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@ Presentation of a few relational numerical abstract domains
o linear equality domain

e polyhedra domain
o weakly relational domains: zones, octagons
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Linear equality domain Affine equalities

The affine equality domain

Here | € {Q,R}.

We look for invariants of the form:

N (i aiVi= ), ay, B €

where all the aj; and 3; are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:
D! & { affine subspaces of V — | }

/
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Linear equality domain Affine equalities

Affine equality representation

Machine representation:  an affine subspace is represented as

e either the constant L,
e or a pair (M, C) where
e M e I™"isamx nmatrix, n=|V| and m < n,

o C € 1™ is a row-vector with m rows.

(M, C) represents an equation system, with solutions:
(M, E) & Vel Mx V= C}

M should be in row echelon form: example:
o Vi < m:3ki: My, =1 and 10 0 5 0
Ve < ki:Mic =0, VI #4i: My, =0, 01 .0 6 0
i ic 7& Ik; 00 1 7 0
o if i < /i then k; < kit (leading index) 0 0 0 0 1
Remarks:
the representation is unique
as m < n = |V|, the memory cost is in O(n?) at worst
T is represented as the empty equation system: m =0
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Linear equality domain Affine equalities

Galois connection

Galois connection: (actually, a Galois insertion)

between arbitrary subsets and affine subsets
(P(I"), C) &= (AfF(I),C)

] ’Y(X) e X (identity)

o a(X) & smallest affine subset containing X
Aff(I™) is closed under arbitrary intersections, so we have:
a(X)=nN{Y e AF(I") | XC Y}
AfF(I™) contains every point in |”
we can also construct «(X) by abstract union:
a(X) = UF {{x}|x € X}

Notes:
@ we have assimilated V — | to I”

@ we have used Aff(1") instead of the matrix representation D! for simplicity;

a Galois connection also exists between P(1") and D¥
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Linear equality domain Affine equalities

Normalisation and emptiness testing

Let Mx V =C be a system, not necessarily in normal form.
The Gaussian reduction Gauss((M, C)) tells in O(n?) time:

@ whether the system is satisfiable, and in that case
@ gives an equivalent system (M’, C’) in normal form

i.e. returns an element in D

Principle: reorder lines, and combine lines linearly to eliminate variables

Example:
2X + Y + Z = 19
2X + Y - zZ = 9
3Z = 15
4
X + 05Y = 7
Z =5
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Linear equality domain Affine equalities

Affine equality operators

Applications
If Xﬁ,yﬁ 7& 1% we define:

Xt N _'))ﬁ Gauss [ m;«ﬁ } , (_ZX”
R Yt

ﬁyﬁ <d:ef> MXﬁ Myu and xt

xtct oyt 2L it oyt =yt

Cﬁ[[zjajvj _0]])(?3 " Gauss <<[ 041M‘X-na }’|: 6341 ]>>

Cilea0] Xt def i for other tests

Remark:

Ct, =% nf, =* and Cﬂ[[zja — B =0] are exact:
XECEYE = H(XF) (DY), ”/( # i

Antoine Miné
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Linear equality domain Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector
generators Gl, ey Gm and an origin point O, denoted as [G, O].

WG, 0) L {GxX+0|Xxel™} (Gel™ Oel

We can switch between a generator and a constraint
representation:

e From generators to constraints: (M, C) = Cons([G, O])
Write the system V =G x X + O with variables V, X.
Solve it in X (by row operations).
Keep the constraints involving only V.
X = A+2 X—-2 = A
eg. Y = 22x4+p+3 = —2X+Y+1 = pu
Z = u 2X-Y+Z-1 = 0

The result is: 2X — Y +Z = 1.
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Linear equality domain Affine equalities

Generator representation (cont.)

o From constraints to generators: [G, O] &' Gen((M, C))

Assume (M, C) is normalized.
For each non-leading variable V/, assign a distinct Ay,
solve leading variables in terms of non-leading ones.

—0.5 7
X+05Y = 7
eg. { 7z — 5 = (1) Ay + g
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Linear equality domain Affine equalities

Affine equality operators (cont.)

