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Introduction

Outline

@ The need for relational domains

@ Presentation of a few relational numerical abstract domains
o linear equality domain
e polyhedra domain

o weakly relational domains: zones, octagons

@ Bibliography
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Shortcomings of non-relational domains

Shortcomings of non-relational domains
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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y < 0; while o 1=1 do X: input signal
X < [-128,128]; D <« [0,16]; Y: output signal
S Y e X ReX-5 5:. last output
if R < -D then Y < S - D fi; R deltaY —S
if R > D then Y < S + D fi
F D: max. allowed for |R)|

Course 04 Relational Numerical Abstract Domains Antoine Miné p. 4/ 77



Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y «< 0; while e 1=1 do X input signal
X « [-128,128]; D « [0,16]; v Ouptput ggnal
S+ Y; Y+ X; R+ X -3S; ’

’ ’ ’ : last output
if R < -D then Y < S - D fi; SR daesltaOI;/P_US
if R > D then Y « S + D fi )

* = en * D: max. allowed for |R)|
done
Iterations in the interval domain (without widening):
x00 oxn | x| xir
Y=0||Y[<144 | [Y[<160 | ... [Y]< 128 + 16n

In fact, Y € [—128,128] always holds.

To prove that, e.g. Y > —128, we must be able to:
@ represent the properties R=X —Sand R< —-D
@ combine them to deduce S — X > D, and then Y =S5 —-D > X
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Shortcomings of non-relational domains

The need for relational loop invariants

To prove some invariant after the end of a loop,
we often need to find a loop invariant of a more complex form

relational loop invariant

X+ 0; I <+ 1;
while ¢ I < 5000 do
if [0,1] =1 then X < X + 1 else X < X - 1 fi;
I <~ I1I+1

done ¢

A non-relational analysis finds at ¢ that / = 5000 and X € Z
The best invariant is: (/ = 5000) A (X € [—4999,4999]) A (X =0 [2])

To find this non-relational invariant, we must find a relational loop
invariant at e: (—/ < X < I)A (X +1=1[2]) A(I €[1,5000]),
and apply the loop exit condition C*[/ > 5000]
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z

max(X,Y,Z)

Z +— X ;
if Y >Z then Z < Y ;
if Z < 0 then Z « 0;

Modular analysis:
o anaIyze a procedure once (procedure summary)

@ reuse the summary at each call site (instantiation)
— improved efficiency
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z'

max (X,Y,Z)

X0« X Y «Y; 20 « Z;

Z° — X7

if Y’ > Z’ then Z° + Y’;

if Z> < 0 then Z’ « O;
(ZV>2XANZ'>YNZ Z20NX' =XAY =Y)

Modular analysis:
@ analyze a procedure once (procedure summary)
@ reuse the summary at each call site (instantiation)
— improved efficiency
@ infer a relation between input X,Y,Z and output X’,Y’,Z’
values, in P((V—=R) x (V—=R))=P((VxV) = R)
@ requires inferring relational information
[Anco10], [Jean09]
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Linear equality domain




Linear equality domain Affine equalities

The affine equality domain

Here | € {Q,R}.

We look for invariants of the form:

AY i ajVi= ), aj, B €l

where all the «; and 3; are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

Df & { affine subspaces of V — | }

/

Course 04 Relational Numerical Abstract Domains Antoine Miné p.8 /77



Linear equality domain Affine equalities

Affine equality representation

Machine representation:  an affine subspace is represented as

@ either the constant ¥,

—,

@ or a pair (M, C) where
e M e I™"isa mx nmatrix, n=|V| and m < n,
e C € 1™ is a row-vector with m rows.

(M, C) represents an equation system, with solutions:
(M, C) & { Ve[ MxV=C)

M should be in row echelon form: example:
o Vi < m:3ki: My, =1 and 1 0 0 5 0
Ve < ki:Mjc =0, VI #i: My, =0, 01 .0 6 0
e 7 lhi 001 7 0
o if i </’ then ki < kji (leading index) 00 0 0 1
Remarks:
the representation is unique
as m < n = |V|, the memory cost is in O(n?) at worst
T is represented as the empty equation system: m =0
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Linear equality domain Affine equalities

Galois connection

Galois connection:
between arbitrary subsets and affine subsets

(P(I"), C) &= (AfF(I"),C)

° y(X) =
o a(X) £ smallest affine subset containing X
Aff(1™) is closed under arbitrary intersections, so we have:
a(X)=n{Y eAfF(I7)|XC Y}
AfF(I™) contains every point in |”
we can also construct «(X) by abstract union:
o(X) =UF {{x}|x e X}

Notes:
@ we have assimilated V — | to I”

@ we have used Aff(1") instead of the matrix representation D! for simplicity;

a Galois connection also exists between P(1") and D

Course 04 Relational Numerical Abstract Domains Antoine Miné
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Linear equality domain Affine equalities

