
Introduction
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

Year 2018–2019

Course 00
11 September 2018

Course 00 Introduction Antoine Miné p. 1 / 24

Motivation

Motivation

Course 00 Introduction Antoine Miné p. 2 / 24

Motivation

The cost of software failure

Patriot MIM-104 failure, 25 February 1991
(death of 28 soldiers1)

Ariane 5 failure, 4 June 1996
(cost estimated at more than 370 000 000 US$2)

Toyota electronic throttle control system failure, 2005
(at least 89 death3)

Heartbleed bug in OpenSSL, April 2014

the economic cost of software bugs is tremendous4

1R. Skeel. ”Roundoff Error and the Patriot Missile”. SIAM News, volume 25, nr 4.
2M. Dowson. ”The Ariane 5 Software Failure”. Software Engineering Notes 22 (2): 84, March 1997.
3CBSNews. Toyota ”Unintended Acceleration” Has Killed 89. 20 March 2014.
4NIST. Software errors cost U.S. economy $59.5 billion annually. Tech. report, NIST Planning Report, 2002.

Course 00 Introduction Antoine Miné p. 3 / 24

Motivation

Zoom on: Ariane 5, Flight 501

Cause: software error5

arithmetic overflow in unprotected data conversion
from 64-bit float to 16-bit integer types6

P M DERIVE(T ALG.E BH) :=
UC 16S EN 16NS (TDB.T ENTIER 16S

((1.0/C M LSB BH) * G M INFO DERIVE(T ALG.E BH)));

software exception not caught
=⇒ computer switched off
all backup computers run the same software
=⇒ all computers switched off, no guidance
=⇒ rocket self-destructs

A “simple” error. . .

5J.-L. Lions et al., Ariane 501 Inquiry Board report.
6J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d’informatique de l’ENS, 2010.

Course 00 Introduction Antoine Miné p. 4 / 24

Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)

yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist

yet, critical embedded software follow strict development processes

Test the software extensively.

yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

Course 00 Introduction Antoine Miné p. 5 / 24

Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)
yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist
yet, critical embedded software follow strict development processes

Test the software extensively.
yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

Course 00 Introduction Antoine Miné p. 5 / 24

Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)
yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist
yet, critical embedded software follow strict development processes

Test the software extensively.
yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

Course 00 Introduction Antoine Miné p. 5 / 24

Motivation

Verification: compromises
Undecidability: correctness properties are undecidable!
cannot build a program that automatically and precisely separates all correct programs
from all incorrect ones

Possible compromises:
lose automation, or completeness, or soundness, or generality, or all

Test: complete and automatic, but unsound
Theorem proving

proof essentially manual, but checked automatically
powerful, but very steep learning curve

Deductive methods
automated proofs for some logic fragments (SAT, SMT)
still requires program annotations (contracts, invariants)

Model checking
check a (often hand-crafted) model of the program
finite or regular models, expressive properties (LTL)
automatic and complete (wrt. model)

Course 00 Introduction Antoine Miné p. 6 / 24

Motivation

Verification by static analysis

source

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

if (t[i]) break;
}
return t[i];

}

=⇒

analysis result

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

// 0 ≤ i < n
if (t[i]) break;

}
// 0 ≤ i ≤ n ∨ n < 0
return t[i];

}

3

7

work directly on the source code
infer properties on program executions
automatically (cost effective)
construct dynamically a semantic abstraction of the program
deduce program correctness or raise alarms
(implicit specification: absence of RTE; or user-defined properties: contracts)
with approximations (incomplete: efficient, but possible false alarms)
soundly (no false positive)

Course 00 Introduction Antoine Miné p. 7 / 24

Motivation

Verification in practice: The example of avionics software

Critical avionics software is subject to certification:
more than half the development cost
regulated by international standards (DO-178B, DO-178C)

mostly based on massive test campaigns & intellectual reviews

Current trend:
use of formal methods now acknowledged (DO-178C, DO-333)

at the binary level, to replace testing
at the source level, to replace intellectual reviews
at the source level, to replace testing
provided the correspondence with the binary is also certified

=⇒ formal methods can improve cost-effectiveness!
Caveat: soundness is required by DO

