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Abstract

Optimistic replication lets multiple users write to shared data with no
remote synchronisation. However such replicas diverge and must be rec-
onciled. IceCube is a general-purpose reconciliation engine, parameterised
by “constraints” capturing data semantics and user intents. Given logs of
update actions, IceCube suggests reconciliation schedules that combine the
actions nearly-optimally and that honour the constraints. IceCube features
a simple, high-level, systematic, and intuitive API for applications to ex-
press constraints. IceCube integrates together diverse applications, sharing
various data, and run by concurrent users. This paper presents the IceCube
API and algorithms. Application experience indicates that IceCube simpli-
fies application design, supports a wide variety of application semantics,
and seamlessly integrates diverse applications. On a realistic benchmark,
IceCube runs at reasonable speeds and scales to large input sets.

1 Introduction

In mobile computing and other settings, replicating shared data allows users
to access it readily even when network communication is unavailable, slow or
expensive. To enable multiple users to also write the shared data requires an
optimistic replication system, one where an update operates on a local replica,
and is later propagated to other replicas as communication becomes available.
However an update is tentative, since some concurrent, conflicting update
might overwrite it. Given a set of concurrent tentative updates, a reconcilia-
tion algorithm selects, among all the possible combinations, one that contains
no conflicts [15], possibly dropping some actions. In operation-based (or log-
based) approaches, update actions are recorded in a log; reconciliation replays
the combined actions, from the initial state, according to some schedule.
Existing reconciliation systems (see related work in Section 8) have several
shortcomings. Those that wire in a single application semantics are severely
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Figure 1: IceCube system structure

limited. Those that do not take semantics into account suffer spurious con-
flicts.!

In contrast, IceCube provides a common reconciliation layer that is generic,
yet parameterised by application semantics. Most importantly, it reconciles
harmoniously across users, applications and objects that need not be aware
of each other’s existence. An application may access several data objects; dif-
ferent applications may access the same data; a user might combine several
mutually-ignorant applications in some particular task; and different users
may work in parallel. IceCube properly reconciles across these borders.

1.1 Challenges and contributions

A conflict is defined as a set of actions that, if run together, would violate appli-
cation invariants. To support a variety of applications, IceCube needs to know
when this happens, i.e., it needs access to some of the application semantics.
Our first challenge was to capture this information in a general and powerful
way. Our contribution is an API whereby applications express precise depen-
dencies and invariants as constraints.

Many systems are conservative in their conflict detection, dropping ac-
tions whenever in doubt. Our second challenge was to avoid dropping unless
strictly necessary. Our contribution is to approach reconciliation as an opti-
misation problem. IceCube schedules are near-optimal, in the sense that they
heuristically minimise the value of dropped actions.

The third challenge is efficiency and scalability. We address this primarily
by encouraging applications to use so-called static constraints. Another tech-

This is highly undesirable because the impact of dropping an action spuriously can be large.
For real-life examples, consider yourself using a disconnected calendar that drops an important
meeting, or a a travelling salesman'’s sales-support tool that would drop orders.



nique we use is to decompose large inputs into small independent reconcilia-
tion problems. Benchmarks show that IceCube reconciles in reasonable time
and scales nicely to large logs.

A final challenge is practicality. We report our experience coding a number
of useful applications. Using IceCube considerably simplifies application de-
velopment, and furthermore enables users to interact with diverse applications
and objects, with the assurance they will reconcile consistently and seamlessly.

1.2 OQutline

This paper is organised as follows. Section 1 is this introduction. In Section 2
we present our system model and give an example of the uses and capabilities
of IceCube. Section 3 discusses the main concepts and APIs. The scheduler’s
algorithms are explained in detail in Section 4. Some applications that use
IceCube are presented in Section 5. Some application design hints and a dis-
cussion of modes of operation around IceCube make Section 6. We evaluate
performance and quality of IceCube in Section 7. Section 8 discusses related
work, and Section 9 summarises conclusions and lessons learned.

2 Operation

21 System model

IceCube is the reconciliation component of a distributed system supporting
disconnected operation, as sketched in Figure 1. In order to share data, each
computer (Anne’s and Brian’s PC are shown in the figure) has its own replicas
(Appointments, Accounts, Flights in the figure), which it can both read and
update locally. An application applies updates tentatively to the local local
replica and logs them. The system sends the logs (incrementally while the site
is connected, or in a batch when a disconnected site reconnects) to the IceCube
reconciler. The reconciler combines the concurrent tentative updates, and re-
plays them against the initial state, in a sequential execution called a schedule.
It consults semantic information, both recorded in the logs (log constraints),
and characterising shared data (object constraints: see Appointment, Account
and Flight constraints in the figure). If the logs are conflicting, the reconciler
generates any number of non-conflicting schedules, and returns the proposed
schedules and results. The user (or a process working on his behalf) may se-
lect a schedule to be committed from among the proposals. If the user is not
satisfied with the proposed schedules (e.g., because they an unexpressed user
preference, or because there are too many conflicts), he may either ask for more
proposals, commit only a subset of actions, or edit the logs and try again.
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Figure 2: The collected logs of the travel scenario

2.2 A multi-application, multi-data scenario

Let’s consider a simple scenario of using IceCube to get a feel of how it oper-
ates. Two users, Anne and, Brian planning a business trip to meet their sales
team in a distant city. They make their plans independently, updating the local
replica of the corresponding databases. When they reconcile, they may experi-
ence conflicts such as double bookings, insufficient funds, or a cancelled flight.

While away from the network, Anne uses her calendar application to sched-
ule a meeting, a travel reservation application to book flights, and a banking
application to pay for travel and accommodation. Although these are separate
applications, Anne indicates to the system that her actions are part of a single
indivisible activity. This constrains the schedule to include either all of them or
none.

Brian accesses much the same applications on his own disconnected per-
sonal computer. Brian wants the system to help him choose between two dif-
ferent possibilities. One is a convenient but expensive flight on 12 October,
the other a less convenient but cheaper one on 11 October. Brian indicates his
preference by giving a higher value to the 12 October flight.