Normalisation and emptiness testing

Let Mx V =Cbea system, not necessarily in normal form.
The Gaussian reduction Gauss((M, C)) tells in O(n3) time:

@ whether the system is satisfiable, and in that case
@ gives an equivalent system (M’ €’> in normal form

i.e. returns an element in D,

Principle: reorder lines, and combine lines linearly to eliminate variables

Example:
2X + Y + zZ = 19
2X 4+ Y - zZ = 9
3Z = 15
4
X + 05Y = 7
Z =5
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Linear equality domain

Affine equality operators

Affine equalities

Applications

If Xﬁ,yﬁ #* L% we define:

Xttt oyt 4ef Gauss |: mXu } , (Z,Xﬁ
vt Cyﬁ
xt =1yt L My, =My, and Gy = C

abctopt Aeb yi g b =8y
lef M
Cﬁ[[zjozj\/j7,6’:0]]Xli = Gauss (<{ o Xu

Cilex0] At el yt for other tests

Remark:

ct, =F ¥, =¥ and Cn[[zj a;V; —=0] are exact:
XECEYE = (XF) CH(VF),
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Linear equality domain Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector
generators Gi, ..., G, and an origin point O, denoted as [G, O].

G, 0) E{GxX+0|Xxecl™} (Gel™m Ocl)

We can switch between a generator and a constraint
representation:

e From generators to constraints: (M, C) = Cons([G, O))

Write the system V =G x X + O with variables V, X.
Solve it in X (by row operations).

Il
Il
o=

Keep the constraints involving only V.
X A2 X -2
e.g. Y QA4+ p+3 = —2X+Y+1
z I 2X—-Y+Z-1

The resultis: 2X — Y +Z =1.
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Linear equality domain Affine equalities

Generator representation (cont.)

o From constraints to generators: [G, 0] & Gen((M, C))

Assume (M, C) is normalized.
For each non-leading variable V, assign a distinct Ay,
solve leading variables in terms of non-leading ones.

—0.5 7
X+05Y = 7
e.g. { 7 — 5 = (1) Ay + g
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Linear equality domain Affine equalities

Affine equality operators (cont.)

Applications
Given Xﬂ,yﬁ #* 1% we define:
¢ % Cons ([Gz Gy (Oy: — Oxs), Ons])

CHV, = [—o0, +o0] ] XF 4f Cons ([Gxu X, 5X3]>

xtuty

CHV, « S iV + gt <
if aj =0,(C*[Y; Vi — V;+ B =0] o CE[ V} + [—o00, +00] ] )X
if aj # 0, X where V; is replaced with (V; — YigiaiVi—B)/a;
(proofs on next slide)

CH[V, « e] AF dof CH[ V; + [—o00, +00] ] AF for other assignments

Remarks:
e U is optimal, but not exact.
o CF[V; « 3. a;Vi+ B] and C*[ V; « [—o0, +00]] are exact.
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Linear equality domain Affine equalities

Affine assignments: proofs

CHV, « X opV; + gt
if aj =0,(C*[Y; Vi — V;+ B8=0] o CE[ V} + [—o00, +00] ] ) A'#
if aj # 0, X where V; is replaced with (V; — YigaiVi—B)/a;

Proof sketch:
we use the following identities in the concrete

non-invertible assignment: a; =0

ClVj<«+e] =C[V; <« e] oC[V, <+ [-o0,+0o0]] as the value of Vj is not used in
e

so: C[Vj«e] =C[V;—e=0] oC[ V] + [—o0,+]]
—> reduces the assignment to a test

invertible assignment: «; # 0
Cl[Vj«+e] €C[Vj<«e] oC[V < [-o0,+x]] as e depends on V
(eg, C[V+ V+1] #C[V <+ V+1] oC[V « [—o0,+]])
peC[Vj+e]R <= Fp €Rp=p V=X cip (Vi) + 8]
< 3" € R p[V; = (p(V)) — 21y i’ (Vi) = B) oyl = ¢
— plVj = (p(V)) = 2oiyj cip(Vi) = B) /eyl € R
— reduces the assignment to a substitution by the inverse expression
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Linear equality domain Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example: 10
X 10
1 Y ~ 100
X « 10; Y + 100;
while °X # 0 do® X=0
X+ X-1; 20 —>o
Y « Y+10 4
done? X#0
X X-1
Y ~Y+10
3@
#0 #1 #2 #3 #4
0 7 7 S N NN X
1| T8 T T T T
2| L% |(10,100) | (10,100) | 10X + Y =200 | 10X + Y = 200
3| L# 1t (10, 100) (10, 100) 10X + Y = 200
4| 1t 1t 1t 1t (0,200)

Note in particular:
X2u3 = {(10,100)} U* {(9,110)} = { (X, Y) | 10X + Y =200 }
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Linear equality domain Affine equalities

Backward affine equality operators

Backward assignments:

TV, [0, +oo] [ (X%, RE) 48 X (CH[ V; ¢ [—o0, +00] [ RY)

= ae

CHY; = oV + 5] (2%, RE) &
Xt Nt (RY where V; is replaced with (3°; o, V; + 8))
(reduces to a substitution by the (non-inverted) expression)

THV,  e] (2%, RY) % THV,  [—o0, +00] ] (XF, RE)

for other assignments

Remarks:

® THV: 3 o;Vi+ 8] and CH[V; « [~o0, +00]] are exact
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Linear equality domain Affine equalities

Constraint-only equality domain

In fact [Karr76] does not use the generator representation.

