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Solving k-Set Agreement Using Failure
Detectors in Unknown Dynamic Networks

Denis Jeanneau, Thibault Rieutord, Luciana Arantes, Pierre Sens

Abstract—The failure detector abstraction has been used to solve agreement problems in asynchronous systems prone to crash
failures, but so far it has mostly been used in static and complete networks. This paper aims to adapt existing failure detectors in order
to solve agreement problems in unknown, dynamic systems. We are specifically interested in the k-set agreement problem.
The problem of k-set agreement is a generalization of consensus where processes can decide up to k different values. Although some
solutions to this problem have been proposed in dynamic networks, they rely on communication synchrony or make strong
assumptions on the number of process failures.
In this paper we consider unknown dynamic systems modeled using the formalism of Time-Varying Graphs, and extend the definition
of the existing ΠΣx,y failure detector to obtain the ΠΣ⊥,x,y failure detector, which is sufficient to solve k-set agreement in our model.
We then provide an implementation of this new failure detector using connectivity and message pattern assumptions. Finally, we
present an algorithm using ΠΣ⊥,x,y to solve k-set agreement.

Index Terms—Distributed systems, Dynamic networks, Failure detectors, k-Set agreement
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1 INTRODUCTION

D YNAMIC distributed systems such as wireless or peer-
to-peer networks pose new challenges to the field of

distributed computing. In these systems, processes can join
or leave the system during the run, and the communication
graph evolves over time.

In unknown networks, processes are lacking initial in-
formation on system membership. Dynamic networks are
often unknown, since it is difficult to know ahead of time
which processes may join the system in the future.

Most of the existing distributed algorithms in the litera-
ture were meant for static, known networks and make as-
sumptions that are unrealistic in the context of unknown dy-
namic networks: communication graphs are often assumed
to be fully connected or even complete, and processes are
expected to have full knowledge of the system membership.
As a result, adapting existing protocols to unknown and/or
dynamic networks is not trivial.

Agreement problems, and notably consensus, have been
a lot less studied in dynamic networks than in static net-
works. In this paper we are interested in the k-set agree-
ment problem, which is a generalization of the consensus
problem such that 1-set agreement is consensus. In the k-
set agreement problem, each process proposes a value, and
some processes eventually decide a value while respecting
the properties of validity (a decided value is a proposed
value), termination (every correct process eventually de-
cides a value) and agreement (at most k values are decided).

Protocols solving consensus or k-set agreement have
been proposed for dynamic systems, but they assume syn-
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chronous communications (as in [1], [2], [3], [4]) or make
strong assumptions on the number of process failures [5].

We approach the k-set agreement problem from a failure
detector perspective [6], [7]. Failure detectors provide pro-
cesses with information on process failures. They have been
used as an abstraction of system assumptions to circumvent
the impossibility of solving consensus in asynchronous sys-
tems prone to crash failures [8].

The ΠΣx,y failure detector was introduced in [9] and
is sufficient to solve k-set agreement in static networks (if
and only if k ≥ xy) while being weaker than other known
failure detectors which solve the same problem. However,
this failure detector relies on information that is not avail-
able in unknown networks: the list of all the participating
processes. Additionally, traditional failure detectors rely on
a full connectivity of the network graph, which is not
available in a dynamic network.

In the current paper we extend the definition of ΠΣx,y in
order to obtain the ΠΣ⊥,x,y failure detector, which is capable
of solving k-set agreement in unknown dynamic systems,
and provide implementations of this new detector. We also
adapt the k-set agreement algorithm of [9], [10] to solve k-
set agreement using ΠΣ⊥,x,y on top of our model.

The model assumptions we propose to implement
ΠΣ⊥,x,y are generic and expressed in terms of message
pattern, which allows our model to be applied to a range of
systems. We also provide concrete examples of partial syn-
chrony and failure pattern properties which are sufficient to
ensure our generic assumptions.

The system is modeled using the formalism of the Time-
Varying Graph (TVG), as defined in [11].

This paper thus brings the following main contributions:
1) The definition of the ΠΣ⊥,x,y failure detector as an
adaptation of ΠΣx,y to solve k-set agreement in unknown
dynamic networks.
2) An algorithm implementing ΠΣ⊥,x,y in our model, with
connectivity and message pattern assumptions.
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3) An algorithm solving k-set agreement in our model
enriched with ΠΣ⊥,x,y .

The remaining of the paper is organized as follows:
Section 2 formally describes our system model. Section 3
presents the definitions of several failure detectors relevant
to our work, and introduces the ΠΣ⊥,x,y failure detector.
Section 4 defines the different connectivity and message
pattern assumptions that we rely on. In Section 5, we pro-
pose an implementation of ΠΣ⊥,x,y . Section 6 presents an
algorithm solving k-set agreement with ΠΣ⊥,x,y for k ≥ xy.
Section 7 presents the related work. Finally, Section 8 con-
cludes the paper.

2 SYSTEM MODEL

2.1 Process Model
A finite set of n processes Π = {p1, ...pn} participate in
the system. The processes are synchronous (there is a bound
on the relative speed of processes) and uniquely identified,
although initially they are only aware of their own identities.
Processes are not required to know the value of n.

A run is a sequence of steps executed by the processes
while respecting the causality of operations (each received
message has been previously sent). Processes can join and
leave the system during the run (Π is the set of all pro-
cesses that participate in the system at some point in time).
Processes may also crash, and we make no difference be-
tween a process that crashes permanently and a process that
leaves the system permanently: in both cases the process is
considered faulty in that run. A process that is not faulty is
called correct. Note that this definition of faulty and correct
processes is not exactly the traditional one. Indeed, correct
processes can crash or leave the system, as long as they
recover or come back later. Only processes that crash or
leave permanently are considered faulty.

Correct processes can leave the system and come back
infinitely often, but they can only crash and recover a finite
number of times. The critical difference is that a process
that leaves the system keeps its memory intact, whereas a
crashed process does not.

The set of all correct processes is called C. We assume a
bound f < n on the number of faulty processes in a run.

2.2 Communication Model
Processes communicate by sending and receiving messages.
Communications are asynchronous: there is no bound on mes-
sage transfer delays. Therefore, even though processes are
synchronous, they do not cooperate in a synchronous way.

The system is dynamic, which means that nodes and
communication links can appear or disappear during the
run: therefore, the communication graph will change over
time. The usual notion of path in the graph is not sufficient
to define reachability in such a dynamic graph. To solve this
issue, several solutions were proposed in the literature [1],
[11], [12], [13]. Among them, we choose to model the
communication graph using the Time-Varying Graph (TVG)
formalism, as defined by Casteigts et al. in [11].

2.2.1 Time-Varying Graphs
Definition 1 (Time-Varying Graph). A time-varying graph is
a tuple G = (V,E, T , ρ, ζ, ψ) where

1) V = Π is the set of nodes in the system.
2) E ⊆ V × V is the set of edges.
3) T = N is a time span.
4) ρ : E × T → {0, 1} is the edge presence function, indicating
whether a given edge e ∈ E is active at a given time t ∈ T .
5) ζ : E × T → N is the latency function, indicating the time
taken to cross an edge e ∈ E if starting at given time t ∈ T .
6) ψ : V × T → {0, 1} is the node presence function, indicating
whether a given node p ∈ V is present in the system at a given
time t ∈ T . The edge presence function and the node presence
function must be coherent: ∀t ∈ T ,∀pi ∈ V , ∀e ∈ E, if e is
connected to pi then ψ(pi, t) = 0 =⇒ ρ(e, t) = 0.

G(V,E) is the underlying graph of G, and indicates
which nodes have a relation at some time in T .

Note that processes do not know the values of the ζ
function, which is only introduced for the simplicity of
presentation. Since communications are asynchronous, the
values of ζ are finite but not necessarily bounded.

The communication links between processes are not
permanent: the ρ function indicates when a given edge is
active. Therefore, the usual notion of path in the graph is not
suited to TVGs: journeys are defined for this purpose.

Intuitively, a journey is a path over time. In order to
transmit a message from process pi to process pj , it is not
necessary for every edge on the path to be active at the time
the message is sent: it is sufficient that there exists a path
between between pi and pj such that all the edges on the
path are active in the right order at some time in the future.

Definition 2 (Journey). A journey is a sequence of couples J =
{(e1, t1), (e2, t2), ..., (em, tm)} such that {e1, e2, ..., em} is a
walk in G and:

∀i, 1 ≤ i < m : (ρ(ei, ti) = 1) ∧ (ti+1 ≥ ti + ζ(ei, ti)) .

t1 is called departure(J ) and tm + ζ(em, tm) is called
arrival(J ). We denote J ∗(u,v) the set of all the journeys
starting at node u and ending at node v.

Consider the following example: a graph where
E = V × V and every edge in the system is active infinitely
often (longer than the message transfer time), but no more
than one edge is ever active at a time. In such a system,
there are journeys infinitely often between every node and
the connectivity is sufficient to solve complex problems such
as consensus. However, at any given instant, the graph is
partitioned into at least n− 1 independent subsets. This
shows that similarly to paths, the usual notion of graph
partitioning loses relevancy in TVGs, since the number of
partitions at a particular instant in the run is not a very
useful parameter. Instead, we are interested in the number
of partitions over time. In the rest of the paper, we use the
word partition to refer to a subset of the network that is
isolated from the rest of the network for an arbitrarily long
duration, and not just temporarily.

2.2.2 Communication primitive
Processes communicate exclusively by sending messages
with a very simple broadcast primitive. When a process pi
calls the broadcast primitive, the message is simply sent
to the processes that are currently in pi’s neighborhood,
including pi. The broadcast is not required to provide
advanced features such as message forwarding, routing,
message ordering or any guarantee of delivery.
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2.2.3 Channels

The channels are fair-lossy. Messages may be lost but, if the
edge is active for the entire time of the message transfer,
a message sent infinitely often will be received infinitely
often. Messages may be duplicated, but a message may only
be duplicated a finite number of times. No message can
be created or altered. We make no assumption on message
ordering and do not require channels to be FIFO.