Applications

Given Xﬁ,yﬁ #* 1L we define:
Xt U Y E Cons ([Gae Gy (Oys — Ons), Oxe])
CH[V; = [~o0, +oo] ] X% =" Cons ([Guyx %, Ot ])
CHV; « Y Vi Bl at
if a; = 0, (CH[ Y, arVi — V; + B = 0] o CH[ V; < [0, +oc] ] ) XF

if aj # 0, X where V; is replaced with (V; — Zi# o Vi — B)/aj

(proofs on next slide)

def

CH[V, < e] Xt = CHV; « [—co, +00] | XF for other assignments

Remarks:
e U is optimal, but not exact.
o C\[V; + X;a;Vi+ 8] and CF[ V; + [—o0, +00] ] are exact.
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Linear equality domain Affine equalities

Affine assignments: proofs

CV « X aiVi+ Bl At <
if aj =0,(C*[ Y, Vi — Vi + 8 =0] o C*[ V; + [—o0, +o0] ] ) X'¥

if o # 0, Xt where V; is replaced with (V; — Zi#j aiVi— B)/o;

Proof sketch:
we use the following identities in the concrete

non-invertible assignment: o; = 0

C[Vj«e] =C[Vj<«e] oC[V <« [—o0,+o0]] as the value of Vj is not used in

e
so: C[Vj<«e] =C[V;—e=0] oC[V, « [—o0,+0o0]]
— reduces the assignment to a test
invertible assignment: a; # 0
C[Vj«e] CC[Vj+ e] oC[V;+ [-00,+x]] as e depends on V
(eg, C[V+ V+1] #C[V<+ V+1] oC[V 4+ [—o0,+x]])
peC[Vi+elR <= 3p eRp=p[Vi—= > aip/ (Vi) + B
= 3p' € R plV; = (p(V)) = 3o, i (Vi) = B) /o] = p
— oY) = (p(V) = 3 cip(Vi) — B) /o] € R
— reduces the assignment to a substitution by the inverse expression
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Linear equality domain Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example: 10
X <10
T Y <100
X < 10; Y < 100;
while 2X # 0 do® 5 X=0
X « X-1; o —>o
Y « Y+10 4
done? X#0
X e X-1
Y ~Y+10
30
£0 #1 2 £3 4
(0 7 N . S N 7
1| T TH T T T
2| L% | (10,100) | (10,100) | 10X 4+ Y =200 | 10X + Y = 200
3| Lf 1t (10, 100) (10, 100) 10X + Y = 200
4| L 1t 1t 1t (0, 200)

Note in particular:
X2 = {(10,100)} U* {(9,110)} = { (X, Y) | 10X + Y =200 }
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Linear equality domain Affine equalities

Backward affine equality operators

Backward assignments:

THV; « [—o0, +o0] ] (¥4, RE) X a0t n# (CH] V; + [—o00, +00] [ RY)

— def

CHLV; >, i Vi + B] (XF,RE) =
Xt Nt (RY where V; is replaced with (Z, a;iVi+B))
(reduces to a substitution by the (non-inverted) expression)

TV« e (X%, RY) X THV; « [—o0, +00]] (XF, RE)

for other assignments
Remarks:

] <E’j[[\/j<—Z:l.oz,-\/,-—i-ﬁ]] and (E’j[[\/J-(—[—oo,-i-oo]}] are exact
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Linear equality domain Affine equalities

A note on integers

Suppose now that | = Z.
@ Zis not closed under affine operations: (x/y) X y # x,

@ Gaussian reduction implemented in Z is unsound.
(e-g. unsound normalization 2X + Y = 19 7= X = 9, by truncation)

One possible solution:

@ keep a representation using matrices with coefficients in Q,
@ keep all abstract operators as in Q,
o change the concretization into: yz(X*?) < ~(x¥) N Z".

With respect to 7z, the operators are no longer best / exact.