Course 00 Introduction Antoine Miné p. 8 / 24

Motivation

Verification in practice: Formal verification at Airbus
Program proofs: deductive methods

functional properties of small sequential C codes
replace unit testing
not fully automatic
Caveat / Frama-C tool (CEA)

Sound static analysis:
fully automated on large applications, non functional properties
worst-case execution time and stack usage, on binary
aiT, StackAnalyzer (AbsInt)
absence of run-time error, on sequential C code
Astrée analyzer (AbsInt)

Certified compilation:
allows source-level analysis to certify sequential binary code
CompCert C compiler, certified in Coq (INRIA)

Course 00 Introduction Antoine Miné p. 9 / 24

Overview of abstract interpretation

Overview of abstract interpretation

Course 00 Introduction Antoine Miné p. 10 / 24

Overview of abstract interpretation

Abstract interpretation

Patrick Cousot7

General theory of the approximation and comparison
of program semantics:

unifies existing semantics (proposed independently)

guides the design of static analyses
that are correct by construction

7P. Cousot. ”Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique des programmes.” Thèse És Sciences Mathématiques, 1978.

Course 00 Introduction Antoine Miné p. 11 / 24

Overview of abstract interpretation

Concrete semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)
program

Course 00 Introduction Antoine Miné p. 12 / 24

Overview of abstract interpretation

Concrete semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

Si ∈ D = P({I, X} → Z)
S0 = { (i , x) | i , x ∈ Z } = >
S1 = { (i , x) ∈ S0 | x ∈ [0, 1000] } = F1(S0)
S2 = { (0, x) | ∃i , (i , x) ∈ S1 } = F2(S1)
S3 = S2 ∪ S5
S4 = { (i , x) ∈ S3 | i < x } = F4(S3)
S5 = { (i + 2, x) | (i , x) ∈ S4 } = F5(S4)
S6 = { (i , x) ∈ S3 | i ≥ x } = F6(S3)

program semantics

Concrete semantics Si ∈ D = P({I, X} → Z):
strongest program properties (inductive invariants)

smallest solution of a system of equations, on sets
well-defined solution, but not computable in general

Course 00 Introduction Antoine Miné p. 12 / 24

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 24

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)

box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 24

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)

polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 24

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 24

Overview of abstract interpretation

From concrete to abstract semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

Si ∈ D = P({I, X} → Z)
S0 = { (i , x) | i , x ∈ Z } = >
S1 = { (i , x) ∈ S0 | x ∈ [0, 1000] } = F1(S0)
S2 = { (0, x) | ∃i , (i , x) ∈ S1 } = F2(S1)
S3 = S2 ∪ S5
S4 = { (i , x) ∈ S3 | i < x } = F4(S3)
S5 = { (i + 2, x) | (i , x) ∈ S4 } = F5(S4)
S6 = { (i , x) ∈ S3 | i ≥ x } = F6(S3)

program concrete semantics

Concrete semantics Si ∈ D = P({I, X} → Z):
strongest program properties (inductive invariants)

smallest solution of a system of equations
not computable in general

Course 00 Introduction Antoine Miné p. 14 / 24

Overview of abstract interpretation

From concrete to abstract semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

S]
i ∈ D]

S]
0 = >]

S]
1 = J assume X ∈ [0, 1000] K](S]

0)
S]

2 = J I ← 0 K](S]
1)

S]
3 = S]

2 ∪] S]
5

S]
4 = J assume I < X K](S]

3)
S]

5 = J I ← I + 2 K](S]
4)

S]
6 = J assume I ≥ X K](S]

3)

program abstract semantics

Abstract semantics S]
i ∈ D]:

D] is a subset of properties of interest
semantic choice + a machine representation

F] : D] → D] over-approximates the effect of F : D → D in D]

with effective algorithms

Course 00 Introduction Antoine Miné p. 14 / 24

Overview of abstract interpretation

Abstract interpretation
Define an interpretation of atomic statements in the abstract,
and compose them to analyze the program

by propagation along the edges of the control-flow graph (data-flow)

or by induction on the syntax of programs (interpretation)

Example in the polyhedra domain

Assignment:
• X = X + 1 •
translation

Join:
if · · · then · · · • else · · · • fi •
convex hull

Loops or CFG cycles:
iteration with widening

Course 00 Introduction Antoine Miné p. 15 / 24

Overview of abstract interpretation

Soundness and false alarms

⇐=
S

P

A

P ⊆ S A ⊆ S
program proved

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 00 Introduction Antoine Miné p. 16 / 24