Anne, as the manager, controls the reconciler. The collected actions appear,
in a tree structure, in the window shown in Figure 2. The top branch shows
Alice’s four activities, collected in a “parcel” indicating indivisibility. Brian
has submitted two parcels, and has indicated an “alternative”, instructing the
system to choose between them.

Figure 3 presents one output from the reconciler. The top pane contains a
suggested non-conflicting schedule. The bottom pane shows the actions that
were dropped from the schedule, and the reason why. Brian’s payment for
the expensive flight is dropped for insufficient funds (unbeknownst to Anne
and Brian, another user has concurrently spent some of the travel account); the
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Figure 3: Possible reconciliation for travel scenario

corresponding booking is dropped since it is in a parcel with the payment re-
quest; and the cheaper flight alternative is included in the schedule. At this
point, Anne may press “Accept” to commit the decision, “Retry” to ask Ice-
Cube to propose a new schedule based on the same inputs, or “Cancel” to exit
and reconcile later. In the last two cases, she may tick the boxes on the left to
force a particular action to be included or dropped in the next proposal.

Although we presented an interactive reconciliation session, IceCube can
also generate schedules under program control, which can then select among
them without a user in attendance.

3 The IceCube system and APIs

IceCube explores the space of possible schedules heuristically. It selects and
executes the highest-valued ones, subject to constraints specified by the appli-
cation and the shared data. It can do so repeatedly until a satisfactory solution
is found.

3.1 Shared data, actions and logs

A set of data managed by IceCube is abstracted by the Repl i cat edSt at e
class. An application developer provides his Repl i cat edSt at e with meth-
ods to checkpoint and to return to a previous checkpoint. Repl i cat edSt at es
are disjoint and are intended to be coarse grained.

Atany time a particular Repl i cat edSt at e exists in several versions: there
is a copy at each site, and each copy can have multiple checkpoints, in addi-
tion to the current tentative state and/or the current replay state. The set of
checkpoints includes a linearly-ordered subset of stable checkpoints.

The IceCube logging API has primitives for creating an action, recording it
in the local log, and registering and combining log constraints. An action has
an integer value, 1 by default.



An action is a Java object implementing a number of interfaces described in
this and subsequent sections. The methods are call-backs invoked by the Ice-
Cube system during the reconciliation process. The first interface is for action
execution:
interface ActionExecution {

/1 test precondition; no side effects
public bool ean preCondition (ReplicatedState state);

/| execute; update state; return postcondition + undo info
public bool ean execute (ReplicatedState state, UndoData info);

/! undo execution; return false if can not undo
public bool ean undo (ReplicatedState state, UndoData info);
}

Method preCondi ti on is intended to test without side-effects whether the
action is valid in the current state. Method execut e is intended to update the
state, accomplishing the action’s purpose. It returns a boolean post-condition
indicating success or failure. Optionally it may return information to be used
by a subsequent call to the undo method. The latter is intended to roll back
a previous update. We will see examples of these methods when we consider
specific applications in Section 5.

3.2 Constraints

Contflict detection and scheduling are based on constraints. Constraints express
either user intents or object correctness invariants. In the travel scenario, Anne
has expressed her intent that two apparently independent actions (booking a
flight and making a payment) constitute a single activity. An example object
correctness invariant would be forbidding two concurrent users from both re-
serving the last available seat in an airplane.

Constraints are either static, i.e., independent of the shared state, or dy-
namic.> The former serve to limit the scope of search; the latter (the pre- and
post-conditions of the Act i onExecut i on interface) are verified against the
current state of the shared objects while reconciling.

3.2.1 Primitive static constraints

The two primitive static constraints are Order, noted —, and MustHave, noted
~+. Any schedule s must satisfy the following soundness conditions:

1. Consistent with Order: For all actions a,b € s, if a — b then a comes
before b in the schedule (although not necessarily immediately before),

2. Closed for MustHave: For any a € s, every action b such that a ~» b is
also in s (but not necessarily in that order nor contiguously).

The first condition implies that a schedule cannot contain a cyclic Order
relationship. If cycles occur within or between logs, they must be broken by

2 A better characterisation might be “declarative” and “imperative.”



dropping one or more actions from the schedules. The breaking of (non bi-
nary) cycles is the main source of complexity of scheduling. Finding an acyclic
subgraph of a given size is an NP-complete problem [6]; therefore the reconcil-
iation problem, of finding an optimal such subgraph, is NP-hard.

The primitive constraints are too low-level to be used directly. The IceCube
API wraps them into higher-level abstractions, log constraints and object con-
straints, which we explain next.

3.2.2 Log constraints

A log constraint is a dependency between two specific actions, stored with them
in a log. A log constraint expresses how actions relate to one another, i.e., the
user’s intents.

The pr edecessor Successor constraint states that the second action may
be executed only after (not necessarily immediately after) the first one suc-
ceeds. This usually indicates the second action consumes some effect produced
by the first. For example consider changing a file, then copying the changed
version. To maintain the same behaviour at reconciliation, the write action is
made the predecessor of the copy action in the log. For two actions a and b the
relation pr edecessor Successor (a, b) is equivalent toa — bAb ~» q, ie., the
conjunction of primitive Order and MustHave relations in opposite directions.

The al t er nat i ve relation instructs the system to choose a single action
from a set. An example is submitting an appointment request to a calendar
application, when the meeting can take place at (say) either 10:00 or 11:00.
In case of conflict, an al t ernati ve provides the scheduler with fallback.
al ternative(a,b) translates toa — b A b — a, i.e,, a and b cannot both be
included in the same schedule.

The par cel relation constitutes an all-or-nothing grouping — either all of
its actions are executed successfully, or the parcel fails. The actions may run
in any order, possibly interleaved with other actions (unless otherwise con-
strained). par cel (a,b) is equivalentto a ~» b A b ~ a.