(rationale: few constraints but many generators in practice)

We need to redefine two operators: forgetting and union.

Course 04

CH[ V< [~o0, +0] ]
Idea:

We have to remove all the occurrences of V;
but reduce the number of equations by only one

Algorithm:

Pick the row (M;, C;) such that Mij # 0 and i maximal.
Use it to eliminate all non-0 occurrences of V; in M.
(i maximal = M stays in row echelon form)

Then remove the row (M;, G;).

e.g. forgetting Z: {Xyigiio = {XfY:?)
The operator is exact.

Relational Numerical Abstract Domains Antoine Miné
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Linear equality domain Affine equalities

Constraint-only equality domain (cont.)

o (M, C) U (N, D)
Idea: unify columns 1 to nin (M, C) and (N, D)
using row operations.

Algorithm sketch:

Assume that we have unified columns 1 to k to get (';), arguments are in row
echelon form, and we have to unify at column k + 1: £(0 1 0) with (300
RO M; R A N R G M R A N
01M |,| 00N |=]| 00 ) 00 N
00 M; 0 0 N3 00 M; 0 0 N3

Use the row (0 1 M) to create /3 in the left argument

Then remove the row (0 1 M)
The right argument is unchanged
— we have now unified columns 1 to kK +1

Unifying (& 0 0) and £(0 1 0) is similar
Unifying t(@ 0 0) and (3 0 0) is a bit more complicated... see [Karr76]
No other case possible as we are in row echelon form
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Linear equality domain Affine equalities

A note on integers

Suppose now that | = Z.
@ Z is not closed under affine operations: (x/y) X y # x,

@ Gaussian reduction implemented in Z is unsound.
(e.g. unsound normalization 2X + Y = 19 #= X = 9, by truncation)

One possible solution:

@ keep a representation using matrices with coefficients in Q,
@ keep all abstract operators as in Q,
e change the concretization into: yz(X*?) < ~(X%) N Z".

With respect to 7z, the operators are no longer best / exact.

Example:  where X! is the equation Y = 2X
@ (X ={(X,Y)|XeZ Y=2X}
@ (C[X+0]or)Xt={(X,Y)|X=0, Yiseven}
@ (YzoCH[ X« O0)X!E={(X,Y)|X=0,Y€Z}

== The analysis forgets the “intergerness” of variables.
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Linear equality domain Affine equalities

The congruence equality domain

Another possible solution:  use a more expressive domain.

n
We look for invariants of the form: /\ (Z m;V; = ¢ [kj]> .
i=1

J
Algorithms:

@ there exists minimal forms (but not unique),
computed using an extension of Euclide’s algorithm,

o there is a dual representation: { G x X+ O | X e Z™ },
and passage algorithms,

@ see [Gran9l].
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Polyhedron domain




The polyhedron do

Here again, | € {Q,R}.

n
We look for invariants of the form: /\ <Z a;Vi > Bj).
j i=1

We use the polyhedron domain proposed by [Cous78|:
D! & {closed convex polyhedra of V — 1}

A

Note:  polyhedra need not be bounded (# polytopes).
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Polyhedron domain

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem).
(see [Schr86])

Constraint representation

(M, C) with M € 1™ and C € I™
represents: (M, C)) £ {V M x V > C}

We will also often use a constraint set notation { >, aj;V; > ; }.

Generator representation

[P, R] where
@ P c I"™P is a set of p points: ﬁl,...,ﬁp
e Re 1™ isasetof rrays: Ry,...,R,
A([P.R) € {(S2, 0iB) + (S BR) Vi > 0, S0y = 1]
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Double

Generator representation examples:

V([P R]) = {(X0y aiP) + ()= BiR) V), 0z, 8 2 0: 37y ay = 1}

L

P1

@ the points define a bounded convex hull

@ the rays allow unbounded polyhedra



Polyhedron domain

Origin of duality

Dual A* = {Rel"|VicA 3-X<0}
e {3}* and {\r'| A > 0}* are half-spaces,
o (AUB)*=A*NB*,
o if Ais convex, closed, and 0 € A, then A™ = A.
Duality on polyhedral cones:
Cone: C={V|MxV >0} or C={/_,BR;|Vj 8 >0}

(polyhedron with no vertex, except 6)

@ C* is also a polyhedral cone,

o C =,

@ a ray of C corresponds to a constraint of C*,
@ a constraint of C corresponds to a ray of C*.