Example:  where X is the equation Y = 2X
0 (X)) ={(X.Y)|XeZ Y=2X}
@ (C[X+0]ovz)Xt={(X,Y)|X=0, Yiseven}
® (zoCHX - 0])X* ={(X,Y)|X=0,YeZ}

== The analysis forgets the “intergerness” of variables.
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Linear equality domain Affine equalities

The congruence equality domain

Another possible solution:  use a more expressive domain.

n
We look for invariants of the form: /\ (Z m; Vi = ¢ [/g]) .
i=1

J
Algorithms:

o there exists minimal forms (but not unique),
computed using an extension of Euclide's algorithm,

o there is a dual representation: { G x X+ O | X € Z" },
and passage algorithms,

@ see [Gran91].
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Polyhedron domain




The polyhedron do

Here again, | € {Q,R}.

n
We look for invariants of the form: /\ <Z a;Vi > ,Bj>.
i \i=1

We use the polyhedron domain proposed by [Cous78]:

def

D! = {closed convex polyhedra of V — 1}

A

Note:  polyhedra need not be bounded (# polytopes).
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Polyhedron domain

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem).
(see [Schr86])

Constraint representation

(M, C) with M € 1™ and C € I™
represents:  7((M,C)) £ {V M x V > C}

We will also often use a constraint set notation { >=; o;;V; > f; }.

Generator representation

[P, R] where
o P € 1"™%P is a set of p points: P,..., I3p
@ Re 1™ is a set of r rays: K’l,...,R’,

def 2 3 .
@R (S0, B + (S AR Va2 0, 50 0 =1}
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Double

Generator representation examples:

V(PR = { (S0 5P) + (] BR) [Voay 8 2 0: 8 oy = 1}

R1

/

@ the points define a bounded convex hull

@ the rays allow unbounded polyhedra



Polyhedron domain

Origin of duality

Dual A* € {RXel"|VicA 3-%<0}
o {d}* and {AF|X > 0}* are half-spaces,
e (AUB)" = A*n B*,
@ if Ais convex, closed, and 0 € A, then A** = A.
Duality on polyhedral cones:
Cone: C={V |MxV >0}or C={X1,BR)|Vj B >0}

(polyhedron with no vertex, except 0)

@ C* is also a polyhedral cone,

o (™ =,

@ a ray of C corresponds to a constraint of C¥,
@ a constraint of C corresponds to a ray of C*.

Extension to polyhedra: by homogenisation to polyhedral cones:

C(P) = {AV[A>0, (Vi,..., Vo) €9(P), Vpyr =1} C 17"
+
)

(polyhedron in 1" ~ polyhedral cone in 1"

Course 04 Relational Numerical Abstract Domains Antoine Miné p.21 /72



Polyhedron domain

Polyhedra representations

@ No best abstraction «
(e.g., a disc has infinitely many polyhedral over-approximations, but no best one)

@ No memory bound on the representations

Course 04 Relational Numerical Abstract Domains Antoine Miné p.22 /72



Polyhedron domain

Polyhedra representations

Minimal representations

@ A constraint / generator system is minimal if no constraint /
generator can be omitted without changing the concretization

@ Minimal representations are not unique

@ No memory bound even on minimal representations

Example:  three different constraint representations for a point

(a) (b) (c)
@ (a)y+x2>20,y—x>0,y<0,y>-5 (non mimimal)
@ b)y+x2>0,y—x>0,y<0 (minimal)
® (c)x<0,x>0,y<0,y>0 (minimal)
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Polyhedron domain

Chernikova's algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a
constraint system to an equivalent generator system

Why? most operators are easier on one representation

Notes:

@ By duality, we can use the same algorithm to switch from
generators to constraints

@ The minimal generator system can be exponential in the original

constraint system
(e.g., hypercube: 2n constraints, 2" vertices)

@ Equality constraints and lines (pairs of opposed rays) may be
handled separately and more efficiently
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Polyhedron domain

Chernikova's algorithm (cont.)

Algorithm:  incrementally add constraints one by one
e Po={(0,...,0) } (origin)
Start with: { Ro={%, —%|1<i<n} (axes)

For each constraint My - V > C, € (M, 6), update [Px_1, Rk_1] to [Py, Rg].