3.2.3 Object constraints

An object constraint is a relation between action types, and reflects the static
semantics of shared data. At the beginning of scheduling IceCube extracts ob-
ject constraints by comparing each pair of actions (not already related by a log
constraint) by the methods in the following interface:

interface ActionObjectConstraint {

/] test whether this and other action conflict
public bool ean nutual | yExcl usi ve (Action otherAction);

/1 Test successful ordering of this and other actions
public int bestOrder (Action otherAction);
}

Method nut ual | yExcl usi ve returns true if running both actions would
violate an invariant. For example, in a file system, an action creating a directory



named N is mutually exclusive with one creating a file also named N. The
relation mut ual | yExcl usi ve(a, b) is equivalenttoa — b A b — a.?

When there is a favorable execution order for a pair of actions, method
best Or der indicates that order. For instance, in a bank account application,
best Or der comparing a debit and a credit to the same account will return
“credit before debit.” The relation best O der (a, b) is equivalent to a — b.

Object constraints only make sense between concurrent actions; therefore
log constraints take precedence over object constraints. For example, two ac-
tions that already are related by predecessor Successor will not be re-
ordered by best Or der .

When there is no explicit Order constraint between two actions, they can
run in any order. As an enhancement, the action interface provides more direct
and efficient ways of indicating commutativity. nut ual | yExcl usi ve and
best Or der are called only after the following have been tested:
interface ActionEnhancenents {

/1 domain identifiers
public long[] getDonmain ();

/1 test if this and otherAction (sane donmin) overlap
public bool ean overlap (Action otherAction);

/1 test if this and other (overlapping) actions comute
public bool ean commute (Action otherAction);

}

Cet Donmi n: An action has any number of domains, opaque identifiers that
partition application objects. For instance the domain of a banking action
might be a hash of the branch number-account number pair. Two actions with
no common domain are commutative.

Method over | ap tests whether actions (with a common domain) overlap.
For instance a banking application action tests, first if the other action is also
a banking action (because domains are not guaranteed unique), and whether
it operates on the same branch and account number. Two actions that don’t
overlap are commutative.

Method conmut e tests whether (overlapping) actions commute semanti-
cally. For instance, two credits to the same bank account overlap but com-
mute. Although —over | ap and conmut e are functionally equivalent, devel-
opers find it easier to address the two questions separately, as will become
apparent when we look at some applications. Two actions that conmut e are
commutative.

As an example, Table 1 shows the object and dynamic constraints in a bank-
ing application with credit and debit actions, and a calendar application with
actions to add or remove an appointment.

3The formulze for al t er nat i ve and mut ual | yExcl usi ve are identical. Indeed, both choose
between actions. However they are reported back differently: the former as normal behaviour, the
latter as a conflict.



Bank credit/credit  debit/debit  debit/credit

Different accounts —overl ap —overl ap —overl ap

Same account comut e comut e best Or der
Dynamic constraint: no overdraft

Calendar add/add renove/r enove renove/add
Other user, time —overl ap —overl ap —overl ap
Same user & time | Mut. Excl . commut e best Or der

Dynamic constraint: no double-booking
Table 1: Bank and Calendar constraints

4 Reconciliation scheduler

Static constraints limit the problem size, but as it remains inherently complex,

our reconciler searches heuristically through the static constraint space. As it

generates a schedule, it immediately executes it and checks the dynamic con-

straints. We now sketch the design and implementation of the corresponding

algorithms. Later (in Section 7) we benchmark their efficiency and quality.
The reconciliation engine consists of approximately 6,200 lines of Java.

4.1 Clustering

We first partition actions into disjoint subsets called clusters, dividing the search
space into independent sub-problems. Then we will reconcile each cluster in-
dependently in arbitrary sequential order.

A cluster contains actions that are unrelated by static constraints to actions
in another cluster. Given action a in cluster A and action b in cluster B, then
—(a ~ b) A =(a — b) is true, and vice-versa. This ensures that actions from
different clusters may be scheduled in arbitrary order, and that the decision to
include or drop an action from one cluster does not affect any other cluster. In
particular a dynamic constraint violation will not cause actions from another
cluster to roll back.

Clustering occurs in two stages. First, actions are partitioned by domain,
with a complexity linear in the number of actions. Then, a subset is re-partitioned
according to the static constraints between pairs in the subset, for a complexity
quadratic in subset size. For space reasons, we omit further detail; interested
readers are referred to our technical report [13]. Since, as we shall see shortly,
the complexity of reconciliation is quadratic in cluster size, decomposing large
inputs into smaller clusters is highly beneficial.

4.2 Heuristic search

Within each cluster, the scheduler performs efficient heuristic sampling of small
portions of the search space. If the user requests a new schedule, or if a partial
schedule has failed, an unrelated portion of the search space is selected.



Initially each action is assigned a merit, estimated from its constraints. Ev-
ery time an action is added to a schedule, the merit of the remaining actions is
re-evaluated.

At each step the scheduler selects (with randomisation) among the candi-
dates with highest merit. Although our heuristics are not guaranteed to find
the true optimum, their results are virtually indistinguishable from exhaustive
search, and complexity is dramatically decreased (quadratic rather than expo-
nential). This is confirmed by our benchmarks in Section 7.

The merit estimator computes the benefit of adding a given action to a given
partial schedule. An action that enables many other actions to run has high
merit. More precisely, the merit of a candidate action a is higher:

1. As the the value of actions that can only be scheduled before a is lower.
2. As the value of alternatives to a is lower.
3. As the value of actions mutually exclusive with a is lower.

4. As the value of actions that can only be scheduled after a is higher.

The above factors are listed in decreasing order of importance. Furthermore,
as dynamic failures are expensive, when an action fails dynamically, its merit
decreases drastically in the near future, to avoid visiting it again. The merit
estimator executes in constant time.