Extension to polyhedra: by homogenisation to polyhedral cones:

CP) X {AV|A>0, (Vi,...,V,) €Y(P), Vpyr =1} C IMHL
1
)

(polyhedron in 1" ~ polyhedral cone in 1"
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Polyhedron domain

Polyhedra representations

@ No best abstraction «
(e.g., a disc has infinitely many polyhedral over-approximations, but no best one)

@ No memory bound on the representations
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Polyhedron domain

Polyhedra representations

Minimal representations

@ A constraint / generator system is minimal if no constraint /
generator can be omitted without changing the concretization

@ Minimal representations are not unique

@ No memory bound even on minimal representations

Example: three different constraint representations for a point

(@ (b) (©
@ a)y+x2>20,y—x>0,y<0,y>-5 (non mimimal)
@ b)y+x>0,y—x>0,y<0 (minimal)
® (c)x<0,x>0,y<0,y>0 (minimal)
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Polyhedron domain

Chernikova's algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a
constraint system to an equivalent generator system

Why? most operators are easier on one representation

Notes:

@ By duality, we can use the same algorithm to switch from
generators to constraints

@ The minimal generator system can be exponential in the original

constraint system
(e.g., hypercube: 2n constraints, 2" vertices)

@ Equality constraints and lines (pairs of opposed rays) may be
handled separately and more efficiently
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Polyhedron domain

Chernikova's algorithm (cont.)

Algorithm:  incrementally add constraints one by one
- Po={(0,...,0) } (origin)
Start with: { Ro—{%, —%|1<i<n} (axes)

For each constraint My - V > C, € (M, C), update [Pk—1,Rk—1] to [Pk, R].

Start with P, = Ry = 0,
@ for any Pe Py_1 s.t. Mk P > Cy, add P to Py
@ for any Re Ryx_1 s.t. I\7Ik R >0, add R to Ry

@ for any ﬁ,d € Py_1 s.t. Mk . ﬁ> Cy and I\7lk . 6 < Ci, add to Py:
G df GM:G 5 _G-M:P 5

DR A R

i.e., move Q towards P along [Q, P] until it saturates the constraint

Course 04 Relational Numerical Abstract Domains Antoine Miné
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Polyhedron domain

Chernikova's algorithm (cont.)

o foranyﬁgeRk 1 s.t. I\7Ik-f:\">Oandl\2k-§<0,addtoRk:

0 L' (M- S)R — (My - R)S
i.e., rotate S towards R until it is parallel to the constraint

1

-~ <N\

S >~ 0O

("] forany:‘SGPk_l,ﬁeRk 1st
eitheer~ﬁ>Ckande R<0 oer F_"<Ckandl\2k~.‘3>0

add to Py: 0 % B¢ Ck;“”;\,”R
k

Course 04 Relational Numerical Abstract Domains Antoine Miné
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Example:

Po = {(07 0)} Ro = {(1?0)’ (_170)7 (07 1)7 (07 _1)}




Polyhedron domain

Chernikova's algorithm example

Example:

‘ lﬂ C
(0) 1)
Py = {(an)} Ro = {(1’0)7 (_170)7 (07 1)7 (Oa _1)}
Y>1 P {(07 1)} R: {(17 0)7 (_1’ 0)’ (07 1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
Ty =
"
(0) 1) @)
Py = {(an)} Ro = {(1’0)7 (_170)7 (07 1)7 (Oa _1)}
Y>1 P, = {(07 1)} R: = {(170)7 (_1’0)’ (07 1)}
X+Y>3 P={(21)} R, = {(1,0), (~1,1), (0,1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
¢
(0) 1) (@) @)
Py = {(an)} Ro = {(1’0)7 (_170)7 (07 1)7 (Oa _1)}
Y>1 Pl = {(07 1)} Rl = {(170)7 (_1’0)’ (07 1)}
X + Y > 3 P2 = {(2a 1)} R2 = {(150)7 (_1’ 1)7 (07 1)}
X-Y<1l P3= {(2ﬂ 1)7 (172)} R; = {(Ov 1)7 (17 1)}
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Polyhedron domain

Redundancy removal

Goal: only introduce non-redundant points and rays during
Chernikova's algorithm

Definitions  (for rays in polyhedral cones)

Given C={V|MxV>0}={Rxj|F>0}.
o R saturates Mk V>O EEN Mk R=0
o S(R,C) & {k|Mc-R=0}.