3 FAILURE DETECTORS

Failure detectors ([6]) are distributed oracles that provide
processes with information on process failures, often in the
form of a list of trusted process identities. This information
is unreliable in the sense that the failure detector may erro-
neously consider a correct process as faulty, or vice versa,
but will attempt to correct these mistakes later. Each failure
detector class ensures some properties on the reliability of
the failure information. A failure detector is an abstraction
of the system assumptions used to solve a given problem.

The failure detector abstraction has been investigated
as a way to circumvent the impossibility result of [8] and
solve consensus in asynchronous systems prone to crash
failures [7]. Our goal in this paper is to adapt this solution
to solve k-set agreement in dynamic systems.

Traditionally, failure detectors are used in system mod-
els considering static and fully connected communication
graphs. These connectivity properties are usually presented
as properties of the system model rather than the failure
detector augmenting it. When considering a much weaker
system model such as a dynamic network, solving any non-
trivial problem still requires the assumption of a certain
degree of graph connectivity, as not much can be done
in a system where no communication link is ever active.
Studying dynamic systems means considering the level of
temporal connectivity required to solve a specific problem,
and using a generic and strong connectivity assumption
would defeat that purpose. Instead, the goal should be to
use a weak connectivity assumption that is still sufficient
to solve the problem. Therefore, to solve a given agreement
problem, two things are necessary: (1) a failure detector and
(2) connectivity assumptions.

But if connectivity assumptions must be added to the
system model in addition to the failure detector, then it
cannot be said that the failure detector is sufficient to solve
the problem. For this reason, and because in a dynamic
system the required level of connectivity is as dependent
on the problem as the required failure detector, we con-
sider that failure detectors for dynamic systems should
include connectivity properties. Adding these connectivity
properties should not be seen as strengthening the failure
detectors, they are still weaker than the assumption of a
fully connected, static communication graph.

Additionally, our system model considers an unknown
network where processes have no information on system
membership at the beginning of the run. A way to circum-
vent this issue was proposed in [14] in the form of the Σ⊥
failure detector

Our approach is based on the ΠΣx,y failure detector
of [9], augmented with connectivity properties and ex-
tended with the method of [14] in order to obtain a failure

detector sufficient to solve the k-set agreement problem in
unknown dynamic systems.

3.1 The Quorum Failure Detectors
The quorum failure detector Σ, [15], provides every process
with sets of process identities (called quorums) such that
any two quorums output by Σ at any time necessarily in-
tersect. Additionally, Σ requires that all quorums eventually
contain only correct processes.

The Σk failure detector, [16], is a generalization of Σ
meant to solve k-set agreement. Similarly to Σ, Σk provides
processes with eventually correct quorums, and at least two
out of any k + 1 quorums intersect. It follows that Σ = Σ1.

Intuitively, Σk prevents the network from partitioning
into more than k independent subsets. Note that in the
case of a dynamic network, this statement only applies to
partitions over time: the network may still be instantaneously
partitioned into any number of subsets at any given instant.

In message passing systems, Σ is necessary for consen-
sus ([15]) and Σk is necessary for k-set agreement ([16]).

The intersection property of both Σ and Σk must hold
over time, which means that if a process queries its failure
detector before any communication has taken place, the
returned quorum must intersect with the quorums formed
by processes later in the run. In known networks, imple-
mentations of Σ traditionally solve this issue by returning
Π as a quorum at the beginning of the run [15]. This is not
an option in unknown networks where system membership
knowledge is only established through communication.

The Σ⊥ failure detector ([14]) is an adaptation of Σ for
unknown networks. Instead of returning a quorum, Σ⊥ can
also output the default value ⊥ whenever the knowledge
necessary to form a quorum has not been gathered yet.

In order to solve k-set agreement in unknown dynamic
networks, we define the Σ⊥,k failure detector, which com-
bines the properties of Σk and Σ⊥. It also includes a con-
nectivity property which replaces (and is weaker than) the
assumption of a static and complete network.

The Σ⊥,k failure detector provides each process pi with
a quorum denoted qrτi (which is either a set of process
identities or the special value ⊥) at any time instant τ .

For the convenience of the presentation, we introduce
the following definition:

Definition 3 (Recurrent neighborhood). The recurrent neigh-
borhood of a correct process pi, denoted Ri, is the set of all correct
processes whose quorums intersect infinitely often with pi’s quo-
rums. ∀pi ∈ C, Ri = {pj ∈ C |∀τ , ∃τi, τj ≥ τ : qrτii 6= ⊥ ∧
qr
τj
j 6= ⊥ ∧ qr

τi
i ∩ qr

τj
j 6= ∅}.

Note that pj ∈ Ri is an equivalence relation between pi
and pj . By definition, ∀pi ∈ C : pi ∈ Ri, therefore Ri 6= ∅.

We say that a correct process pi can reach another correct
process pj if, provided that pi sends messages infinitely
often, pj receives them infinitely often.

Σ⊥,k is defined by the self-inclusion, quorum liveness,
quorum intersection and quorum connectivity properties.

Property 1 (Self-inclusion). Every process includes itself in its
non-⊥ quorums. ∀pi ∈ Π,∀τ : (qrτi 6= ⊥) =⇒ (pi ∈ qrτi ) .

Property 2 (Quorum liveness). Eventually, every correct pro-
cess stops returning ⊥ and its quorums only contain correct
processes. ∃τ , ∀pi ∈ C,∀τ ′ ≥ τ : qrτ

′

i 6= ⊥ ∧ qrτ
′

i ⊆ C .
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Property 3 (Quorum intersection). Out of any k + 1 non-⊥
quorums, at least two intersect.

∀τ1, ..., τk+1 ∈ T ,∀id1, ..., idk+1 ∈ Π,

∃i, j : 1 ≤ i 6= j ≤ k + 1 :

(qrτiidi 6= ⊥ ∧ qr
τj
idj
6= ⊥) =⇒ (qrτiidi ∩ qr

τj
idj
6= ∅) .

Property 4 (Quorum connectivity). Every correct process pi
can reach every process in Ri.

Σk and Σ⊥ were defined with only 2 properties (liveness
and intersection). Self-inclusion is a property added to Σx
and ΠΣx by the authors in [9] for the sake of the simplicity
of algorithm proofs, and it is trivially implemented by the
algorithms we present in the paper. Quorum connectivity is
the property added to deal with network dynamicity.

Intuitively, the quorum connectivity property means
that processes belong to the same partition as their recur-
rent neighborhood. Note that ∀pi, pj ∈ C : pi ∈ Rj =⇒
pj ∈ Ri, thus quorum connectivity enables two-way com-
munication between pi and pj . This property is not very
costly, since most failure detector implementations already
require some level of connectivity between processes in a
quorum in order to form the quorums themselves. This is
the case for the Σ⊥,k algorithm we present in Section 5,
which does not require any additional assumption to imple-
ment quorum connectivity.

3.2 The Family of Failure Detectors ΠΣx,y

Although Σk is necessary to solve k-set agreement, it is not
sufficient. It has been shown in [10] that k-set agreement can
be solved in static asynchronous networks with 〈Σx,Ωy〉,
with k ≥ xy, where Ωy is the eventual anti-leader detec-
tor [17]. It was shown in the same paper that if n ≥ 2xy,
then there is no 〈Σx,Ωy〉-based k-set algorithm for k < xy,
which means that the k ≥ xy requirement is tight.1

However in [9], Mostéfaoui, Raynal and Stainer intro-
duce the ΠΣx,y failure detector and prove that it is strictly
weaker than 〈Σx,Ωy〉 for 1 < y < x < n while still being
strong enough to solve k-set agreement with k ≥ xy. In-
terestingly, ΠΣx,y is defined incrementally based on the
properties of Σx. Therefore, an algorithm for Σx (or Σ⊥,x, in
our case) can easily be extended to implement ΠΣx,y (resp.,
ΠΣ⊥,x,y), with an additional assumption.

The authors in [9] provide an intuitive description of
ΠΣx,y . ΠΣx,1 (1) prevents the system from partitioning
into more than x partitions with the properties of Σx and
(2) guarantees that the processes of at least one of these
subsets agree on a common leader. ΠΣx,y can be seen as
y independent instances of ΠΣx in which (2) has to be
guaranteed in only one of these instances.

We define ΠΣ⊥,x,y as an extension of ΠΣx,y that in-
cludes the properties of Σ⊥,x and is capable of solving k-set
agreement in unknown dynamic systems.

3.3 The Family of Failure Detectors ΠΣ⊥,x,y

Similarly to [9], ΠΣ⊥,x,y is defined incrementally: ΠΣ⊥,x is
defined firstly.

1. This result can also be proved using the impossibility of k-set
agreement theorem ([18]), the premise of which applies if k < xy.

3.3.1 The failure detector ΠΣ⊥,x
At any time instant τ , ΠΣ⊥,x provides each process pi with
a quorum denoted qrτi (which is either a set of process
identities or the special value ⊥) and a leader denoted
leaderτi (which is a process identity).

ΠΣ⊥,x is defined by the following properties:

• Self-inclusion
• Quorum liveness
• Quorum intersection
• Quorum connectivity
• Eventual partial leadership

Σ⊥,x

First, we define an eventual partial leader as follows:

Definition 4 (Eventual partial leader). An eventual partial
leader pl is a correct process such that every process in the
recurrent neighborhood of pl eventually recognizes pl as its leader
forever. pl ∈ C ∧ ∀pi ∈ Rl,∃τ , ∀τ ′ ≥ τ : leaderτ

′

i = pl .

We denote L the set of all eventual partial leaders.