Our scheduling algorithm, displayed in pseudo-code in Figure 4, selects
(with randomisation) some action among those with highest merit, executes it,
adds it to the schedule if execution succeeds, and drops any actions that would
consequently violate soundness. When action a is dropped from schedule s,
the algorithm also drops sets MustHaveMe(a) = {b|b ~» a} and OnlyBefore(a, s) =
{blb = a A b ¢ s}. If the dropped actions had side effects, these are rolled back.

The scheduler calls schedul eOne repeatedly and remembers the highest-
value schedule. It terminates when some application-specific selection crite-
rion is satisfied — often a value threshold, a maximum number of iterations,
or a maximum execution time.

The overall complexity of schedul eOne is O(n?), where n is the size of its
input. Readers interested in the full algorithm and justification of the complex-
ity estimate are referred to our technical report [13].

5 IceCube applications

In this section we describe some applications implemented with IceCube. This
is to give a flavour of how the IceCube abstractions are used in practice and of
the complexity of building an application. In the next section we discuss the
lessons learnt.

10



schedul eOne (state, summary, goodActions) = // pseudo-code

schedule : =[]

value := 0

actions := goodActions

WHI LE actions <> {} DO
next Action := selectActionByMerit (actions, schedule, summary)
precondi tion : = nextAction.preCondition (state)

| F precondition = FALSE
THEN // pre-condition failure
/1 abort and exclude any partially-executed parcels
cant HappenNow : = Onl yBefore (nextAction, schedul e)
t oExcl ude : = Must HaveMe (nextActi on)
toAbort := | NTERSECTI ON (schedul e, toExcl ude)
| F NOT EMPTY (toAbort)
THEN // roll back

SI GNAL dynani cFai |l ure (goodActions \ toExcl ude)
ELSE
summary. updat el nfoFai l ure (actions, toExclude)

actions := actions \ toExclude \ cantHappenNow
LOOP
postcondi tion : = nextAction.execute (state)
| F postcondition = TRUE
THEN // action succeeded
t oExcl ude : = Onl yBefore (nextAction, schedule)
t oExcl ude : = Must HaveMe (toExcl ude)
actions := actions \ toExclude
summary. updat el nfo (actions, nextAction)
schedul e : = [schedul e | nextAction]
val ue : = val ue + nextAction. val ue
ELSE // post-condition failure: roll back
t oExcl ude : = Must HaveMe (nextActi on)
SI GNAL dynami cFail ure (goodActions \ toExcl ude)
RETURN { state, schedule, value }

Figure 4: Executing a single schedule

5.1 Calendar application

The calendar application maintains an appointment database shared by mul-
tiple users. User commands are to r equest a meeting, possibly proposing
alternative times, or to cancel a previous request. A user command ten-
tatively updates the database and logs the corresponding actions. Database
actions are to either add or r enpve a single appointment. The user-level r e-
quest command is mapped onto an al t er nati ve containing a set of add
actions; similarly cancel maps to a set of r enbves. The data part of an action
contains the time, duration, participants and location of an appointment. The
object constraint methods are the following;:

1. The shared calendar of one institution constitutes a domain.

2. Two actions (of the same institution) overlap when either time and loca-
tion or time and participants intersect.

3. (Overlapping) r enbve actions commute, as removing a meeting a sec-
ond time is a no-op.

4. A pair of add actions at this point known to overlap, so it is mutually
exclusive. An (overlapping) add-r enove pair is not.

11



5. r enoves execute before adds to increase the probability that adds can be
accommodated.

These methods are particularly simple because logs are clean, i.e., contain no
redundant actions.
The code for add and r enove actions includes the following methods:

1. add.pr eCondi ti on checks that the appointment doesn’t conflict with
anything currently in the database.* renmpve.preConditi on returns
true, since it can’t fail (removing a non-existent appointment is a no-op).

2. The execut e method performs the corresponding database updates and
saves undo information.

3. The undo method uses the saved undo information to roll back a previ-
ous execut e.

The whole calendar application is very simple, totaling approximately 880
lines of code. This application was used as one of our performance and quality
benchmarks, as we report in Section 7.

5.2 Reconcilable File System

Our Reconcilable File System (RFS) emulates a file system with the usual Unix
semantics.” There is no locking, since concurrency control is optimistic.

5.2.1 RFS design

Concurrent changes to the same object conflict if they violate the standard
filesystem semantics: for instance creating two files in the same directory up-
dates the directory object twice; but there is no conflict if the files have different
names. A conflict occurs also if one user writes a file, while another user deletes
it, because the second user’s work would be lost. The code tests explicitly for
this special case, as file deletion changes the state of the parent directory, not
that of the file.

Internally a file system is a Repl i cat edSt at e containing a tree of Di -
rect or yNodes and Fi | eNodes, and a hash table of the same nodes, indexed
by an internal node identifier, the RFSKey.

We decompose a user-level command into a high-level prelude that checks
arguments and establishes what needs to be done, followed by low-level link-
ing and unlinking nodes in the tree. The corresponding actions make up a
parcel. For instance the nbve command, renaming a file or directory a file,
is logged as a parcel, composed first of an action that checks which of nine
possible cases to execute, then of up to three link and unlink actions.

4The static constraints appear to make this check unnecessary, but in some execution scenarios
that are too complex to explain here it is indeed needed.
5The Unix link commands are not implemented.
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DirectoryNode link/link link/unlink  unlink/unlink
Different parent, name —overl ap —overl ap —overl ap
Same parent&name Mut . Excl . best Or der comut e

Dynamic constraint: linked name doesn’t exist

File Read/Read Read /Write Write /Write
Other file | —overl ap —overl ap —overl ap
Same file commut e best Or der Mt . Excl .
Dynamic constraint: none

DirectoryNode/File | Unlink/Write other
Other file —overl ap —overl ap
Same file Mt . Excl . —over| ap

Table 2: RFS object constraints

In a link or unlink action, the parent directory is identified by RFSKey and
the file or directory being linked by its name. Using RFSKey to identify a parent
directory has the advantage that the key does not change as the directory is
renamed. A node creation action ensures that at reconciliation time, the new
node is re-created with the same RFSKey as during tentative execution.