Theorem:
assume C has no line (BL#0 st Va, ol € C) -
R is non-redundant w.rt. R <= AR; € R, S(R,C) C S(R;, C)
° S(ﬁ;, 0), R; € R is maintained during Chernikova's algorithm
in a saturation matrix
@ extension possible to polyhedra and lines
@ various improvements exist [LeVe92]
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Polyhedron domain

Operators on polyhedra

Given Xﬂ,yﬁ #+ 1% we define:

VP ePys, Myy x P >
Xt ct oyt g ~ xty Wiyt =
<Y VRERy;, Myy xR > 0

(every generator of X* must satisfy every constraint in Jt)

xt =iyt ALy iyt ang Vit

Xt Nt y?i def |: M s } , gxn
My Gyt

(set union of sets of constraints)

Remarks:
o C! =f and N! are exact.

Course 04 Relational Numerical Abstract Domains
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Join: Xty §odef

[ [qu Pyu] [R;\.’ﬁ Ryn] ] (join generator sets)

Examples:

two polytopes a point and a line

Ut is optimal:
we get the topological closure of the convex hull of v(X*#) U ~()¥)




Forward operators: affine tests

IS, Vi + B> 0] xt & <[ e ][ & ]>

Q1 Qg

CLY Vi +8=0]x% <
(G aiVi+ B >0] o G, (-ai)Vi = 8 > 0] )

- ®

_ Relational Numerical Abstract Domains

These test operators are exact.



Ope

Forward operators: forget

CALV ¢[00, +oc] [ &* = [Pas, [Rax %5 (-%)1]

-—

This operator is exact.
It is also a sound abstraction for any assignment.



Polyhedron domain

Operators on polyhedra (cont.)

Forward operators: affine assignments

CLV « LoV +p]at &
if aj =0, (C*[ ;i Vi = V; + B = 0] o C*[ V; « [~o0, +00] ] ) X*
if aj # 0, (M, C) where V; is replaced with 2(V; — 32, Vi — B)

Examples :

X+ X+Y -,

X<+Y O - —

Affine assignments are exact.

They could also be defined on generator systems.
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Polyhedron domain

Operators on polyhedra (cont.)

Backward assignments:

def

CHV;  [—00, +00] ] (X%, RE) 2 X% 0# (G V, <[00, +00] [ RF)

Y, « 3V + ] (1, RF)
X* ¥ (RF where V; is replaced with (3, o, V; + 3))

CHV; e (4%, RE) = CTHV, ¢ [~o0, +00] | (X, RY)
for other assignments

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

DF has strictly increasing infinite chains => we need a widening
Definition:

Take X% and V¥ in minimal constraint-set form
def

Xtoyt = {cext|yct{c}}

We suppress any unstable constraint ¢ € X*, i.e., V! Z% {c}

Example:
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Polyhedron domain

Polyhedra widening

DF has strictly increasing infinite chains => we need a widening
Definition:

Take X% and V¥ in minimal constraint-set form
def

Xtoyt = {cext|yct{c}}
U {cedt3dext:xt =%\ )u{c}}
We suppress any unstable constraint ¢ € A%, ie.,, V¥ Zf {c}
We also keep constraints ¢ € V¥ equivalent to those in X%,
i.e., when 3¢’ € X% X% =F (xF\ /) U {c}

Example:
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Polyhedron domain

Example analysis

Example program

X+ 2; I < 0;

while ¢ I < 10 do

if [0,1] = 0 then X <« X + 2 else X «+ X - 3 fi;
I+~ I1I+1

done ¢

Loop invariant:

Increasing iterations with widening at e give:

Xt {X=2,1=0}

X} {X=21=0tv({X=21=0 Ul {Xe[-1,4], | =1})
{X=2,1=0}v{le€[0,1],2-3I<X<2[+2}
{I>0,2-3I<X<2/+2}

Decreasing iterations (to find | < 10):

Xl {X=2,1=0}U¢{l€[1,10],2—3/ < X <2/ +2}
{1 €[0,10], 2—3/ < X <2/ +2}

We find, at the end of the loop ¢: | =10 A X € [-28,22].
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Polyhedron domain

Example analysis (illustration)

Example program

X<+ 2; I+« 0;
while ¢ I < 10 do
if [0,1] = 0 then X < X + 2 else X < X - 3 fi;

I+ I+1
done ¢
O \/
X* FH(X*)
xbo= {x=21=0}
X} = {X=2,1=0}v({X=21=0}U{Xe[-1,4], =1}
= {I>0,2-3/<X<2/+2}
Xl {X=2,1=0yU{I€[1,10], 2—3/ < X <2/ +2}

{1 €[0,10], 2—3I < X <2/ +2}
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Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X¥ v )? all the
constraints from T satisfied by both X* and V.

Delayed widening:

We replace Xt v Y with X% Uf VP a finite number of times

(this works for any widening and abstract domain).