Property 5 (Eventual partial leadership). For every correct
process pi, there is an eventual partial leader pl that can reach pi.

The original eventual partial leadership property used
in [9] simply requires the existence of an eventual partial
leader in the system. Our version of the property similarly
implies that L 6= ∅ (since C 6= ∅), but also implies that each
correct process must be reachable by one eventual partial
leader (which, depending on the level of connectivity, may
require more than one leader). In a static and connected
network, both properties are equivalent: a single eventual
partial leader is necessary and sufficient to fulfill the prop-
erty, since the connected communication graph enables this
single leader to reach every correct process.

In a k-set agreement algorithm, the eventual partial
leaders are those processes that eventually decide. In order
to ensure termination, the deciding leaders must, therefore,
be able to inform the rest of the system of their decision.
However, in a dynamic network, the mere existence of an
eventual partial leader does not provide the latter with
the necessary connectivity to guarantee termination. This is
why in dynamic networks, our eventual partial leadership
property is stronger than the original one and imposes the
required connectivity.

The eventual partial leadership property implies a trade-
off between the number of eventual partial leaders in the
system and graph connectivity. On the one hand, if there is
a single leader in the system, then this leader must be able
to reach every correct process in the system. On the other
hand, if the communication graph is partitioned, then there
must be at least one local leader per partition.

Such a trade-off implies that the eventual partial lead-
ership property does not prevent the system from being
partitioned into up to n partitions over time, provided that
every correct process identifies itself as its own eventual par-
tial leader. However in this scenario it would be impossible
to verify the quorum intersection and quorum connectivity
properties.

3.3.2 The failure detector ΠΣ⊥,x,y
The definition of ΠΣ⊥,x,y is the same as ΠΣx,y in [9], except
that it uses ΠΣ⊥,x instead of ΠΣx. ΠΣ⊥,x,y can be seen as y
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instances of ΠΣ⊥,x running concurrently.
ΠΣ⊥,x,y provides each process pi with an array

FDi[1..y] such that for each j, 1 ≤ j ≤ y, FDi[j] is a
pair containing a quorum FDi[j].qr and a process index
FDi[j].leader. The array satisfies the following properties:

Property 6 (Vector safety). ∀j ∈ [1..y] : FDi[j].qr satisfies
the self-inclusion, liveness, intersection and quorum connectivity
properties of ΠΣ⊥,x.

Property 7 (Vector liveness). ∃j ∈ [1..y] : FDi[j] satisfies the
eventual partial leadership property of ΠΣ⊥,x.

The idea is to reduce the cost of the system assumptions:
the liveness property only needs to be verified by one out of
a set of y instances of the detector.

The authors in [9] prove that for 1 ≤ y ≤ n− 1, ΠΣ1,y

is as strong as 〈Σ1,Ωy〉. This shows that the y parameter of
ΠΣx,y (and ΠΣ⊥,x,y) is comparable to the y of Ωy .

ΠΣ⊥,x,y is sufficient to solve the k-set agreement prob-
lem in our model if k ≥ xy. We will prove this by providing
a k-set agreement algorithm relying on ΠΣ⊥,x,y in Section 6.

4 ASSUMPTIONS

In this section we present some system assumptions. The
algorithms presented in Section 5 will then list the assump-
tions from this section on which they rely.

4.1 Time-Varying Graph Classes

In addition to defining the formalism of the TVG, Casteigts
et al. present in [11] a number of TVG classes which provide
different levels of connectivity assumptions. We are particu-
larly interested in class 5.

Definition 5 (Class 5: recurrent connectivity [11]). All pro-
cesses can reach each other infinitely often through journeys.
∀u, v ∈ Π,∀τ , ∃J ∈ J ∗(u,v) : departure(J ) > τ .

This connectivity assumption does not exactly fit the
requirements of the proposed algorithms. On the one hand,
it is too strong. It implies a global connectivity between any
two processes in the system, which is not necessary to solve
k-set agreement, since the problem can be solved in a system
partitioned into k subsets. On the other hand, class 5 is
too weak since it relies on the notion of journey, which is
insufficient to ensure the transmission of messages. Even if
a journey exists between pi and pj , there is no guarantee
that a message sent by pi can reach pj . In fact, even if the
edge between pi and pj is active infinitely often and the
message is sent infinitely often, the message might always
be sent in between two activation periods of the edge, thus
never crossing it. To solve this problem, Gómez-Calzado
et al. defined in [19] the notion of timely journeys for the
case of synchronous systems. We extend this solution into
γ-journeys for the case of asynchronous communications.

Definition 6 (γ-Journey). A γ-journey J (where γ > 0 is a
time duration) is a journey such that every node on the path can
wait up to γ units of time after the next edge becomes active
before forwarding the message. Since the message may be sent at
any time within the γ time window and the channel latency may
vary during that time, the edge must remain active long enough
for the worst case duration.

- ∀i, 1 ≤ i ≤ |J |, ei stays active from time ti until, at least, time
ti +max0≤j≤γ{j + ζ(ei, ti + j)} .
- ∀i, 1 ≤ i < |J |, ti+1 ≥ ti +max0≤j≤γ{j + ζ(ei, ti + j)} .

With a γ-journey, processes are given an additional time
window of γ units of time to send the message. In [19],
this time was used to detect the activation of the edge. This
solution is appropriate for point-to-point communications in
a known network, since it allows the sender of the message
to resend the message to the receiver whenever the edge
appears again. However, this is not helpful in an unknown
non-complete network where processes have to rely on
blind broadcasts and forwarding to propagate information.

Instead, we use the time window provided by γ-journeys
as an upper bound on the time between two transmissions
of the message. This explains the need for synchronous
processes: each process should be able to repeatedly send
every message at least once every γ units of time.

Provided that processes receive their own broadcasts
within γ units of time and then rebroadcast it, it is ensured
that every message is sent at least once every γ units of time.
If there is infinitely often a γ-journey from pi to pj , then pi
can reach pj .

We call J γ(u,v) the set of all the γ-journeys from u to v.
Using class 5 as a starting point, we define TVGs of

class 5-(α, γ) as follows. γ is the time duration parameter
of γ-journeys, and α is a parameter defining the number
of correct processes that each correct process is ensured to
communicate with.

Assumption 1 (Class 5-(α, γ): (α, γ)-recurrent connectivity).
Every correct process can reach and be reached through γ-journeys
infinitely often by at least α correct processes.

∀pi ∈ C,∃Pi ⊆ C, |Pi| ≥ α,∀t ∈ T ,∀pj ∈ Pi,
∃Ji ∈ J γ(pi,pj) : departure(Ji) ≥ t ∧
∃Jj ∈ J γ(pj ,pi) : departure(Jj) ≥ t .

This assumption is parametrized by the two values α
and γ. A low γ value weakens the connectivity assump-
tion by allowing shorter time windows for the journeys,
but implies that processes must be able to send messages
more often to ensure that a message is sent within the
shorter window. On the other hand, a high γ value reduces
the number of journeys that are qualified as γ-journeys,
thus strengthening the connectivity assumption, but accepts
slower processes.

The α parameter also presents a trade-off: class 5-(α, γ)
indirectly implies that there must be at least α correct
processes in the system. As a result, a high α value will
result in a strong assumption on the number of process
failures which can be costly in a dynamic system. A low
α value would strengthen the message pattern assumptions
presented in the next section.

Class 5-(α, γ) also implies that all correct processes must
know a lower bound for α.

To summarize, the assumption of a TVG of class 5-
(α, γ) means that correct processes are able to communicate
infinitely often with a subset of α correct processes. This
property ensures that correct processes will not wait for
messages forever, which enables our algorithm to ensure
the quorum liveness property. Additionally, if the algorithm
ensures that every correct process pi eventually only forms
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quorum from the Pi set, then class 5-(α, γ) also ensures
quorum connectivity.

4.2 Message Pattern Assumptions

In this section we present message pattern assumptions, as
defined by Mostéfaoui et al. in [20]. The message pattern
model consists in assuming some properties on the relative
order of message deliveries. If processes periodically wait
for a certain number of messages, the idea is to assume that
the message sent by some specific process will periodically
be among the first ones to be received.

In order to express our message pattern assumptions, we
assume that the distributed algorithm executed by processes
uses a query-response mechanism. Processes periodically
issue query messages, to which other processes respond.

The principle of our failure detector algorithm revolves
around processes repeatedly issuing a query and then wait-
ing for responses from α processes. The α parameter is
therefore the minimum size of quorums returned by the
algorithm, which does not necessarily constitute an assump-
tion on the number of failures, since α might be equal to 1.
Note that α is the same parameter we used to define TVGs
of class 5-(α, γ) which ensures that correct processes will
not wait for messages infinitely.

We call response set the first α processes whose response
to a given query from process pi are received by pi.

4.2.1 Assumption for Quorum Intersection

The assumption of a TVG of class 5-(α, γ) is not sufficient to
ensure the quorum intersection property. In [10], Bouzid and
Travers proposed a method to implement quorums: if pro-
cesses repeatedly wait for messages from at least b n

k+1c+ 1
processes before outputting these processes as their new
quorum, then the size of quorums alone is sufficient to
ensure intersection. This method implies that there must be
at least b n

k+1c+ 1 correct processes in the system, otherwise
processes would wait forever, thus preventing liveness.

In a dynamic system where processes are expected to
join and leave the system, an assumption on the number of
process failures seems too costly. For this reason, our failure
detector algorithms rely on the message pattern approach.

The following assumption is sufficient for our algorithm
to implement quorum intersection. It was obtained by gen-
eralizing the assumption used for the case k = 1 in [14].