The chances of successful reconciliation are improved by using best Or -
der to move reads and unlinks to the beginning of the schedule, and writes
and unlinks at the end.

5.2.2 RFS actions

File system commands operate on one or two parent directories, linking or
unlinking nodes within them. Low-level code either creates a node, links a
node into a directory under some name, or unlinks a named node. The ob-
ject constraints for RFS are summarised in Table 2. In more detail, those on
Di r ect or yNodes are as follows:

1. Each file system is a distinct domain.

2. Actions with the same parent directory (i.e., same RFSKey) overlap. Also
(special case mentioned above), writing a file overlaps with unlinking it
from its parent directory. Otherwise, a Di r ect or yNode action does not
overlap any other type of action.

3. Actions that overlap commute if neither of them is a write, or if the object
names differ.

4. Overlapping actions that do not commute conflict if they are both writes.
Writing a file conflicts with unlinking its directory (the special case again).

5. Actions that overlap but do not commute nor conflict have the same par-
ent directory. We order unlink actions before links to reduce the chance
of dynamic failure.®

%As in the calendar application, dynamic failures might occur, despite the static constraints, in
some corner cases.
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There are further object constraints on Fi | e actions:

1. The domain of a File action is its file system.

2. File actions in the same domain overlap if the files have the same RFSKey.
A write action overlaps with a unlinking the node from its parent direc-
tory (the special case). Otherwise, a Fi | e action does not overlap with
any other type of action.

3. File actions commute if either is a creation action, or if both are read ac-
tions.

4. A write conflicts with unlinking the file (special case), and two writes
conflict with each other.

5. Reads are preferably scheduled before writes to the same file.

Finally Di r ect or y actions are of two types: either creating a directory, or a
prelude action for a parcel of Di r ect or yNode links and unlinks. The former
never conflict, and the latter might fail dynamically but have no side effects.
Hence: the domain of a Directory action is its file system; no Di r ect or y action
overlaps with any other; and the other object constraint methods are never
called.

For RFS, we chose to log by recording a trace of the actual side-effects (then
cleaning up the trace), as opposed to “diff-ing” snapshots before and after ten-
tative execution. Diffing does not properly record user intents; for instance it
cannot differentiate renaming a file from two independent delete and create
actions.

5.2.3 Implementation

We now study the RFS code. The RFS code is based on a “solo” system that
implements the centralised file system functionality. A “replicated” interface
provides reconcilable semantics. Each command in the replicated version first
executes the solo code on the local replica, then (but only if solo execution
succeeded) traces the corresponding actions. For every side effect (viz., node
creation, linking and unlinking) performed by the solo version, the replicated
version records the corresponding action in the trace. The trace code is essen-
tially a modified copy of the solo code.

We focus on the directory creation command nkdi r, because it is simple
yet representative. The solo nkdi r first checks its arguments, then creates a
new directory object, then links the new object into the parent directory. The
replicated nkdi r does the same, also remembering the RFSKey of the parent
directory, the RFSKey of the new subdirectory, and the name of the subdirec-
tory. If linking was successful it then records to the log, first an action to create
a directory node with the same RFSKey, then an action to link the new node
under the same name, into the parent directory identified by its own RFSKey.
The two actions are both part of a single parcel, and pr edecessor Successor
of one another. Mdi r is sufficiently simple that this parcel needs no prelude
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Figure 5: Structure of Reconcilable Mail Folders application.

(in particular it is not necessary to check the arguments again at reconciliation
time).

5.2.4 Discussion

Thanks to parcels, it is possible break down a complex action, such as nove,
into a series of simpler links and unlinks.

Identifying nodes by RFSKey and name helps make the problem more tractable.
Consider one user creating a file while another changes the name of the par-
ent directory. File creation will succeed despite the concurrent change, since
the nkdi r actions refer to the parent by RFSKey. On the other hand, if users
concurrently create a file and a subdirectory with the same name, within the
same parent directory, the mut ual | yExcl usi ve method of the link action
will indicate a conflict.

Currently RFS has no provision for activities that might change between
tentative and reconciliation time. For instance, renaming all files ending with
".c" to". cc" islogged as a series of individual moves. Ifanew " . ¢" file has
been added, it won’t be renamed in the reconciled schedule. If this is not the
desired effect, a new kind of action could be added to accommodate pattern
renaming; this would make the object constraints more complex.

Currently, any concurrent writes to a file are considered in conflict. But it
should be easy to layer object constraints with higher semantics above RFS: for
instance CVS-like object constraints applying to source files, or an RMF object
constraints applying to mail folder files.

RFS is 2,974 lines of code. Of these, roughly 57% are for the solo code;
only 43% (1,283 lines) are specific to replication. The RFS developer added
reconciliation with a small piece of code, thanks to our systematic approach.
His task was made easier by a well-defined framework designed as a series of
straightforward and relatively intuitive questions.
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5.3 Reconcilable Mail Folders

Our Reconcilable Mail Folders application (RMF) uses IceCube to merge con-
current changes on replicas of mail folders. In most aspects related with seman-
tic reconciliation, RMF is similar to RFS, although its semantics are somewhat
simpler. An interesting aspect is that RMF interposes between legacy, unmod-
ified mail client and server, by intercepting the standard IMAP messages [3].

As shown in Figure 5, each replica maintains a local IMAP server and an
equivalent IceCube state, called hereafter RVFSt or e. The RMFSt or e contains
only meta-information about folders and messages; the legacy client caches
message contents and the server stores the mail database. At a client site, an
interceptor logs IMAP operations. Updates are reconciled initially against the
RVFSt or e, and only then the committed schedule executes against the IMAP
server. This avoids having to checkpoint the whole server state to try multiple
schedules during reconciliation.

RMEF totals 2,625 lines of Java. RMF differs from ordinary IMAP clients that
implement reconciliation by replaying a user’s log against the current server
state [5]. This approach, akin to log concatenation (Section 8), suffers from
false conflicts. Consider a user copying a message while another deletes it: this
fails if the second user reconnects first. In contrast, RMF uses the semantically
correct ordering.