Start with P, = R, =0,
@ for any Pe Py_1 s.t. I\7Ik P > Cy, add P to Py
@ for any Re Ryx_1 s.t. I\7Ik R >0, add R to Ry

@ for any ﬁ,é € Py_1 s.t. I\7Ik P> Cy and Mk . (_j < Ci, add to Py:
éd_ef C— M- @ P Ci— My -P a

M- P—My-@ My-P—My- @

i.e., move Q towards P along [Q, P] until it saturates the constraint
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Polyhedron domain

Chernikova's algorithm (cont.)

o foranyl_égeRk 1 s.t. A_)Ik~l$>Oand A_)Ik-§<0,addtoRk:

7 def o
0 = (My-S)R— (M- R)S
i.e., rotate S towards R until it is parallel to the constraint

1

\ w\\

IS >~ 0O

@ for any:BGPk_l, ﬁeRk_l s.t.
eitherh?lk~l3>CkandA7lk :‘§<O orA7lk~13<Ckandl\7lk~I§>0

add to Py 0 < Py LM’;PR
k
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Example:

Py = {(0’0)} Ro = {(170)’ (—1,0), (07 1)7 (0’ _1)}




Che

Example:
d
S
(0) (1)
Po = {(0,0)} Ro ={(1,0), (-1,0), (0,1), (0, -1)}
Y>1 P, = {(0’ 1)} {(1 O)a ( ) )a (07 1)}



Polyhedron domain

Chernikova's algorithm example

Example:
Py ==
%
(0) (1) )
Py = {(070)} Ro = {(170)7 (7170)7 (O’ 1)7 (07 71)}
Y>1 P, = {(07 1)} R, = {(1’0)7 (7170)7 (Oa 1)}
X+Y>3 Py= {(27 1)} R, = {(170)7 (_17 1)7 (07 1)}
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Polyhedron domain

Chernikova's algorithm example

Example:

4 .

!

(0) (1) ) @)
Py = {(070)} Ro = {(170)7 (7170)7 (O’ 1)7 (07 71)}

Y>1 P, = {(07 1)} R, = {(1’0)7 (7170)7 (Oa 1)}
X+Y>3 Py= {(27 1)} R, = (170)7 (_17 1)7 (07 1)}
X-Y<1 Py={(21), (L2} Rs=1{(0,1),(1,1)}
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Polyhedron domain

Redundancy removal

Goal: only introduce non-redundant points and rays during
Chernikova's algorithm

Definitions  (for rays in polyhedral cones)

Given C={V|MxV>0}={Rx3|F>0}.
o R saturates I\/Ik v > O LN I\7Ik R=0
o S(R,C) & {k|My-R=0}.

Theorem:

assume C has no line (AL+#0st. Va, al € C)
R is non-redundant w.r.t. R <= AR; € R, S(R,C) C S(R;, C)

o S(R;, C), R € R is maintained during Chernikova's algorithm
in a saturation matrix
@ extension to (non-conic) polyhedra and to lines

@ various improvements exist [LeVe92]
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Polyhedron domain

Operators on polyhedra

Given Xﬂ,yﬂ #* 1% we define:
xtciyr &L VP EPyi, My; x P > Gy,
- VRERXﬁ,MyﬁXRZO
(every generator of X" must satisfy every constraint in yﬁ)

xt=tyt 2Lyt iyt and PHCH oAt

Xt Nt y?i d:ef [ M.y } , gxn
My Cys
(set union of sets of constraints)

Remarks:
o C! =f and N! are exact.
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Join:  xt Ut yﬁ def [ [qu Pyu], [RX;: Ryu] ] (join generator sets)

Examples:

two polytopes a point and a line

Ut is optimal:
we get the topological closure of the convex hull of v(X*#) U ~()¥)




Forward operators: affine tests

crmansszoie = (15,5 )

1 Qp

These test operators are exact.