Assumption 2 (Generalized winning quorums). ∃m ∈ [1, k]
and ∃Qw1, ..., Qwm ⊆ Π (called winning quorums). Each win-
ning quorum Qwi is associated with a number wi ≥ 1 (called the
weight of Qwi) such that

∑m
i=1 wi ≤ k. ∀p ∈ Π, every time p

issues a new query, ∃i ∈ [1,m] such that Qwi 6= ∅ and out of
the first α processes from which p receives a response, at least
b |Qwi|
wi+1 c+ 1 of them are in Qwi.

Intuitively, Assumption 2 requires that there are m sets
of processes, the winning quorums, that answer faster than
others, i.e., faster enough for subsets of these sets to be al-
ways included in every response set. In addition, every time
a correct process issues a query, connectivity must allow for
a subset of one of these winning quorums to receive and
respond to the query. Note that winning quorums do not
necessarily correspond to quorums returned by the failure

Fig. 1. Example of multiple winning quorums (m = k = 3).

Fig. 2. Example of a single winning quorum (m = 1, k = 3).

detector at some point: instead they are sets of processes
that have a tendency to be included in response sets.

The weight wi of a winning quorum is a parameter
which states which proportion of the winning quorum
must be included in response sets. A winning quorum of
weight 1 must be included in strict majority in a response
set, whereas winning quorums of higher weights can be
included in smaller proportions. The sum of all winning
quorum weights is limited by k.

It is interesting to consider some extreme instances of
this assumption. The first extreme is m = k. In this partic-
ular case, all winning quorums are necessarily of weight 1,
and therefore each response set must include a strict ma-
jority of one of the winning quorums. Since each response
set includes the strict majority of one out of k winning
quorums, it is easy to see that out of any k + 1 response
sets, at least two will necessarily intersect.

Fig. 1 shows an example for m = k = 3 in which win-
ning quorums are represented by dashed red circles. Each
solid black circle represents a response set. Note that out of
any 4 response sets, at least 2 intersect.

Another extreme case is m = 1 and w1 = k. In this
particular case, all response sets must contain a small part
of a single winning quorum.

Fig. 2 shows an example for m = 1 and k = 3. Similarly
to Fig. 1, the winning quorum is represented by a dashed
red circle, and response sets are represented by solid black
circles. Once again, 2 out of any 4 response sets intersect.

The flexibility in the second example lies in which subset
of the winning quorum will be included in each response
set, while the flexibility in the first example lies in which
winning quorum would be included in majority by each
response set.

Assumption 2 implies that there is at least one winning
quorum Qwi such that at least b |Qwi|

wi+1 c+ 1 of the processes
in Qwi are correct. If α = b |Qwi|

wi+1 c+ 1 = 1, there is no as-
sumption on the number of failures but |Qwi| < wi + 1,
which leaves minimal flexibility on the processes that must
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be included in every response set, thus strengthening the
message pattern assumption. On the other hand, if |Qwi|
(and therefore α) is high, the number of failures is limited
but each response set must contain a subset of a larger set,
which allows for more flexibility in the message pattern.

4.2.2 Assumption for Eventual Partial Leadership
In order to ensure the eventual partial leadership property,
processes need to identify a local leader. Once again we
choose to rely on a message pattern assumption. Since
the eventual partial leadership property is supposed to be
implemented on top of Σ⊥,x, we can use the notion of
quorum to define this new assumption.

Additionally, we use the order of processes in quorums
to single out the leader. For this purpose, we assume that
processes in a quorum are totally ordered. Any specific
ordering can be used. A natural choice would be to use the
order in which the processes were added to the quorum.
Another simple choice would be to order according to
process identifiers. For a process pi and a quorum qr, if
pi ∈ qr, then we denote by pos(pi, qr) the position of pi in
qr according to the chosen total order. If pi is the first process
in qrτj , then pos(pi, qrτj ) = 1. In this particular case, we say
that pi is the candidate of pj at time τ .

We define potential eventual partial leaders as follows:

Definition 7 (Eventually winning process). A correct process
pl is called an eventually winning process if there is a time τ such
that after τ,∀τ ′ ≥ τ , ∀pi ∈ Rl\{pl} :
1) pl is present in every quorum formed by pi. pl ∈ qrτ

′

i .
2) pl’s identity is always positioned in pi’s quorum before
the identities of other processes in Ri. ∀pj ∈ Ri\{pl, pi} :
pos(pl, qr

τ ′

i ) < pos(pj , qr
τ ′

i ) .
3) In every quorum formed by pi, there is another process that
also belongs to Rl. ∃pj ∈ Rl\{pl, pi} : pj ∈ qrτ

′

i .

Point (1) means that after some time, pl must be fast
enough to ensure that its responses arrive in time to take
part in every local quorum.

The implication behind (2) depends on the chosen order-
ing method. If processes are ordered by date of addition to
the quorum, then (2) implies that after some time, pl must
be faster than the rest of the recurrent neighborhood of pi.
If processes are ordered by process identities, pl must have
the smallest process identity in the recurrent neighborhood.

It is easy to see how (1) and (2) can be used: if pl belongs
to every quorum and is singled out by the quorum order,
processes in Rl can reliably select their candidate as leader.

Note that (2) excludes the case pi = pj , since otherwise
pl would have to be placed before pi in pi’s quorums. If
processes are ordered by date of addition to the quorum,
this expectation would be very unrealistic since receiving its
own message is a local computation and should therefore
be faster than receiving pl’s message.

Point (3) requires that processes in Rl must not only
communicate with pl but also with each other to some
extent, which enables them to share the information that pl
is their candidate. Note that (3) also requires the processes
pl, pi and pj to be distinctly defined: therefore, in order for
an eventually winning process to exist, there must be at least
3 correct processes in the system (f ≤ n− 3). Since pl, pi
and pj must be included in the same quorums, α must also
be equal to 3 or greater.

We call W the set of all eventually winning processes.
We can now formulate the assumption that will enable

our failure detector algorithm to ensure the eventual partial
leadership property:

Assumption 3 (Eventually winning γ-sources). For every
correct process pi, there is an eventually winning process pl
such that there is infinitely often a γ-journey from pl to pi.
∀pi ∈ C,∃pl ∈W,∀τ : ∃J ∈ J γ(pl,pi) ∧ departure(J ) > τ .

Our ΠΣ⊥,x algorithm will ensure that eventually win-
ning processes are eventual partial leaders. As a result, this
assumption will be sufficient to ensure the eventual partial
leadership property.

4.3 Summary of Assumptions
Table 1 summarizes the assumptions presented in this sec-
tion and the failure detector properties that rely on them for
implementation.

TABLE 1
Assumptions for failure detector implementations

Assumption Failure detector property

Assumption 1 Σ⊥,k : quorum liveness
Σ⊥,k : quorum connectivity

Assumption 2 Σ⊥,k : quorum intersection
Assumption 3 ΠΣ⊥,x: eventual partial leadership

The self-inclusion property of Σ⊥,k is absent from this
table because it does not require any assumption and will
simply be ensured through algorithmic properties.

4.4 Implementation of Message Pattern Assumptions
Assumptions 2 and 3 are very abstract and it can be difficult
to judge at first glance how likely they are of being verified
in a real network. This is because we attempt to isolate
assumptions that are as close as possible to the minimum
model strength required to ensure that our algorithm im-
plements the ΠΣ⊥,x,y failure detector. The message pattern
model enables such an implementation while keeping our
model generic and applicable to different networks. In this
section we provide examples of more traditional assump-
tions that are sufficient to ensure Assumptions 2 and 3.

4.4.1 Implementation of Assumption 2
A simple and intuitive method is to assume that
|C| ≥ b n

k+1c+ 1. In this case, Assumption 2 is trivially ver-
ified with m = 1, w1 = k and Qw1 = Π. This implies that
α ≥ b n

k+1c+ 1, and, thus, the minimal size of quorums is
sufficient to ensure intersection. This particular case is the
method used to implement Σk in static networks in [10].

Another approach would be to use a partial synchrony
assumption. For a given duration ∆, let us call ∆-journey
a γ-journey J such that arrival(J )− departure(J ) ≤ ∆.
We then separate Π into two subsets: slow processes and
fast processes. A slow process pi is a process such that
there is never a ∆-journey from pi to any correct process
pj ∈ C\{pi}. Fast processes are all other processes and Q
is the set of all correct fast processes. The assumption is
that for any correct process pi and at any time, there are ∆-
journeys linking pi to at least b |Q|k+1c+ 1 processes from Q.
Assumption 2 is verified with m = 1, w1 = k and Qw1 = Q.
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4.4.2 Implementation of Assumption 3
One way to ensure Assumption 3 is that there is a correct
subset Q of the system that is constantly connected and
recognizes a leader pl ∈ Q, that can reach the entire system
infinitely often. The leader must be known from the other
processes in Q from the start (it can simply be the lowest
process identifier in Q, for example). When a process in
Q issues a query, the communication layer for that process
will then wait for a response from pl and a response from
another process in Q before delivering any other response.
This is sufficient to ensure that pl is the first process in every
quorum formed in Q, and that processes in Q communicate
with each other to a sufficient extent.

4.4.3 Practical issues
From a practical point of view, some types of networks
are particularly adapted to ensure Assumptions 2 and 3.
In wireless mesh networks ([21]), the nodes move around
a fixed set of nodes and each mobile node eventually
connects to a fixed node. Wireless sensor networks ([22])
can be organized in clusters; one node in each cluster is
designated the cluster head. Messages sent between clusters
are routed through the cluster heads of the sending and
receiving clusters. An infra-structured mobile network ([12])
is composed of Mobile Hosts (MH) and Mobile Support
Stations (MSS). A MH is connected to a MSS if it is located
in its transmission range, and two MHs can communicate
only through MSSs.

In each of these network models, there is a privileged
subset of powerful nodes (fixed nodes, cluster heads, MSSs)
that can be used as a winning quorum to satisfy Assump-
tion 2 or as the neighborhood Rl of an eventual winning
process pl for Assumption 3.