See also [Bagn03].
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Polyhedron domain

Strict inequalities

The polyhedron domain can be extended to allow strict
constraints:  {V | |MxV >Cand M xV > ('}

Idea:

A non-closed polyhedron on V is represented
def

as a closed polyhedron P on V' = VU {V,}.

atVi+--+apVy,+0Ve >0 represents ai1Vi+ - 4+ ap,Vp>0
aitVi+--+apVp—cVe >0, c >0 represents a1Vi+ -+ ap,Va>0

P represents the non necessarily closed polyhedron:
Ye(P) Z {(V1,..., Vo) | 3V >0, (V4,..., Vo, V&) € %(P)}.
Notes:
@ The minimal form needs some adaptation [Bagn02].
o Chernikova's algorithm, N, U, C*[c], and <Eﬁ[[c]] can be
easily reused.
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Polyhedron domain

Integer polyhedra

How can we deal with | = Z7

Issue: integer linear programming is difficult.
Example: satsfiability of conjunctions of linear constraints:

@ polynomial cost in Q,

@ NP-complete cost in Z.

Possible solutions:

@ Use some complete integer algorithms.
(e.g. Presburger arithmetics)

Costly, and we do not have any abstract domain structure.

o Keep Q—polyhedra as representation, and change the
def

concretization into: 1z(X*%) = y(X%) N zZ".
However, operators are no longer exact / optimal.
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Weakly relational domains
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Zone domain

The

Here, | € {Z,Q,R}.

We look for invariants of the form:
AVi-Vi<cor £V;<c, cel

A subset of 1" bounded by such constraints is called a zone.

[Mine01a]



Weakly relational domains Zone domain

Machine representation

A potential constraint has the form: V; — V; <c.

Potential graph: directed, weighted graph G

@ nodes are labelled with variables in V,
@ we add an arc with weight ¢ from V; to V; for each constraint
Vi—-Vi<c.
Difference Bound Matrix (DBM)

Adjacency matrix m of G:

@ m is square, with size n X n, and elements in | U {+00},
@ mj = ¢ < +oo denotes the constraint V; — V; < c,

@ mjj = +oo if there is no upper bound on V; — V.

Concretization:
~v(m) def { (vi,...,vn) €17 Vi j, vi—vi < mj }.
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Machine representation (cont.)

Unary constraints add a constant null variable V.

m has size (n+ 1) x (n+1);
V; < cisdenoted as V; — Vy < ¢, i.e.,, mjg = ¢;
V; > cis denoted as V — V; < —c, i.e., mg; = —c;

~yis now: yo(m) = { (vi,...,va) | (0,va,...,va) € v(m) }.

Example:

Vo | +o0 4 3
Vi -1 400 +oo
V5> —1 1 +o00
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Weakly relational domains

The DBM lattice

Zone domain

D! contains all DBMs, plus 1

< on U {400} is extended point-wisely.

If m,n# L%
m gﬁ n
m="F/n

[m Nt n]
[m Ut n]
(7]

i

(DF, CH UF, NE, LF, TH) is a lattice.

Remarks:

i

i

def

def

def

def

Vi,j, mj; < njj
Vi,j, m,-j = n,-j
min(mj;, njj)
max(mj;, njj)

+00

e D! is complete if < is (=R or Z, but not Q),
o m Cf n = y9(m) C yo(n), but not the converse,
o m =% n = y5(m) = yo(n), but not the converse.
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Weakly relational domains Zone domain

Normal form, equality and inclusion testing

Issue:  how can we compare yo(m) and ~o(n)?

Idea: find a normal form by propagating/tightening constraints.

Vo— Wi <3 Vo— Vi <3
ViV < —1 Vi— VW< -1

Vo— Vo <4

. ‘II |
LT

Definition: shortest-path closure m*

Vo—Va<2

% def ;

m,-j = min mi iy
N

. . . . 1

(i=1i,...,in=1])

Exists only when m has no cycle with strictly negative weight.

>
Il
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Weakly relational domains Zone domain

Floyd—Warshall algorithm

Properties:
@ (m) =10 < G has a cycle with strictly negative weight.
@ if yo(m) # (0, the shortest-path graph m* is a normal form:
m* = minc: { n|~(m) =o(n) }
@ If vo(m),vo(n) # 0, then

o Yo(m) = yo(n) <= m* =f n*,
o Y(m) C yp(n) <= m* Cin.

Floyd—Warshall algorithm

0 def
mj; mj;

k+1 def : k ak k
m* = mln(m,j, my, + mkj)

i
@ If vo(m) # 0, then m* = m"*1, (normal form)
° yo(m)=0 < i, mi™ <0, (emptiness testing)

@ m"*! can be computed in O(n?®) time.
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Weakly relational domains Zone domain

Abstract operators

Abstract join:  naive version U (element-wise max)

@ U is a sound abstraction of U

but 4o(m U* n) is not necessarily the smallest zone
containing vo(m) and ~o(n) !