6 Discussion

In this section we present some guidelines for application design, based on our
experience. We also discuss issues related with deployment of IceCube.

6.1 Application design

Our experience indicates that IceCube considerably simplifies the develop-
ment of reconcilable applications. Indeed, developers do not need to re-create
ad-hoc mechanisms for each application. They only need to convey some sim-
ple facts about their application, and they have tools to structure the applica-
tion in the right way:.

The application must be designed to tolerate tentative update, roll-back,
and replay. Many modern applications, such as Microsoft Word, already sup-
port logging, undo and redo, but they do not record precise MustHave and
Order dependencies.

Based on our experience, we offer some further design hints that can serve
as guidance for future developers.

High-level entities should be decomposed into small, manageable units.
This applies to both data and actions. Small data objects reduce false sharing,
thus improving concurrency. Small and simple actions simplify static proper-
ties [14]. Complex actions can always be created using the composing mecha-
nisms defined in the IceCube APIL.
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Developers are encouraged to use static constraints and to avoid dynamic
ones, because the former direct the search and the latter cause schedule execu-
tion to roll back.

To simplify static reasoning, the log should be clean, i.e., should contain no
redundant actions.” Avoid actions that overlap. Design actions to commute
and/or be idempotent.

The RMF experience shows how it is possible to interpose reconciliation
onto a legacy application by keeping only a compact representation of the
legacy state. However this approach can work only if every committed sched-
ule executes without failure in the legacy application.

6.2 Incremental operation

IceCube supports either a batch style of operation, or an incremental style
where the system transmits and collects actions in the background. As users
work, the system continuously detects conflicts and proposes solutions; users
have the option to ignore or to apply the proposals, without interrupting their
work flow. This style is appropriate, either when connections are slow, or when
users work in isolation by choice (e.g., during cooperative development or to
test out some hypothesis).

A peer-to-peer architecture, in which sites send their logs to each other and
run IceCube locally, is a natural complement to incremental operation. In this
situation, reconciliation results are advisory only, for two reasons. First, be-
cause of asynchronous communication, at any point in time a local reconciler
has only partial information, and what appears optimal at time ¢ may be sub-
optimal at ¢’ > t. Second, it is difficult to commit in a peer-to-peer setting. The
next section examines this difficulty.

The user interface used for the travel scenario (Section 2.2) demonstrates an
intermediate style. It relies on a central reconciler, but gives the controlling user
options to express preferences. The user might accept or reject part of a pro-
posed schedule, change the weights of actions, or even edit the log, changing,
adding or removing actions and constraints. The system ensures that any re-
sulting schedule remains sound, e.g., committing an action commits its whole
parcel.

6.3 Distributed operation

In the current prototype, commitment is centralised. A primary site collects
update logs over some interval, runs the reconciler, possibly commits a sched-
ule, and propagates it to the other sites. The interval period can be varied to
suit different work habits. This approach could be extended to a CVS-style
system [2] where any user can reconcile, but commitment by different users is
serialised at a primary.

7IceCube implements a generic log cleaning mechanism, which we do not describe here for lack
of space.
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IceCube could also be used as the reconciler of a peer-to-peer communi-
cation architecture like Bayou [17]. In Bayou, any site may update any object
and reconcile locally. However, objects are partitioned into disjoint subsets,
called databases. A single primary site commits actions operating on a given
database. Furthermore, Bayou forbids an action or a transaction to operate
on objects from two databases (in IceCube terms this is disallowing log con-
straints across database boundaries). These restrictions ensure that a primary
may commit independently from the others, but limit the user’s freedom to
work with several objects.

It would be nice to relax the above restrictions, and to support reconciliation
across widely-distributed shared objects and across non-trusting organisations.
The system should of course ensure global correctness. Hence the following
requirements:

1. To support partial replication.
2. To support decentralised commitment.
3. To enable the computation of optimal (or near-optimal) schedules.

4. To ensure eventual convergence [15].

Unfortunately the requirements appear to be at odds with one another. It is
doubtful they can all be fulfilled at once. For instance, a necessary condition for
convergence is that sites agree on which actions are included in a committed
schedule (committed action) or dropped from it (aborted action); no action may
be both committed by one reconciler and aborted by another. Maintaining this
global invariant is hard when commitment is decentralised.

One approach to maintaining the invariant is to centralise reconciliation at
a single site, but this is at odds with a multi-organisation system. The Bayou ar-
chitecture with its partitioned objects and actions supports multiple primaries,
but since it disallows log constraints between subsets, it does not support ap-
plication composition.

A possible decentralised approach is the following. Any reconciliation site
is allowed to abort an action independently of others (as long as it maintains
soundness). An action is committed only when all reconcilers have seen it, and
none has aborted it. The shortcoming of this approach is that schedules tend to
be non-optimal. For instance, two reconcilers might each abort a different side
of a conflict. In the limit this approach might abort everything.

7 Measurements and evaluation

This section reports on experiments that evaluate the quality of IceCube rec-
onciliation (by the size of the schedules, and by comparison with other ap-
proaches), and its efficiency and scalability (by execution time). Our two bench-
marks are the calendar application, described previously, and an application
described by Fages [4]. The calendar inputs are based on traces from actual
Outlook calendars. These were artificially scaled up in size, and were modified
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Figure 6: Decomposition of reconciliation time (single cluster).

to contain conflicts and alternatives and to control the difficulty of reconcilia-
tion.

The logs contain only Requests, each of which contains one or more add
alternatives. We varied the number of Requests and the number and size of
possible clusters. The average number of add alternatives per r equest is two.

In each cluster, the number of different adds across all actions is no larger
than the number of Requests. For instance, in the example of Figure 13, in the
three Requests, there are only three different adds (‘9am room A’, “9am room B’
and ‘9am room C’). This situation represents a hard problem for reconciliation
because the suitable add alternative needs to be selected in every r equest
(selecting other alternative in any r equest may lead to dropped actions).