Both assumptions can also be ensured from a proba-
bilistic perspective. If a subset Q of the system is made
of powerful nodes that respond to queries much faster
than the rest of the nodes, then there is a high probability
that Assumption 2 will be verified. Similarly, Assumption 3
can be verified in a probabilistic way with a leader that
is simply a powerful process benefiting from very small
communication delays with the processes around it.

5 FAILURE DETECTOR ALGORITHMS

In this section we first present a Σ⊥,k algorithm, then extend
it to obtain a ΠΣ⊥,x,y algorithm.

5.1 An Algorithm for Σ⊥,k

Algorithm 1 implements the Σ⊥,k failure detector in un-
known dynamic systems with asynchronous communica-
tions. It uses a query/response mechanism with round
numbers in order to ensure quorum liveness.

5.1.1 Assumptions
Algorithm 1 implements Σ⊥,k in our model, provided that
the following assumptions hold:
1) The system is a Time-Varying Graph of class 5-(α, γ)
where α is the minimal size of a quorum and γ is the max-
imal time taken by a process to receive its own broadcasts
(Assumption 1).
2) The run follows a generalized winning quorums message
pattern (Assumption 2).

5.1.2 Notations

Each process pi uses the following local variables:
ri is the local round number of process pi.
qri is the quorum currently returned by the failure

detector for process pi.
recv fromi is the quorum buffer, containing all the

identities of the processes whose response has been received
by pi since the time it last formed a new (complete) quo-
rum. When the buffer contains enough information (i.e., at
least α process identities), it becomes the new quorum and
recv fromi is reinitialized.

last knowni is the knowledge pi has of other processes
round numbers. This variable and the associated mecha-
nisms are not necessary for the correctness of the algorithm,
they are simply used to improve performance by limiting
the number of useless transmitted messages.

Process pi calls the bcast(src, r src,Q) primitive to
broadcast a message to the processes currently in its neigh-
borhood. A message contains the following values:

src is the identity of the original sender of the query
(which is not necessarily the immediate sender of the mes-
sage, since queries are forwarded multiple times).

r src is the round number of src when this query was
issued. Process src ignores responses to previous rounds.

Q is the set of the identities of processes who responded
to the current query. When the query goes back to process
src, it will add the content of this set to its quorum buffer.

Algorithm 1. Implementation of Σ⊥,k for process pi.

1: init
2: ri ← 0 // Local round number
3: qri ← ⊥ // The quorum returned by Σ⊥,k for pi
4: recv fromi ← {pi} // Quorum buffer
5: last knowni ← ∅ // Round numbers of known processes
6: bcast(pi, 0, ∅)

7: upon reception of (src, r src, Q)from pj do
8: if src = pi and r src = ri then // Response
9: recv fromi ← recv fromi ∪Q

10: if |recv fromi| ≥ α then
11: qri ← recv fromi

12: recv fromi ← {pi}
13: ri ← ri + 1
14: bcast(pi, ri, ∅)
15: else if src 6= pi then // Query
16: if ∃last r | 〈src, last r〉 ∈ last knowni

17: ∧ last r ≤ r src then
18: last knowni ← last knowni\{〈src, last r〉}
19: last knowni ← last knowni ∪ {〈src, r src〉}
20: bcast(src, r src,Q ∪ {pi})
21: else if 〈src,−〉 /∈ last knowni then
22: last knowni ← last knowni ∪ {〈src, r src〉}
23: bcast(src, r src,Q ∪ {pi})
24: else
25: do nothing

5.1.3 Algorithm Description

The principle behind the algorithm is the following: every
process pi keeps broadcasting queries for round ri until it
receives enough responses to form a quorum of size at least
α, then it increments ri and proceeds with the next round.

Contrarily to most query/response algorithms, Algo-
rithm 1 only uses one type of messages. A message is both a
query and a response, depending on which process receives
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it. Every message travels from process to process, until it
goes back to the original message sender. If the test on
line 8 is true, the message is considered as a response to
the current round query. If instead the test on line 15 is true,
the message is considered as a query from another process.

Every process identity received in a response for the
current round is added to the recv fromi buffer (line 9),
and when the buffer size gets superior or equal to α, then a
new quorum is formed by copying recv fromi into qri and
resetting the buffer (lines 10 – 13).

If a received message is a query from another process, pi
updates its local knowledge and then adds its own identity
to the message and rebroadcasts it unless another query for
a higher round has been previously received from the same
emitter (lines 15 – 25).

At first glance it might look like process pi only broad-
casts its queries once (lines 6 and 14), but keep in mind
that processes receive their own broadcasts. Therefore, after
initially broadcasting a new query, pi will receive it at most
γ instants later and broadcast it again (line 14).

The same rebroadcasting approach applies for queries
from other processes. Once pi has received a message from
src for round r src, it will keep rebroadcasting it (lines 20
and 23) until it is informed that src moved on past round
r src (the test on lines 16 – 17).

Based on the assumption of generalized winning quo-
rums, the only action necessary to ensure quorum intersec-
tion is to make sure that quorums are formed from at least
α process identities, which is guaranteed by line 10.

Quorum liveness is ensured because (1) correct pro-
cesses keep forming new quorums from fresh information
infinitely often thanks to class 5-(α, γ) and (2) the identities
of crashed processes are excluded from new quorums since
the r src in their responses are eventually outdated (line 8).

5.1.4 Proof of Correctness
Lemma 1. In a TVG of class 5-(α, γ) where Assumption 2 holds,
Algorithm 1 ensures the quorum intersection property of Σ⊥,k.

Proof: Assumption 2 implies that
∑m
i=1 wi ≤ k.

For any number w ∈ [1, k], we denote nw the num-
ber of winning quorums of weight w. It follows that∑k
w=1 w × nw ≤ k.
Additionally, Assumption 2 imposes that every response

set includes responses from a winning quorum Qwi of
weight wi such that at least b |Qwi|

wi+1 c+ 1 processes from
Qwi are part of that response set. It follows that, if wi + 1
response sets are formed from the same winning quorum
Qwi, at least two of these response sets intersect.

If no two response sets are to intersect, then at most
wi response sets can be formed from a given winning
quorum Qwi. Therefore, for any number w ∈ [1, k], at most
w × nw response sets can be formed from the set of all
winning quorums of weight w. It follows finally that at most∑k
w=1 w × nw response sets can be formed from the set of

all winning quorums without any two of them intersecting.
Since

∑k
w=1 w × nw ≤ k, at least two out of any k + 1

response sets intersect.
Lines 10 and 11 of Algorithm 1 ensure that quorums

include the first α responses (response set) to the current
query. Therefore every quorum includes a response set, and
the quorum intersection property of Σ⊥,k is ensured.

Lemma 2. In a TVG of class 5-(α, γ), every correct process
executing Algorithm 1 forms a new quorum infinitely often.

Proof: Since it uses a query-response mechanism, Al-
gorithm 1 requires every correct process to reach and be
reached back by α processes, which is ensured by a TVG
of class 5-(α, γ) infinitely often. Even if a journey includes
waiting time during which the process holding the message
is isolated, the process keeps memory of the message by
rebroadcasting it to itself, and transmits it to other processes
as soon as it it stops being isolated. As a result, every correct
process will receive responses from α processes infinitely
often, and therefore pass the test on line 10 infinitely often.

Lemma 3. In a TVG of class 5-(α, γ), Algorithm 1 ensures the
quorum liveness property of Σ⊥,k.

Proof: By definition, faulty processes will crash or
leave the system forever in a finite time. Let t ∈ T be the
time at which the last faulty process crashes or leaves the
system forever. Since f < n, there are correct processes in
the system. Lemma 2 ensures that each of these processes
forms a new quorum sometime after t. Let τ ∈ T be a time
such that τ > t and every remaining process has formed
a quorum between t and τ . Therefore, every quorum being
currently built at τ has been started after t, which means
no faulty process can possibly respond to the corresponding
query message. As a result, every new quorum formed after
τ contains only correct processes. It follows that Algorithm 1
ensures the quorum liveness property of Σ⊥,k.

Lemma 4. In a TVG of class 5-(α, γ), Algorithm 1 ensures the
quorum connectivity property of Σ⊥,k.

Proof: The properties of a TVG of class 5-(α, γ) en-
sure that every correct process will always receive enough
messages to pass the test on line 10 and keep forming new
quorums infinitely often. The test on line 8 ensures that pro-
cesses only form quorums from messages from the current
round. It follows that eventually, every correct process pi
only includes in its quorums processes which receive its
queries and respond to it infinitely often. Therefore, pi can
send and receive messages infinitely often to and from the
processes that are infinitely often in its quorums.

Let pi ∈ C and pj ∈ Ri. By definition of Ri, pi and pj ’s
quorums intersect infinitely often and thus there must exist
a correct process pm such that pm is infinitely often in pi’s
quorums and pm is infinitely often in pj ’s quorums. As a
result, pm can receive messages from pi infinitely often and
pj can receive messages from pm infinitely often. Therefore
if messages are routed through pm, pj can receive messages
from pi infinitely often.

Theorem 1. In a TVG of class 5-(α, γ) where Assumption 2
holds, Algorithm 1 implements a Σ⊥,k failure detector.

Proof: It follows from Lemmas 1, 3 and 4 that the
algorithm ensures the quorum intersection, quorum liveness
and quorum connectivity properties respectively.

Self-inclusion is ensured by the fact that every quorum is
formed from the buffer recv fromi (line 11), and the buffer
is always initialized with pi (lines 4 and 12).
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5.2 An Algorithm for ΠΣ⊥,x

Algorithm 2 is an extension of Algorithm 1 aiming at imple-
menting ΠΣ⊥,x in our dynamic model. It adds an election
mechanism to the original algorithm in order to identify an
eventual partial leader.

