (Figures 8b and 9). When the activity of
the Git VM stops, Puma starts o�ering again free memory
to the TPC-C VM.

5.2 Distributed setup
As described in Section 2, the second scenario represents
a bigger company which has multiple physical servers in a
data center, interconnected with a high performance net-
work, such as 10 GB Ethernet. On the �rst node, we de-
ploy a VM with 10 GB of memory and we run a database



Figure 11: Puma speedup with VMs on di�erent nodes.

benchmark as in the previous section. On the second node,
we deploy a spare VM with 10 GB of memory, which can be
used in case of a failure of the �rst VM. Thus, until there
is a failure, the spare VM can o�er its unused free memory
to the main VM, by using Puma and the 10 GB Ethernet
link. Obviously, we cannot reproduce these experiments with
the automatic ballooning approach, as such solutions do not
work among multiple nodes.

The results of this experiment are presented in Figure 11.
We also presents the results for the TPC-H benchmark with
10 + 10 GB of memory, and we reproduce the results of the
other benchmarks that we presented in Section 4.1 in their
8 GB con�guration. Surprisingly, overall performance in a
distributed setup is close to the performance in a local setup.
However, as we already explained I/O virtualization is still
slow, and the use of a high performance network only add
tens of �s of latency.

6 Related Work
Many research e�orts have considered the problem of how
to improve VM memory usage in clouds. Most of these ap-
proaches provide the ability to share memory among multiple
physical machines, but only few of them focus on how to op-
timize the usage of the \unused" memory (i.e., �le backed
pages). In this section, we brie
y present these approaches
and explain how our solution di�ers.

Memory ballooning. Memory ballooning [Barham
2003, Schopp 2006, Waldspurger 2002] is a memory balanc-
ing technique, it allows a hypervisor to dynamically resize the
physical memory it gives to the hosted VMs. To do so, it in-
structs a guest to in
ate a balloon, which pins memory pages
within the guest. To increase the memory of another guest,
the hypervisor asks the in
ated guest to de
ate its balloon.
The major drawback is that, due to the semantic gap, the
hypervisor does not know for what the memory given to the
VMs is used, hence it is not able to reclaim memory even if it
is used for caching. This solution presents other drawbacks:
(i) in
ating/de
ating balloons may incur latency, and (ii) it
only operates for VMs running on top of a single physical
host. In contrast, Puma is able to handle varying workloads
and can be deployed on VMs hosted on di�erent hosts.

Page sharing (deduplication). Memory ballooning is
often used with page sharing among VMs. Transparent page
sharing [Waldspurger 2002] is a widely used technique to re-
duce VM memory usage and to overcommit memory. Basi-
cally, the hypervisor periodically scans the physical memory
of each guest and when identical pages are detected, they
are shared so that the VMs access the same pages. The
main drawback is that scanning the memory consumes CPU
and memory bandwidth. Mi lo�s et al. proposed Satori [Mi l�os
2009], a modi�cation to the Xen hypervisor that uses enlight-

enments from the guest to help the hypervisor to scan pages
more e�ciently and to detect short-lived sharing opportuni-
ties. However, even if these solutions optimize the memory
usage by avoiding to store multiple times the same data, and
o�er good results, there is still room for improvement. They
cannot solve the sizing problem: they can compress the me-
mory allocated to a VM, but what if the VM needs more
memory? These approaches appear to be complementary to
ours.

Cooperative caching. Cooperative caching [Dahlin
1994] uses participating clients' memory to extend the local
cache of other clients.

Some approaches take bene�t of the virtualization to pro-
vide a transparent cooperative cache between VMs that may
be used to pool the unused memory of the VMs. XHive
[Kim 2011] is, in some ways, a paravirtualized cooperative
cache. However, while their cooperative caching approach
gives good performance, it requires to make complex modi-
�cations both to the guest OS and to the hypervisor. More-
over, like the ballooning approach, it cannot be used to pool
the memory of VMs hosted on di�erent hosts.

Hwang et al. proposed Mortar [Hwang 2014], a framework
used to pool spare memory of Xen virtual machines to pro-
vide volatile data cache managed by the hypervisor. In this
approach, a prede�ned amount of memory is allocated by
the hypervisor and can be used on-demand by the VMs. In
contrast, Puma is able to manage the unused, but allocated,
memory of the VMs, while Mortar manages a preexisting
pool of free memory, i.e. VMs have to be resized in order
to give their unused memory to the hypervisor. Moreover,
Puma does not rely on hypervisor modi�cations, allowing it
to be deployed regardless of the hypervisor.

Zcache (formerly RAMster) [Magenheimer 2009] is a com-
pressed in-memory page cache that periodically sends com-
pressed pages to an other host. Zcache works for anonymous
pages as well as clean page cache pages; however previous
studies [Magenheimer 2012] show that most of the bene�t of
Zcache comes from anonymous pages (i.e. swap) in memory
intensive workloads such as multithreaded kernel compila-
tion. Moreover, the compressed cache tends to grow so fast
under I/O intensive workloads that it is not able to send page
cache pages to a remote host.

7 Conclusion
In cloud architectures, the extensive use of virtualization
through VMs leads to a fragmentation of the memory. To
tackle this problem, we propose Puma, a mechanism pro-
viding the ability to pool unused memory. As a VM should
be able to retrieve quickly the memory it has lent to an-
other VM, we based our approach on lending memory only
to store clean �le-baked pages that can be removed without
any synchronization.

Therefor Puma is based on an e�cient, kernel-level remote
caching mechanism. It is is block device, �le system and
hypervisor agnostic. Moreover, it can operate both locally
and remotely. We show through extensive experimentations
that our mechanism allows applications to use memory on
remote VMs to boost their performance. We also show that
a VM can retrieve its own memory e�ciently when needed.
Puma can help to bring a step further the notion of elasticity
in clouds.
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