Ope

Forward operators: forget

C[Vj = [—o0, +00] [ X% = [P, [Rys % (—%)1]

-—

This operator is exact.
It is also a sound abstraction for any assignment.



Polyhedron domain

Operators on polyhedra (cont.)

Forward operators: affine assignments

CLV X,V + Bl a* <
if a; = 0, (CH[ 5, i Vi = V; + B = 0] o C[ Vj 4 [—00, +00] ] ) X*

if o #0, (M, C) where V; is replaced with O%(VJ =2 igiVi—B)
Examples :
X+ X+Y -

X+—Y Q - -
Affine assignments are exact.

They could also be defined on generator systems.
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Polyhedron domain

Operators on polyhedra (cont.)

Backward assignments:

def

TV, + [—o0, +00] ] (X%, RE) % X% Mt (CHV  [—o0, +00] [ RE)

def

CHV « S0V + B (X, RY)
X* N (RF where V; is replaced with (3=, a; Vi + 8))

TV, e] (¥, RY) & T

for other assignments

CHV; « [-o0, +o0] ] (¥4, R?)

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

D* has strictly increasing infinite chains => we need a widening
Definition:

Take X* and V! in minimal constraint-set form
def

APV = {ce XY CE{c})

We suppress any unstable constraint c € X%, i.e., V¥ ZF {c}

Example:
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Polyhedron domain

Polyhedra widening

D* has strictly increasing infinite chains => we need a widening
Definition:

Take X* and V! in minimal constraint-set form
def

Xtoyt = {cext| Yt {c}}
U {cedt3cd et xt =\ )u{c}}
We suppress any unstable constraint ¢ € X*, i.e., V! Z% {c}
We also keep constraints ¢ € V¥ equivalent to those in X¥,
i.e., when 3¢’ € X% XF =F (xF\ ') U {c}

Example:
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Polyhedron domain

Example analysis

X+ 2; I« 0;

while ¢ I < 10 do

if [0,1] = O then X < X + 2 else X <« X - 3 fi;
I+~ I+1

done ¢

Loop invariant: \/
° A4

Xy Fi(X") X'y X'y

Increasing iterations with widening at e give:
X = {X=21=0}
X = {X=21=0}v({X=21=0}Uf{Xe[-1,4], I=1)})
= {X=21=0}v{le[0,1],2-3/<X<2/+2}
= {I1>0,2-31<X<2/+2}
Decreasing iterations (to find | < 10):

X = {X=21=0}U!{I€[1,10], 2 -3/ < X <2/ +2}
= {I€0,10], 2-3/ < X <2/+2}

We find, at the end of the loop ¢: | =10 A X € [—28,22].
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Polyhedron domain

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X% v ) all the
constraints from T satisfied by both X% and ).

Delayed widening:

We replace Xt v Y with X% Uf VP a finite number of times

(this works for any widening and abstract domain).

See also [Bagn03].
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Polyhedron domain

Strict inequalities

The polyhedron domain can be extended to allow strict
constraints:  { VM xV > Cand M x V > ('}
Idea:

A non-closed polyhedron on V is represented
as a closed polyhedron P on V' & VU {V.}.

atVi+ - 4+apnVp+0Ve >0 represents a1Vi+ -+ apVp>0
aVi+---4+anVa—cVe >0, c >0 represents a1Vi+ -+ a,Vp>0

P represents the non necessarily closed polyhedron:
ef
Ye(P) = {(Va,..., Vo) |3V >0, (V4,..., Vo, Vo) € v(P)}.

Notes:
@ The minimal form needs some adaptation [Bagn02].

%
@ Chernikova's algorithm, N#, U#, C¥[c], and C¥[c] can be
easily reused.
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Polyhedron domain

Constraint-only polyhedron domain

It is possible to use only the constraint representation:
@ avoids the cost of Chernikova's algorithm,

@ avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection:  using Fourier-Motzkin elimination

Fourier(X*, Vi) eliminates Vj from all the constraints in X'%:

Fourier(X*, V) def

{QaiVizB)eX =0} U
{(—a;)cr+afc | ct :(Zia?'\/,- >pH)e xf, of >0,
=007 VizpT) et o <0}
we then have:

y(Fourier(X*, Vi) = { [V = V] | v €I, X € y(&H) }.