This leader election mechanism relies on the quorum
order, as defined in Section 4.2.2. Every time a process forms
a new quorum, it selects the first process in the quorum as
candidate for the leader election. If a process is the candidate
of every other process in its quorum, then it selects itself as
leader; otherwise it selects its candidate as leader.
Algorithm 2. Implementation of ΠΣ⊥,x for process pi.

1: init
2: ri ← 0 // Local round number
3: qri ← ⊥ // The quorum returned by ΠΣ⊥,x for pi
4: recv fromi ← {pi} // Quorum buffer
5: last knowni ← ∅ // Round numbers of known processes
6: leaderi ← pi // The leader returned by ΠΣ⊥,x for pi
7: candidatei ← ⊥ // pi’s current candidate for leadership
8: candidatesi ← ∅ // Candidates of processes in recv fromi

9: bcast(pi, 0, ∅, ∅)

10: upon reception of (src, r src, Q, cands)from pj do
11: if src = pi and r src = ri then // Response
12: recv fromi ← recv fromi ∪Q
13: candidatesi ← candidatesi ∪ cands
14: if |recv fromi| ≥ α then
15: qri ← recv fromi

16: recv fromi ← {pi}
17: ri ← ri + 1
18: candidatei ← pl | (pos(pl, qri) = 1 ∧ pl 6= pi)
19: ∨(pos(pi, qri) = 1 ∧ pos(pl, qri) = 2)
20: if candidatesi = {pi} or ∅ then
21: leaderi ← pi
22: else
23: leaderi ← candidatei
24: candidatesi ← ∅
25: bcast(pi, ri, ∅, ∅)
26: else if src 6= pi then // Query
27: if ∃last r | 〈src, last r〉 ∈ last knowni

28: ∧ last r ≤ r src then
29: last knowni ← last knowni\{〈src, last r〉}
30: last knowni ← last knowni ∪ {〈src, r src〉}
31: bcast(src, r src,Q ∪ {pi}, cands ∪ {candidatei})
32: else if 〈src,−〉 /∈ last knowni then
33: last knowni ← last knowni ∪ {〈src, r src〉}
34: bcast(src, r src,Q ∪ {pi}, cands ∪ {candidatei})
35: else
36: do nothing

5.2.1 Assumptions
Algorithm 2 implements ΠΣ⊥,x in our model, provided that
the following assumptions hold:
1) The system is a Time-Varying Graph of class 5-(α, γ)
where α is the minimal size of a quorum and γ is the max-
imal time taken by a process to receive its own broadcasts
(Assumption 1).
2) The run follows a generalized winning quorums message
pattern (Assumption 2).
3) The system verifies the eventually winning γ-sources
assumption (Assumption 3).

5.2.2 Notations
Algorithm 2 uses the same notations as Algorithm 1. Addi-
tionally, each process pi uses the following local variables:

leaderi is the leader returned by the failure detector for
process pi. leaderi is initially pi, and is later updated on
lines 21 or 23.

candidatei is the first process in pi’s most recent quorum
(excluding pi itself). It is affected in lines 18 – 19. candidatei
is initialized to ⊥ and is added to sets (lines 31 and 34). We
take the convention that ∅ ∪ {⊥} = ∅.

candidatesi is the set of the candidates of the processes
in recv fromi (except pi). pi will only elect itself as leader
(line 21) if candidatesi only contains pi (i.e., pi is the candi-
date of every process in recv fromi\{pi}) or if candidatesi
is empty (i.e., pi considers itself alone).

In addition to the message parameters described for
Algorithm 1, messages sent by processes contain the cands
parameter, which is the set of the candidates of the processes
in Q, at the time when they responded to the query. It
carries the information necessary for process pi to build its
candidatesi set on line 13.

5.2.3 Algorithm Description
Algorithm 2 follows the same structure and uses the same
mechanisms to build quorums as Algorithm 1. Its additional
code aims to select partial leaders according to the eventual
partial leadership property of ΠΣ⊥,x. The extension added
to Algorithm 1 is composed of two parts: candidate selection
and leader selection.

Candidate selection revolves around the notion of quo-
rum order presented in Section 4.2.2. The first process in
every quorum is selected as the candidate. Whenever a
process pi completes a new quorum (meaning it passes the
test on line 14), it handles the end of the round similarly
to Algorithm 1 (lines 15 – 17). It then identifies the first
process in the new quorum (excluding itself) according to
the chosen ordering method in lines 18 – 19 and selects it
as its candidatei. If it was possible for pi to be its own
candidate, and if quorums were ordered by date of response,
then pi would always be its own candidate.

By virtue of Assumption 3, an eventually winning pro-
cess pl will eventually be forever the candidate of every pro-
cess in Rl\{pl}. However, pl cannot be its own candidate.
Therefore, information about pl’s own quorum order is not
sufficient for pl to select itself as the leader. It must take into
account the candidates of other processes.

This is the purpose of the candidatesi variable. Other
processes inform pi of their respective candidates by includ-
ing it in their responses (lines 31 and 34), and pi gathers
this information in candidatesi in line 13. When pi com-
pletes a quorum, candidatesi contains the candidates of the
processes currently in qri\{pi}.

If every process in qri agrees on pi as the candidate (or
if pi is the only process in qri), then pi selects itself as the
leader (line 21). Otherwise, pi selects candidatei (line 23).

Note that point (3) of Definition 7 prevents the problem-
atic case where a process pi only includes in its quorums
an eventually winning process pl and processes in Π\Rl. In
this scenario, it would be possible for every process in Ri
(including pl) to chose pi as its candidate, thus misleading
pi into selecting itself as the leader infinitely often.

5.2.4 Proof of Correctness
We should prove that, if Assumptions 1, 2 and 3 hold, then
Algorithm 2 ensures the 5 properties of ΠΣ⊥,x.
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Lemma 5. In a TVG of class 5-(α, γ) where Assumption 2 holds,
Algorithm 2 ensures the self-inclusion, quorum intersection, quo-
rum liveness and quorum connectivity properties of ΠΣ⊥,x.

Proof: The added code from Algorithm 1 does not
modify the way the qri variable is initialized and updated.
Therefore, the proof for Theorem 1 holds for Algorithm 2.

Lemma 6. Every eventually winning process pl is eventually
forever the candidatei of every process pi(6= pl) of its recur-
rent neighborhood. ∀pl ∈W,∀pi ∈ Rl\{pl} : ∃τ : ∀τ ′ ≥ τ :
candidatei = pl at time τ ′.

Proof: It follows from the properties of a TVG of class
5-(α, γ) that correct processes will keep passing the test on
line 14, and therefore form new quorums infinitely often.

By contradiction, let us assume the following:
∃pl ∈W,∃pi ∈ Rl\{pl},∃pm ∈ Π\{pl},∀τ : ∃τ ′ ≥ τ :
candidatei = pm at time τ ′. There are, thus, two cases:

pm /∈ Ri. By definition of Ri, there is a time after which
pi’s quorums never intersect with pm’s quorum. By con-
struction of the algorithm (lines 4 and 16), self-inclusion is
ensured (every process belongs to its own quorums). Thus,
there is a time after which pm is never in pi’s quorums, and
therefore it can never be selected as candidatei on lines 18 –
19 after this time.

pm ∈ Ri. Since pl is an eventually winning process,
there is a time after which (1) pl is in every quorum formed
by pi and (2) in every quorum formed by pi that includes
pm, pl is positioned before pm. As a result, pm can never be
selected as candidatei on lines 18 – 19 after this time.

W is the set of all eventually winning processes, and L
is the set of all eventual partial leaders.

Lemma 7. Every eventually winning process is an eventual
partial leader. W ⊆ L.

Proof: Let pl ∈W . pl is an eventual partial leader
if and only if, for every pi ∈ Rl, eventually leaderi = pl
forever. There are two cases:

pi = pl. It follows from the definition of Rl and from
self-inclusion that there is a time after which every pro-
cess that is not in Rl will stop appearing in the quorums
formed by pl. It follows that there is a time τ1 such
that ∀τ ′1 > τ1, qr

τ ′
1

l ⊆ Rl. If α = 1, then qr
τ ′
1

l = {pl} and
therefore candidatesl = ∅ at time τ ′1 (by construction of
candidatesl). If α > 1, since the definition of Rl is sym-
metrical, ∀τ ′1 > τ1,∀pj ∈ qr

τ ′
1

l : pl ∈ Rj . It then follows
from Lemma 6 that ∃τ2 ≥ τ1,∀τ ′2 > τ2,∀pj 6= pl ∈ qr

τ ′
2

l :
candidatej = pl at time τ ′2. Since pl will keep forming
new quorums with fresh information, ∃τ3 ≥ τ2 such that
every time after τ3 that pl completes a round, then
candidatesl = {pl}. As a result, after time τ3, pl will always
pass the test on line 20 and, therefore, will forever identify
itself as the leader.

pi 6= pl. According to point (3) of the eventually
winning process definition, ∃τ1,∀τ ′1 > τ1,∃pj ∈ Rl :

pj ∈ qr
τ ′
1
i . It follows from Lemma 6 that

∃τ2 ≥ τ1,∀τ ′2 > τ2, candidatej = candidatei = pl at time
τ ′2. Since pi will keep forming new quorums with fresh
information received from pj , ∃τ3 ≥ τ2 such that every time
after τ3 that pl completes a round, then pl ∈ candidatesi.
As a result, after τ3, pi will always fail the test on line 20
and will forever identify candidatei = pl as the leader.

In both cases, pi selects pl as leader forever, which makes
pl an eventual partial leader.

Lemma 8. If the eventually winning γ-sources assumption (As-
sumption 3) holds, then Algorithm 2 ensures the eventual partial
leadership property of ΠΣ⊥,x.