The union of two zones with U? is no more precise in the zone domain
than in the interval domain!
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract join: precise version: U after closure

@ (m*) U (n*) is however optimal
we have: (m*) U* (n*) = minc: { 0| 70(0) 2 7o(m) U~o(n) }

which implies:
~o((m*) UF (n*)) = minc { 70(0) [ 70(0) 2 ~o(m) U yo(n) }

after closure, new constraints ¢ < X — Y < d give an increase in precision
@ (m*) U* (n*) is always closed.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract intersection N¥: element-wise min

@ N is an exact abstraction of N (zones are closed under intersection):

yo(m N¥ n) = 45(m) N yo(n)

@ (m*) % (n*) is not necessarily closed. ..

Remark

The set of closed matrices, with L, and the operations Q, Ut Am, n.(m gt n)*
sub-lattice, where 7 is injective.
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Weakly relational domains

Abstract operators (cont.)

Zone domain

We can define:

V. — Ve def [ min(mj, c) if (i,j) = (o, Jo),
[CFIV5 = Vi Scﬂm]ff o { mj; otherwise.

def
CH[Vjy — Vig = [a,b]Im = (C*[V}y — Vjy < b] 0 C}[Vj, — Vjy < —a])m

def 400 if i = jo orj = jo,
[CHLVy oo, ool ]

ml’.;. otherwise.

(not optimal on non-closed arguments)
C[Vy = Vi + [a. ] m &
(CHLV}, — Vi = [a,b]] o CE[ Vjy < [—o00, +oo]])m if ip # jo
et mj—a ifi=joandj#jo
€ . . . . .
[Cﬁﬂ\/joe\/joJr[a,b]]]m]U = mij+b ifi#joandj=jo
mj; otherwise.
(io # jo; Vi, can be replaced with 0 by setting iy = 0)
These transfer functions are exact.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Backward assignment:

TV,  [—o0, +oc] [ (m,r) % m ¥ (CH[ V), « [—o0, +00] ] 1)
TH V), <V +[a,b]] (m, 1) < mnt (CH[ V), < Vi, + [-b,—a]]¥)

ij
min(ra‘.,rjzj +b) ifi=1iyandj#io,jo

[CH1V, « Vi +[a, 6T (m )] %

DA e L
m At mln(r‘.j,r,.j0 —a) If_j = I'o and' i 75 i0, jo
+o0 ifi=joorj=j
r;‘j otherwise.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Issue: given an arbitrary linear assignment Vj, < ag+ >, ax x Vi
@ there is no exact abstraction, in general;

@ the best abstraction a o C[c] oy is costly to compute.
(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:
Given a (more general) assignment e = [ag, bo] + > [ax, bk] x Vi

we define an approximate operator as follows:
max(Ef[e] m) if i=0andj=jp
—min(Ef[e] m) if i=joand j=0
max(Ef[e — V;]Jm) ifi#0,jo and j = jo
—min(E¥[e+ V;Im) if i =jo and j # 0,jo
mj; otherwise

def

[C1 Vi, <_eﬂm}ij

where E*[ e] m evaluates e using interval arithmetics with Vi € [—m},, mg,].

Quadratic total cost (plus the cost of closure).
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Weakly relational domains Zone domain

Abstract operators (cont.)

Example:
Argument
0<Y<10
0<Zz<10
0<Y-2<10
U X«<~Y-Z
~10< X < 10 ~10< X <10 0< X <10
—-20<X-Y <10 -10<X-Y<0 -10<X-Y<0
—20< X —Z<10 —10< X —2Z<10 —10<X—-2Z<10
Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Weakly relational domains Zone domain

Widening and narrowing

The zone domain has both strictly increasing and decreasing
infinite chains.
Widening Vv

[m o "],-- def mi; if njj S mij;
U +o00 otherwise
Unstable constraints are deleted.

Narrowing A

[m A n] def njj if mjj = +00
y mj; otherwise

Only 400 bounds are refined.
Remarks:
@ We can construct widenings with thresholds.

@ V (resp. A) can be seen as a point-wise extension of an
interval widening (resp. narrowing).
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Weakly relational domains Zone domain

Interaction between closure and widening

Widening V and closure * cannot always be mixed safely:

def

° my,; = m; Y (I‘I;k
def *

e Mmjy — (m,) Vv n;
def

L mjy 1 = (m,- \% n,-)*

OK
wrong!

wrong

otherwise the sequence (m;) may be infinite!

Example:

X« 0; Y+ [-1,1];
while ¢ 1 = 1 do
R « [-1,1];
if X =Y then Y < X + R
else X < Y + R fi
done

Applying the closure after the widening at e prevents convergence.
Without the closure, we would find in finite time X — Y € [-1,1].

iter. | X | Y X-Y
0 0 [-1,1] [—1,1]
1 [-2,2] [-1,1] [-1,1]
2 [-2,2] [-3,3] [-1,1]
2j [—2/,2]] [-2/-1,2j+1] | [-1,1]
2j+1 | [-2/—2,2/+2] | [-2/ —1,2j+1] | [-1,1]

Note: this situation also occurs in reduced products.