Course 04 Relational Numerical Abstract Domains Antoine Miné

p. 39 / 72



Polyhedron domain

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number.
Most such constraints are redundant.

Redundancy removal:  using linear programming [Schr86]

def

Let simplex(V*,¥) = min {V-y |y € y()") }

Ifc=(a-V>p)e xtand 8 < simplex(Xt\ {c},a),
then ¢ can be safely removed from X*.
(iterate over all constraints)

Note:  running simplex many times can be become costly
@ use fast syntactic checks first,
@ check against the bounding-box first.

@ active research field

(state-of-the-art: use parametric linear programming)
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Polyhedron domain

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

def
=5

Xt Ct oy V(a@- V> B) € Y, simplex(X*,d) > B

Xt =t pt <d:ef> Xt Ct oyt and VI CH xt

i def

xtnty Xt UPt  (join constraint sets)

CH[V; + [—o0, +oo] [ XF = def Fourier(X*, V;)

For U#, we introduce temporaries \/J-X, \/jy, o, oY

xt Ut oyt def

Fourier( { (3_;04V;* = Bo™® 20) | (D, 05V; 2 B) e X} U
(O, VY = B0Y 20) [ (35,5, 2 ) €V} U
{(Vi=V¥+ VY| VieViu{o¥ >0, 0V >0, 0% +0Y =1},

{5V Vieviu {o%07})
(see [Beno96])
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Weakly relational domains

Weakly relational domains
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Zone domain




Zone domain

The

Here, | € {Z,Q,R}.

We look for invariants of the form:
AVi=V,<cor £V;<c, cel

A subset of 1" bounded by such constraints is called a zone.

[Mine01a]



Weakly relational domains Zone domain

Machine representation

A potential constraint has the form: V; — V; < c.

Potential graph: directed, weighted graph G

@ nodes are labelled with variables in V,
@ we add an arc with weight ¢ from V; to V; for each constraint
Vi—-Vi<ec

Difference Bound Matrix (DBM)

Adjacency matrix m of G:

@ m is square, with size n X n, and elements in | U {+00},
@ mj = ¢ < +oo denotes the constraint V; — V; < ¢,

@ mj = +o0 if there is no upper bound on V; — V.

Concretization:
def -
ym) = {(vi,...,vn) €1"|Vi,j, vy —v; < my }.
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Weakly relational domains

Machine representation (cont.)

Zone domain

Unary constraints add a constant null variable Vj.

@ m has size (n+ 1) x (n+ 1);
@ Vi<cisdenoted as V; — Vy <, i.e., mjg = c;

@ V; > cisdenoted as Vyj — V; < —c, i.e., mp;i = —c;

o visnow: Yo(m) = { (vi,...,va) | (0,v1,...,vs) €~y(m) }.

Example:

| Vo Vi Vo

Vo —+o0 4 3
Vi| -1 +4oco0 +oo
Vo | —1 1 +o00

Course 04
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Weakly relational domains Zone domain

The DBM lattice

Dt contains all DBMs, plus L

< on lU{+oc} is extended point-wisely.

If m,n# L%
mgﬁn <d:ef> Vi,_j., mugnu
A
m n . 1/, m,J n,J
[m Nt n}l_j ot min(mj;, nj;)
[m Ut n}l_j ot max(m;, njj)
4,
ij

(DF, CH UE, NE, LF, TH) is a lattice.

Remarks:
o D! is complete if <is (I =R or Z, but not Q),
o m Cf n = ~9(m) C o(n), but not the converse,
o m =f n = ~5(m) = o(n), but not the converse.
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Weakly relational domains Zone domain

Normal form, equality and inclusion testing

Issue:  how can we compare 7p(m) and ~y(n)?

Idea: find a normal form by propagating/tightening constraints.