Overview of abstract interpretation

Soundness and false alarms

6⇐=
S

P

A

P ⊆ S A 6⊆ S
false alarm

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 00 Introduction Antoine Miné p. 16 / 24

Overview of abstract interpretation

Soundness and false alarms

S

P

6⇐=
S

P

A

P 6⊆ S A ⊆ S
false negative
cannot occur

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 00 Introduction Antoine Miné p. 16 / 24

Overview of abstract interpretation

Example static analyzer: Astrée
Astrée: developed at ENS & INRIA by P. Cousot & al.

analyzes embedded critical C software
subset of C, no memory allocation, no recursivity → simpler semantics

checks for run-time errors
arithmetic overflows, array overflows, divisions by 0, pointer errors, etc. →
non-functional

specialized for control / command software
with zero false alarm goal
application domain specific abstractions

Airbus A380

2001–2004: academic success
proof of absence of RTE
on flight command

2009: industrialization
AbsInt

Course 00 Introduction Antoine Miné p. 17 / 24

Overview of abstract interpretation

Example static analyzer: Infer.AI at Facebook

Infer: http://fbinfer.com/

developed at Facebook (team formerly at Monoidics)

Infer.AI is an analysis framework based on abstract interpretation

open-source since 2015

analyzes Java, C, C++, and Objective-C

checks ThreadSafety (Java), Initalisation Order (C++), etc.

modular, bottom-up interprocedural analysis

targets the analysis of merge requests (small bits at a time)

favors speed over soundness
pragmatic choices, based on “what engineers want”
no requirements for certification, unlike the avionics industry

used in production

Course 00 Introduction Antoine Miné p. 18 / 24

http://fbinfer.com/

Course organisation

Course organisation

Course 00 Introduction Antoine Miné p. 19 / 24

Course organisation

Course plan

foundation of abstract interpretation (2 courses)
fixpoint program semantics
order and approximation theory
hierarchy of semantics

bricks of static analyzers (5 courses)
numeric abstract domains
pointer and memory shape abstract domains
partitioning domains
domain combiners (reduced products, partitioning)

domain-specific static analyses (9 courses)
analysis of control-command embedded programs
analysis of concurrent programs
analysis of program transformation
analysis of distributed systems
analysis of mobile systems
analysis of biological systems

Course 00 Introduction Antoine Miné p. 20 / 24

Course organisation

Teaching team

Cezara Drăgoi Jérôme Feret

Antoine Miné Xavier Rival

Course 00 Introduction Antoine Miné p. 21 / 24

Course organisation

Syllabus and exams

https://www-apr.lip6.fr/˜mine/enseignement/mpri/2018-2019

Visit regularly for:
latest information on course dates
course material
course assignments
M2 internship proposals, updated regularly

Exams:
50%: written mid-term exam
50%: oral final exam
(read a scientific article, present it, answer questions)

Course 00 Introduction Antoine Miné p. 22 / 24

https://www-apr.lip6.fr/~mine/enseignement/mpri/2018-2019

Course organisation

Course material

Links available on the web-page:

main material: slides

course notes
cover mainly foundations and numeric abstract domains
based on: A. Miné. Tutorial on Static Inference of Numeric Invariants by
Abstract Interpretation. In Foundations and Trends in Programming Languages,
4(3–4), 120–372. Now Publishers.

recommended reading on theory and applications: J. Bertrane, P.
Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival. Static analysis
and verification of aerospace software by abstract interpretation. In Foundations
and Trends in Programming Languages, 2(2–3), 71–190, 2015. Now Publishers.

Course 00 Introduction Antoine Miné p. 23 / 24

Course organisation

Course assignments

On the web page, highly recommanded homework
exercises: prove a theorem, solve a former exam, etc.
reading assignments: an article related to the course
experiments: use a tool

Principle: self-evaluation
Not evaluated by the teacher, no credit.
The solution to the exercises is also given.

Additional material:
previous exams, with correction
course bibliography in the slides (reading not mandatory)
optional programming project (not evaluated)

Course 00 Introduction Antoine Miné p. 24 / 24

	Motivation
	Overview of abstract interpretation
	Course organisation