In these experiments, all actions have equal value, and longer schedules
are better. A schedule is called a max-solution when no r equest is dropped.
A schedule is optimal when the highest possible number of Requests has been
executed successfully. A max-solution is obviously optimal; however not all
optimal solutions are max-solutions because of unresolvable conflicts. Since
IceCube uses heuristics, it might propose non-optimal schedules; we measure
the quality of solutions compared to the optimum. (Analysing a non-max-
schedule to determine if it is optimal is an offline, a posteriori process.)

The experiments were run on a generic PC running Windows XP with 256
Mb of main memory and a 1.1 GHz Pentium III processor. IceCube and appli-
cations are implemented in Java 1.1 and execute in the Microsoft Visual J++ en-
vironment. Everything is in virtual memory. Each result is an average over 100
different executions, combining 20 different sets of requests divided between 5
different pairs of logs in different ways. Any comparisons present results ob-
tained using exactly the same inputs. Execution times include both system time
(scheduling and checkpointing), and application time (executing and undoing
actions). The latter is negligeable because the add code is extremely simple.

7.1 Single cluster

To evaluate the core heuristics of Figure 4, we isolate the effects of clustering
with a first set of inputs that gives birth to a single cluster.
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Figure 6 measures the major components of IceCube execution time as log
size increases. The “Init” line plots the time to collect object constraints and
compute the initial summary of static constraints. “Partition” is the time to run
the clustering algorithm (although the experiment is rigged to generate a single
cluster, the clustering algorithm still runs). “Search” is the time to create and
execute schedules. “Total” is the total execution time. As expected, clustering
takes only a small fraction of the overall execution time. Init and Search are
of comparable magnitude. The curves are consistent with our earlier O(n?)
complexity estimate.

These experiments are designed to stop either when a max-solution is found,
or after a given amount of time. Analysis shows that the max-solution is
reached very quickly. The first schedule is a max-solution in over 90% of the
cases. In 99% of the cases, a max-solution was found in the first five itera-
tions. This shows that our search heuristics work very well, at least for this
series of benchmarks. A related result is that in this experiment, even non-
max-solutions were all within 1% of the max size.

Here is how the inputs are constructed. On average, each r equest is an
alternate of h adds; each add in one r equest conflicts with a single add of
another request. A log of z r equest s contains hz actions. To put the perfor-
mance figures in perspective, consider that a blind search that ignores static
constraints would have to explore a search space of size (hx)! which, for h = 2
and £ = 1000, is of the order of 102961, A more informed search that takes
advantage of commutativity of actions would still have to explore a space of
size 2M* ~ 10%° for h = 2 and = 1000. In fact there are only z distinct
max-solutions.

7.2 Multiple clusters

We now show the results when it is possible to cluster the actions. This is the
expected real-life situation.

The logs used in these experiments contain a variable number of Requests,
and are constructed to that 25% of the adds can be clustered alone; 25% of the
remaining adds are in clusters with two actions; and so on. Thus, as problem

20



3000

T T T T
Init -4

m
E Partition O
c 2250 Search - — - ]
E Total —<—
=]
S 1500 B
w +/ ) A\
28 .
o 750 - »WANMA _
. gt oy G
'_ KN e B Qe O QO
0 2004 4003 6002 8001 10000

Number of Requests

Figure 8: Decomposition of reconciliation time (multiple clusters).

1000 T T T T
IC —x— A
800 |- Concatenate ---%--- A
e Single log ~~©- s
a 500 Optimal --—+-- AT i
5 A .
S 400 A o
g - o o O
200 KT O i
e
0 Il 1 Il Il
5 204 403 602 801 1000

Number of Requests

Figure 9: Syntactic vs. semantic, comparing schedule quality.

size increases, the size of the largest cluster increases slightly, as one would
expect in real life. For instance, when the logs contain 1,000 actions, the largest
cluster contains the adds from 12 Requests, and 18 when the logs total 10,000.
The number of clusters is approximately half of the number of actions; this
ratio decreases slightly with log size. The average number of alternatives per
request istwo.

IceCube always finds a max-solution, whether clustering is in use or not.

Figure 7 shows the time to find a max-solution, with clustering turned on
or off; note the increased scale of the x axis. As expected a solution is obtained
much more quickly in the former case than the latter. A running time under 3 s
for a log size of 10,000, much larger than expected in practice, is quite reason-
able even for interactive use. As the number of clusters grows almost linearly
with the number of actions and the size of the largest cluster grows very slowly,
reconciliation time is expected to grow almost linearly. The results confirm this
conjecture. Moreover, the decomposition of the reconciliation time of Figure 8,
shows that all components of the reconciliation time grow approximately lin-
early, as expected.
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7.3 Comparisons

Here we compare the quality and performance of IceCube to competing ap-
proaches. Results in this section pertain to the non-clustered problems of Sec-
tion 7.1.

Most other systems use a syntactic scheduling algorithm (see Section 8)
such as timestamp order or log concatenation. To justify our optimisation ap-
proach, Figure 9 compares IceCube with log concatenation. Concatenation is
representative of syntactic algorithms (see Section 8), which all suffer from false
conflicts equally badly.

As expected, the results of semantic search are better than syntactic order-
ing. Whereas log concatenation drops approximately 12% of Requests, semantic-
directed search drops close to none (although IceCube’s drop rate grows very
slightly with size). Remember that dropping a single action may have a high
cost.

The baseline for comparison is the line marked “Single log.” This scheduler
selects all actions from a single log and drops all actions from the other; it is the
simplest non-trivial syntactic scheduler that guarantees absence of conflicts.

Figure 10 shows the execution time of our engine versus a log-concatenation
(hence suboptimal) scheduler. As expected, IceCube is much slower. This is in
line with the expected complexities, O(n?) in IceCube without clustering, and
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O(n) for concatenation.