Proof: It follows from Assumption 3 that
∀pi ∈ C,∃pl ∈W,∀τ : ∃J ∈ J γ(pl,pi) ∧ departure(J ) > τ .
It follows from Lemma 7 that pl ∈ L. Since we assume
fair-lossy channels, then if pl sends messages infinitely
often, then pi will receive messages from pl infinitely often.

Theorem 2. In a TVG of class 5-(α, γ) where Assumptions 2
and 3 hold, Algorithm 2 implements a ΠΣ⊥,x failure detector.

Proof: Follows directly from Lemmas 5 and 8.

5.3 An Algorithm for ΠΣ⊥,x,y

An algorithm for ΠΣ⊥,x,y simply consists in executing y
instances of Algorithm 2 simultaneously. This algorithm
relies on Assumptions 1 , 2 and 3. However, Assumption 3
is only required to apply for one out of the y instances of
the algorithm.

6 A k-SET AGREEMENT ALGORITHM

In [9], the authors proposed an algorithm for k-set agree-
ment using ΠΣx,y for static networks. The k-set algorithm
itself is very simple. It only deals with the liveness property
of k-set agreement (termination) and encapsulates the safety
properties (validity and agreement) into the Alphax sub
protocol. In this section we will adapt the Alphax and k-
set agreement algorithms for dynamic networks.

6.1 The Alphax Sub Protocol
Alpha was introduced in [23] as a way to exactly capture
the safety properties of consensus (that is, validity and
agreement). It is thus complementary to the Ω failure detec-
tor, which is necessary to ensure liveness (the termination
property). Alpha was later generalized in [24] into KA for
the k-set agreement problem.

In [9], Mostéfaoui, Raynal and Stainer define Alphax as
an extended, weaker version of the KA of [24]. Alphax
is a distributed object used to store values proposed by
processes. It initially stores the default value ⊥. It provides
processes with an operation Alpha.proposex(r, v) that re-
turns a value (possibly ⊥). The round number r is a logical
time and v is a proposed value. It is assumed that (a) each
process will use increasing round numbers in successive
invocations of Alpha.proposex() and (b) distinct processes
use different round numbers. An Alphax object is defined
by the following properties:
Termination. Any invocation of Alpha.proposex() by a cor-
rect process terminates.
Validity. If Alpha.proposex(r, v) returns v′ 6= ⊥, then
Alpha.proposex(r′, v′) has been invoked with r′ ≤ r.
Quasi-agreement. At most x different non-⊥ values can be
returned by different Alpha.proposex() invocations.
Obligation. Let pl be a correct process and Q(l, τ) =
{pi ∈ C|∀τi, τl ≥ τ : qrτii ∩ qr

τl
l = ∅}. If, after time τ , (a)

only pl and processes of Q(l, τ) invoke Alpha.proposex()
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and (b) pl invokes Alpha.proposex() infinitely often, then at
least one invocation issued by pl returns a non-⊥ value.

Note that the termination property of Alphax is not
related to the termination property of the k-set agreement.

In order to ensure the safety properties of k-set agree-
ment, it is not necessary to make use of the eventual
partial leadership property of ΠΣ⊥,x and therefore, the
Alphax algorithm presented here does not make use of the
leaderi variable. However, the k-set agreement algorithm
implements the termination property of k-set agreement
by relying on the obligation property of Alphax and the
eventual partial leadership property of ΠΣ⊥,x.

The definitions in [10] and [9], that propose k-set agree-
ment algorithms for static networks, use different obligation
properties. TheAlphax in this paper is the one defined in [9],
which is weaker than the one in [10] by being Σx-aware.

6.2 Alphax Algorithm

In this section we propose an algorithm implementing
Alphax for our model enriched with ΠΣ⊥,x, adapted from
the algorithm in [9].

The algorithm gives each proposed value a priority. Each
process pi keeps a value esti, which is its current estimation
of the value it will decide, and a pair (lrei, posi) which
defines the priority of value esti. lrei is the highest round
seen by pi and posi is the position of value esti within round
lrei. The position is used to fix priority on proposed values.

The function g(ρ, δ) = 2δ(ρ− 1) + 1 where ρ is the po-
sition of value v on round r and δ = r′ − r, with r′ ≥ r, is
used to compute the position of v on round r′.

If value v has priority ρ at round r and value v′ has
priority ρ′ at round r′ with r ≤ r′, v has lower prior-
ity than v′ at round r′ if and only if g(ρ, r′ − r) < ρ′ or
(g(ρ, r′ − r) = ρ′) ∧ (v < v′).

The Alpha.proposex() function is composed of two
phases. In the read phase (lines 6 – 14), the process attempts
to gather knowledge on the values proposed by other pro-
cesses in a quorum (as defined by Σ⊥,x) by sendingREQ R
messages and receiving RSP R messages. If a process in
the quorum is already computing a higher round, pi returns
⊥ (line 11). Otherwise, it selects the highest priority value it
knows of (lines 12 – 13), and proceeds to the write phase.

In the write phase (lines 15 – 24), the process attempts
to raise the priority of its current estimated value by com-
municating it to other processes in a quorum with REQ W
messages and receiving RSP W messages. Once again, if
any process in the quorum is computing a higher round,
pi returns ⊥ (line 22). If another process has a value of
higher priority for the current round, pi adopts it as its
new estimated value (lines 23 – 24). pi then raises posi by
1 (line 16) and repeats the write phase until it manages to
raise a value to position 2r (line 15) or until it encounters a
process in a higher round (line 22).

The following modifications were made to the original
algorithm in [9] in order for the algorithm to ensure the
properties of Alphax in dynamic networks:

The original algorithm assumed a complete, static com-
munication graph with reliable channels and therefore every
message was only sent once. In our model we need mes-
sages to be rebroadcast (lines 31, 33, 42 and 44). This mech-
anism ensures that (1) the emitting process will rebroadcast

its own message every γ units of time; and (2) the reception
of the message will not be restricted to the neighbors of
the emitting process. The message will be received by every
process that can be reached through a γ-journey.

Since messages are rebroadcast, the direct emitter of a
message is not necessarily the source of the message. For this
reason, we added the process identifier of the responding
process in message types RSP R and RSP W.

Algorithm 3. Implementation of Alphax using ΠΣ⊥,x in dy-
namic networks for process pi.

1: init
2: lrei ← 0 // The last round entered by pi
3: esti ← ⊥ // The value that pi currently plans on deciding
4: posi ← 0 // The position of esti within round lrei

5: function ALPHA.PROPOSEX(r,vi)
6: repeat Qi ← qri; bcast REQ R(r,Qi)
7: until Qi 6= ⊥ and ∀pj ∈ Qi :
8: RSP R(r, pj , 〈lrej , posj , valj〉) received
9: rcvi ← {〈lrej , posj , estj〉 : pj ∈ Qi∧

10: RSP R(r, pj , 〈lrej , posj , estj〉) received}
11: if ∃〈lre,−,−〉 ∈ rcvi : lre > lrei then return(⊥)
12: posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}
13: esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
14: if esti = ⊥ then esti ← vi
15: while posi < 2r do
16: posi ← posi + 1; psti ← posi
17: repeat Qi ← qri; bcast REQ W(r, psti, esti, Qi)
18: until Qi 6= ⊥ and ∀pj ∈ Qi :
19: RSP W(r, psti, pj , 〈lrej , posj , valj〉) received
20: rcvi = {〈lrej , posj , estj〉 : pj ∈ Qi∧
21: RSP W(r, psti, pj , 〈lrej , posj , estj〉) received}
22: if ∃lre : 〈lre,−,−〉 ∈ rcvi : lre > lrei then return(⊥)
23: posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}
24: esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
25: return(esti)

26: upon reception of REQ R(rd,Q) do
27: if pi ∈ Q then
28: if rd > lrei then
29: posi ← g(posi, rd− lrei); lrei ← rd
30: bcast RSP R(rd, pi, 〈lrei, posi, esti〉)
31: bcast REQ R(rd,Q)

32: upon reception of RSP R(rd, pj , 〈lrej , posj , estj〉) do
33: bcast RSP R(rd, pj , 〈lrej , posj , estj〉)

34: upon reception of REQ W(rd, pos, est,Q) do
35: if pi ∈ Q then
36: if rd ≥ lrei then
37: posi ← g(posi, rd− lrei); lrei ← rd
38: if pos > posi then esti ← est; posi ← pos
39: else if pos = posi then
40: esti ← max{esti, est}
41: bcast RSP W(rd, pos, pi, 〈lrei, posi, esti〉)
42: bcast REQ W(rd, pos, est,Q)

43: upon reception of RSP W(rd, pos, pj , 〈lrej , posj , estj〉) do
44: bcast RSP W(rd, pos, pj , 〈lrej , posj , estj〉)

The original algorithm uses a selective multicast for both
the read and write phases, i.e., messages are sent only to the
processes in a quorum Qi. Our algorithm uses broadcasts
as defined in Section 2 (lines 6 and 17) and transmits Qi
with the message. All receiving processes will rebroadcast
the message, but only the processes within Qi will deliver it
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(lines 27 and 35).

Theorem 3. In our model augmented with ΠΣ⊥,x, Algorithm 3
ensures the properties of Alphax.

Proof. The modifications added to the original algorithms
from [10] and [9] do not allow the algorithm to add new
values, therefore the proof for validity in the original papers
holds. Similarly, the proofs for obligation in [9] and quasi-
agreement in [10] do not rely on any static connectivity
assumption, and instead rely on algorithm behavioural
properties which were not altered in our version. Therefore,
the original proofs hold for Algorithm 3.