(here, D# ~reduced product of n X n intervals, * ~reduction)
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Weakly relational domains Zone domain

Interaction between closure and widening (illustration)

X« 0; Y « [-1,11; iter. | X | Y [ X-Y
o N 0 0 [-1,1] [—1,1]
while ¢ 1 = 1 do
R « [_1,1]; 1 [_272] [_171] [_lvl]
if X =Y then Y « X + R 2 [-2,2] (-3.3] -1,1]
else X < Y + R fi s .
done 2j [-2/,2]] -2/ —1,2/+1] | [-1,1]
2j+1|[-2/-22/+2] | [-2/—-1,2j+1] | [-1,1]
widening
without
closure
widening
with
closure
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Octagon domain
The octag

Now, | € {Q,R}.
We look for invariants of the form: /\ ViV <c, cel

A subset of 1" defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).

[Mine01b]



Weakly relational domains Octagon domain

Machine representation

Idea: use a variable change to get back to potential constraints.

Let V/ & {V/,..., V4 }.

the constraint: ‘ is encoded as:
Vi—V;<c (i#)) Vi, — VQ’J._1 < ¢ and VQ’J. -V], <c
Vi+Vi<c (i#])) V2’,._17V2’j < ¢ and Vz’j_17V2’,.§c
—Vi—Vi<c (i#)) VZ’J.—V2’I.71 < ¢ and VZ’I.—VZ’FISC
Vi<e Vo= Vo £ 2¢
Vize Vo — Vo <-2c
We use a matrix m of size (2n) x (2n) with elements in 1 U {+o0}
def
and v2(m) = {(vi,...,vn) | (vi,—v1,..., Vs, — V) € v(m) }.
Note:

Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that Vi, j, mj = m;; where 7 =i @ 1.
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Weakly relational domains Octagon domain

Machine representation (cont.)

Example:

Vi+ VW, <3
Vo— Vi <3
Vi— Vv, <3
Vi—Va< -3
2V, <2
-2V, <38

A

Lattice
Constructed by point-wise extension of < on | U {400}.
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Weakly relational domains Octagon domain

Algorithms

*

m* is not a normal form for ..

Idea use two local transformations instead of one:

VIV <c
{ViTVizs =vi-y<csd
and
VI—Vvi<c
{ Vieviceq == Vi-Vis(ctd)2
J J —

Modified Floyd—Warshall algorithm

me et

5(m2n+1)

1 def
( { ml = m
def .
where: [mx+1]; = min(njj, nic + nig), 1 < k < 2n

(B) [S(m)]; % min(ny, (niz + ny)/2)
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Weakly relational domains Octagon domain

Algorithms (cont.)

Applications
o v+(m)=0 < 3i, m} <0,
o if vo+(m) # (), m® is a normal form:
m® = minc; {n|yx(n) =~+(m) },
o (m*) Uf (n®) is the best abstraction for the set-union
Y+ (m) Uyx(n).

Widening and narrowing

@ The zone widening and narrowing can be used on octagons.

@ The widened iterates should not be closed.
(prevents convergence)

Abstract transfer functions are similar to the case
of the zone domain.
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Weakly relational domains Octagon domain

Analysis example

Rate limiter

Y < 0; while e 1=1 do

X « [-128,128]; D « [0,16]; )f, :u'fc”tu:'fi”i'al
S« Y; Y« X; R« X -8; & Iastpout ft
if R < -D then Y < S - D fi; : P
. 2 . R: deltaY-S
if R > D then Y « S + D fi
o D:  max. allowed for |R|

Analysis using:
@ the octagon domain,

@ an abstract operator for Vj, < [ao, bo] + >, [ak, bi] x Vi
similar to the one we defined on zones,

@ a widening with thresholds T.
Result: we prove that | Y| is bounded by: min { t € T |t > 144 }.

Note: the polyhedron domain would find | Y| < 128 and does not
require thresholds, but it is more costly.
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Summary

Summary of numerical domains

domain invariants memory cost | time cost (per operation)
intervals Vel h O(|n)) O(|nl)
linear equalities | >, a;V; = 5 O(|n|?) O(|n]?)
zones Vi—-V;<c O(|n|?) O(|nl®)
polyhedra Z,a;\/; > B; unbounded, exponential in practice

@ abstract domains provide trade-offs between cost and precision

@ relational invariants are often necessary

even to prove non-relational properties

@ an abstract domain is defined by the choice of:

e some properties of interest and operators

e data-structures and algorithms

(semantic part)

(algorithmic part)

@ an analysis mixes two kinds of approximations:

e static approximations

e dynamic approximations

Course 04
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