Figure 11 compares execution time of our heuristic with an exhaustive search
algorithm [9]. Given unlimited time, exhaustive search is guaranteed to find
the optimal schedule, but the figure shows this is not feasible except for very
small log sizes (up to 20 actions or so). When execution time is limited, ex-
haustive search yields increasingly worse quality solutions as size increases.
For instance, exhaustive searches of five different logs, each containing 30 r e-
quest s, and each admitting a max-solution (size 30), returned schedules of
size 28, 17, 6, 30, and 4 (average = 17) when limited to a very generous 120s.
With size 40 the average is 18, and for size 100 the average is only 28, under the
same time limit.

Fages [4] studies a constraint satisfaction programming (CSP) reconciliation
algorithm, with synthetic benchmarks. We now compare the quality of the
two approaches by submitting one of Fages” benchmarks to IceCube, and our
calendar benchmarks to Fages’ system.

Fages” benchmark contains randomly generated Order constraints with a
density of 1.5, meaning that there are 1.5 x size constraints on average. Fig-
ure 12 compares the quality of Fages” CSP solutions with IceCube’s. The results
are similar, but notice that IceCube appears to perform slightly better on large
problems. This shows that the IceCube heuristics perform well on a differ-
ent kind of input. As Fages’ execution environment is very different, it would
make no sense to compare absolute execution times; however we note that
IceCube’s execution time grows more slowly with size than Fages’ constraint
solver.

When we submit our calendar problems to Fages’ system, execution time
grows very quickly with problem size. For instance, for only 15 of our r e-
quest s, Fages cannot find a solution within a timeout of 120s. The explana-
tion, we suspect, is that Fages’ system does not deal well with alternatives.
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Figure 13: Syntactic scheduling spuriously fails on this example

8 Related Work

Several systems use optimistic replication and implement some form of rec-
onciliation for divergent replicas. Many older systems (e.g., Lotus Notes [7]
and Coda [10]) reconcile by comparing final tentative states. Other systems,
like IceCube, use history-based reconciliation, such as CVS [2] or Bayou [17].
Recent optimistically-replicated systems include TACT [18] and Deno [8]. Bal-
asubramaniam and Pierce [1] and Ramsey and Csirmaz [14] study file recon-
ciliation from a semantics perspective. Operational Transformation techniques
[16] re-write action parameters to enable order-independent execution of non-
conflicting actions, even when they do not commute. For lack of space we
focus hereafter on systems most closely related to IceCube. For a more com-
prehensive survey, we refer the reader to Saito and Shapiro [15].

A number of systems base resolve conflicts and schedule based on sim-
ple syntactic properties of the updates: for instance timestamp ordering or log
concatenation. This is inflexible and causes spurious conflicts, as Figure 13 il-
lustrates. Two users are using a calendar program. One user requests room A
at 9:00, and either room B or C, also at 9:00. Meanwhile, the other user requests
either room A or B at 9:00. Combining the logs syntactically does not work. For
instance running Log 1 then Log 2 will reserve rooms A and B for the first user,
and the second user’s requests are dropped. Running Log 2 first has a similar
problem; so does any other syntactic approach. To satisfy all three requests
requires reordering them, which syntactic systems can’t do.

Bayou [17] is a replicated database system. Bayou schedules syntactically,
in timestamp order. A tentative timestamp is assigned to an action as it ar-
rives. The final timestamp is the time the action is accepted by a designated
primary replica. Bayou first executes actions in their tentative order, then rolls
back and replays them in final order. A Bayou action includes a “dependency
check” (dynamic constraint) to verify whether the update is valid. If it is, the
update is executed; otherwise, there is a conflict, and an application-provided
merge procedure is called to solve it. Merge procedures are notoriously hard
to program. IceCube extends these ideas by pulling static constraints out of the
dependency check and the merge procedure, in order to search for an optimal
schedule, reconciling in cases where Bayou would find a conflict. IceCube’s
alternatives are less powerful than merge procedures, but provide more infor-
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mation to the scheduler and are easier to use.

Lippe et al. [11] search for conflicts exhaustively comparing all possible
schedules. Their system examines all schedules that are consistent with the
original order of operations. A conflict is declared when two schedules lead
to different states. Conflict resolution is manual. Examining all schedules is
untractable for all but the smallest problems.

Phatak and Badrinath [12] propose a transaction management system for
mobile databases. A disconnected client stores the read and write sets (and the
values read and written) for each transaction. The application specifies a con-
flict resolution function and a cost function. The server serialises each transac-
tion in the database history based on the cost and conflict resolution functions.
As this system uses a brute-force algorithm to create the best ordering, it does
not scale to a large number of transactions.

IceCube is inspired by Kermarrec et al. [9]. They were the first to distinguish
static from dynamic constraints. However their engine only supports Order
(not MustHave), does not distinguish between log and object constraints, and
does not have clean logs. Most importantly, an exhaustive search algorithm
like theirs cannot not scale beyond very small log sizes.

9 Final remarks

For an environment where concurrent writes to shared objects cannot be ne-
glected, we presented a general-purpose, semantics-aware reconciliation sched-
uler that differs from previous work in several key aspects. Our system is the
first to approach reconciliation as an optimisation problem and to be based on
the true constraints between actions. We present novel abstractions that enable
the concise expression of semantics of these constraints. This simplifies the
development of applications using reconciliation, as demonstrated by several
prototype applications, and enables the reconciler to deliver high-quality solu-
tions efficiently: although reconciliation is NP-hard, our heuristics find near-
optimal solutions in reasonable time, and scale to large logs. Finally, IceCube is
application-independent, and bridges application boundaries by allowing ac-
tions from separate applications to be related by log constraints and reconciled
together.

Designing an application to be tolerant of disconnected operation and rec-
onciliation still remains a demanding intellectual task, but our system has sim-
plified this problem and provides a general tool so that application developers
need not develop their own reconciliation mechanism.

The source code for IceCube is available from URL http://research.
m crosoft.com candi s/i cecube. htm
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