Concerning termination, the only possibility for an invo-
cation not to terminate is that process pi waits forever for a
response message in one of the repeat loops (lines 6–8 and
17–19). Let us assume by contradiction that pi waits forever
for responses. The liveness property of ΠΣ⊥,x ensures that
eventually pi only sends queries to correct processes and
waits for responses from correct processes. Given that the
set of correct processes is finite, the set of possible correct
quorums is finite too. It follows that there is a correct
quorum Q such that infinitely often, qri = Q, and therefore
according to the quorum connectivity and self-inclusion
properties of ΠΣ⊥,x, there are recurrent journeys between
any process in Q and pi. As a result, all the processes from
Q will eventually receive the queries from pi, and pi will
eventually receive the responses from the processes in Q,
and, therefore, exit the repeat loop.

6.3 k-Set Agreement Algorithm
Given an Alphax object and a ΠΣ⊥,x,y failure detector, solv-
ing k-set agreement is simple. The algorithm given here is
an adaptation of the one given in [9] for dynamic networks.
We first solve x-set agreement with ΠΣ⊥,x (Algorithm 4),
and then k-set agreement with ΠΣ⊥,x,y for k ≥ xy.

Algorithm 4. x-Set agreement with Alphax using ΠΣ⊥,x in
dynamic networks for process pi.

1: init
2: deci ← ⊥ // The value decided by pi (⊥ if pi has not decided)
3: primei ← the ith prime number // Constant
4: ri ← primei // The current round number

5: function PROPOSE(vi)
6: while deci = ⊥ do
7: if leaderi = pi then
8: deci ← Alpha.proposex(ri, vi)
9: ri ← ri × primei

10: decide(deci)
11: bcast DECISION(deci)

12: upon reception of DECISION(d) do
13: if deci = ⊥ then
14: deci ← d
15: decide(d)
16: bcast DECISION(d)

A well formed invocation of Alpha.proposex(r, v) is an
invocation such that two processes cannot use the same
round number r, and successive round numbers for a given
process are increasing. To this end, each process pi initially
computes primei, the ith prime number. pi then uses primei
as its first round number, and multiplies it by primei after
every round. As a result, the round number of pi increases

and is always a power of primei, which ensures that two
distinct processes always use distinct round numbers.

Theorem 4. In our model augmented with ΠΣ⊥,x and with an
Alphax object, Algorithm 4 solves the x-set agreement problem.

Proof. The test on line 6 ensures that the⊥ value is never de-
cided. From this point on, the validity of theAlphax object is
enough to ensure the validity of x-set agreement. Similarly,
the quasi-agreement property ofAlphax is enough to ensure
the agreement property of x-set agreement.

The eventual partial leadership property of ΠΣ⊥,x en-
sures that if every leader in L decides, then eventually every
correct process will receive a DECISION message from a
process in L. As a result, the proof for the termination
property provided in [9] holds for Algorithm 4.

Similarly to [9], a simple k-set algorithm can be ob-
tained by running y instances of Algorithm 4, the jth one
(1 ≤ j ≤ y) relying on the component FDi[j] of failure
detector ΠΣ⊥,x,y for every process pi. A process decides
the same value decided by the first of the y instances that
terminates. As there are y instances of the algorithm and
each of them can decide x values at most, it follows that
at most xy values can be decided. Therefore, the algorithm
solves k-set agreement for k ≥ xy.

7 RELATED WORK

In this section, we will first present a number of articles that
offer solutions to agreement problems in dynamic systems,
then we will compare the assumptions we use in this paper
with existing models in the literature.

7.1 Agreement in Dynamic Systems
A number of papers have proposed solutions to agreement
problems in dynamic networks, while relying on various
timeliness, failure pattern, and connectivity assumptions.

The synchronous model is the most widely used to solve
dynamic consensus in the literature. In [3], Kuhn et al.
consider a model with a fixed set of processes commu-
nicating in synchronous rounds, and propose algorithms
solving consensus, simultaneous consensus (all processes
decide within the same round), and ∆-coordinated consen-
sus (all processes decide within ∆ rounds of each other).
Biely et al. provide another algorithm for consensus in a
similar model in [1], with weaker connectivity assumptions.
In order to better formulate timeliness assumptions in the
Time-Varying Graph formalism of [11], Gómez-Calzado et
al. introduce in [19] the notion of timely journeys. They
also propose an algorithm solving the Terminating Reliable
Broadcast, which is equivalent to consensus in their syn-
chronous model.

Fewer papers have studied asynchronous dynamic con-
sensus. In [25], Taheri and Izadi propose a protocol solving
the stronger problem of Byzantine consensus in an asyn-
chronous dynamic system, using the necessary assumption
that no more than bn−13 c processes are faulty. Benchi et al.
also provide in [5] an algorithm for asynchronous dynamic
consensus under a similar failure pattern assumption.

From a failure detector perspective, some papers chose
to implement the eventual leader detector Ω [7] (the weak-
est failure detector to solve consensus in message pass-
ing environments with a majority of correct processes)
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in dynamic systems as a step towards consensus. Cao et
al. in [12] study eventual leadership in dynamic systems,
proposing a model in which the system is composed of
two sets of nodes: fixed support stations forming a static
complete graph with asynchronous communications, and
mobile hosts communicating through the support stations.
Eventual leader protocols for dynamic networks were also
proposed by Gómez-Calzado et al. in [26] using partial
synchrony assumptions, and by Arantes et al. in [27] using
message pattern assumptions in a timer-free model.

To the best of our knowledge, only three papers have
studied the problem of k-set agreement in dynamic systems.
Biely et al. in [2] presented an algorithm for gracefully
degrading consensus in synchronous dynamic networks.
The algorithm solves consensus if the network conditions
allow for it, and falls back on solving k-set agreement, oth-
erwise. Another algorithm proposed by Sealfon and Sotiraki
in [4] also relies on synchronous communications and on the
assumption that every process knows an upper bound on
the system membership. Finally, in our previous paper, [28],
we provided a solution for k-set agreement in asynchronous
dynamic systems, with a costly assumption on the relative
values of k and the system membership n.

7.2 Comparable Assumptions in the Literature

We attempt to put the strength of our assumptions into per-
spective by comparing them to some other existing models.

In [29], Afek and Gafni propose an implementation
of read and write operations in a dynamic synchronous
message passing system. Although the underlying network
is assumed to be complete, in each synchronous round a
subset of edges lose their messages. Therefore, such a system
can be modeled as a TVG where the edges that successfully
deliver their message in a round are considered active in
that round. As a result, the message adversary that decides
which messages will go through can be compared to a con-
nectivity assumption. The paper defines the Traversal Path
(TP) adversary as a model in which, for every synchronous
round, the directed graph defined by the successfully de-
livered messages in this round contains a directed path
passing through all the nodes. This connectivity assumption
is weaker than a TVG of class 5, because traversal paths are
directed paths, which implies that every process can not
necessarily communicate with every other. The comparison
with class 5-(α, γ) is less straightforward. On the one hand,
class 5-(α, γ) implies two-way connectivity whereas a TP
adversary only requires one-way connectivity. On the other
hand, class 5(α, γ) only requires connectivity between a
limited number of nodes (as defined by the α parameter)
and allows network partitioning, whereas a TP adversary
connects the entire system.

In [30], Biely et al. define and implement the generalized
loneliness failure detector Lk in a static and connected
network. For this purpose, the authors use the Manti(x)

message pattern model, which is defined by the x-Anti-
Source. An x-Anti-Source is a process which is ensured to
receive responses from x processes to every query it issues
before it issues the next query. This definition could be
used in our model: if every process in the system is an x-
Anti-Source for x ≥ b n

k+1c + 1, then Assumption 2 (with
α = x) and the quorum intersection property are ensured.

However, the Manti(x) model only requires x processes to
be x-Anti-Sources, which is only sufficient to implement
quorums if x = n, since the intersection property must
apply to every process in the system.

In [27], Arantes et al. present an algorithm that imple-
ments the Ω failure detector in an asynchronous TVG of
class 5. To this end, the authors define the Stable Responsive-
ness Property (SRP). A correct process p satisfies the SRP
at time t if and only if, after t, all nodes in p’s neighborhood
receive a response from p to every one of their queries
within the first α responses.

The definition of the SRP can be compared to the
definition of an eventually winning process. Both properties
enable a leader election mechanism by assuming that after
some time, some process is among the first to respond to
the queries of its neighbors. However, SRP applies to every
process that shares a link with the leader after t, even for a
moment, whereas the property of an eventually winning
process pl only applies to the processes of Rl, meaning
those processes that interact infinitely often with pl. Thus,
in our case, a process can join the neighborhood of an
eventually winning leader and leave it later on, which is
not possible with a process satisfying the SRP . But while
the properties of an eventually winning leader can apply to
a smaller subset of processes, those properties are stronger.
Process pl is not only required to respond to every query
from its neighbors in time, it must also be the fastest to
respond. Additionally, the processes within Rl are expected
to communicate with each other to some extent, which is
not necessary in the SRP .

8 CONCLUSION

In this paper we adapted the existing ΠΣx,y failure detector
to unknown dynamic systems by using the ⊥ default value
to deal with missing information and by adding connectiv-
ity properties to the failure detector definition. We obtained
the ΠΣ⊥,x,y failure detector, which is sufficient to solve k-set
agreement in unknown dynamic systems with k ≥ xy.

We then provided an algorithm implementing ΠΣ⊥,x,y
in a Time-Varying Graph of class 5-(α, γ), along with the
connectivity and message pattern assumptions it relies on.

Finally, we adapted an existing algorithm to solve k-set
agreement in unknown dynamic networks augmented with
ΠΣ⊥,x,y (k ≥ xy).

Future research could attempt to further weaken the
system model by removing the assumption of synchronous
processes. The connectivity model would then need to be
adapted, since the synchrony of processes allows the algo-
rithm to take advantage of the time windows provided by
γ-journeys. Such a change would be a challenge, because
the other approaches used to ensure reachability in a TVG
([19]) rely on point to point communications, which is not
applicable in an unknown network.

Another research direction would be to solve other prob-
lems in similarly weak models, such as the implementation
of shared registers in a unknown dynamic message passing
system.
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