Vo—Wi <3 Wo—-Wv1 <3
Vi—W, < —1 Vi— VW, < —1

W—-Va<4 Wo—-Va<2

S~ I

Definition: shortest-path closure m*

N—-1

x def .

m,-j = min Z mij, ikt1
N k=1

(i=i,...,in=J)

Exists only when m has no cycle with strictly negative weight.
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Weakly relational domains Zone domain

Floyd—Warshall algorithm

Properties:
@ (m) =10 < G has a cycle with strictly negative weight.
@ if yo(m) # 0, the shortest-path graph m* is a normal form:
m* = minc: { n|(m) =o(n) }
@ If vo(m),vyo(n) # 0, then

o Yo(m) = yo(n) <= m* =f n*,
o Yo(m) C yo(n) <= m* Cin.

Floyd—Warshall algorithm

0 def
mj; m;
k-1 def .
mst = min(mg, mj + mp;)

ij
@ If yo(m) # 0, then m* = m"+1 (normal form)
@ y(m)=0 < 3i, mi*t <0, (emptiness testing)

@ m"! can be computed in O(n?) time.
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Weakly relational domains Zone domain

Abstract operators

Abstract join: naive version Uf  (element-wise max)

@ U is a sound abstraction of U

but 4o(m U* n) is not necessarily the smallest zone
containing vo(m) and ~o(n) !

The union of two zones with U is no more precise in the zone domain
than in the interval domain!
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract join: precise version: U after closure

@ (m*) U (n*) is however optimal
we have: (m*) U* (n*) = minc: { 0| 70(0) 2 7o(m) U~o(n) }

which implies:
~o((m*) UF (n*)) = minc { 70(0) [ 70(0) 2 ~o(m) U yo(n) }

after closure, new constraints ¢ < X — Y < d give an increase in precision
@ (m*) Ut (n*) is always closed.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract intersection N¥: element-wise min

@ N is an exact abstraction of N (zones are closed under intersection):

yo(m N¥ n) = 4o(m) N yo(n)

@ (m*) % (n*) is not necessarily closed. ..

Remark

The set of closed matrices, with L, and the operations gﬁ, Ut Am, n.(m gt n)*
sub-lattice, where 7 is injective.
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Weakly relational domains Zone domain

Abstract operators (cont.)

We can define:
V. — Ve def [ min(my,c) if (i,j) = (io,Jo)s
[C [Vio = Vip < ] m] i { mijj otherwise.

. 3 def +oo if i = jo orj=jo,
[C [Vip < I 00:4‘00]]]“1],-]- = { mj;  otherwise.

(not optimal on non-closed arguments)
def . .
CH[Vjy Vi +a]m = (C*[Vjp — Vip = a] o CH[ Vj = [—o0, +oo] ] )m if i # jo

def mj —a If’:JO andj?fjo
[C”[[Vju—\/jwral]m]u. = mj+a ifi#jandj=jo
mj; otherwise.

These transfer functions are exact.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Backward assignment:

def

TH[V}, « [~o0, +od] [ (m,r) M (CH[ Vjy  [—00, +00] ] 1)
THV) Vi +al (m,) & m s (CE[V,y « V — a]r)

WW%%%+%M0hﬁf

mln(rU, o +a) ifi=1ipandj#io,jo
m At mln(rU7 T —a) ifj=1pandi#io,jo

400 if i=joorj=jo

rk otherwise.

U)
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Weakly relational domains Zone domain

Abstract operators (cont.)

Issue: given an arbitrary linear assignment Vj, <= ag + >, ax x Vi
@ there is no exact abstraction, in general;

@ the best abstraction a o C[[c] oy is costly to compute.
(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:
Given a (more general) assignment e = [ag, bo] + Z:k[ak7 bi] x Vi

we define an approximate operator as follows:

max(E#[ e] m) if i=0andj=jp
o —min(Ef[e] m) if i=joand j=0
[Cﬁ[[\/j0<—e}]m]_, = max(Ef[ e — V;[m) if i #0,jo and j = jo
Y —min(Efe+ V;]m) ifi=joandj#0,jp
mjj otherwise

where E¥[ e] m evaluates e using interval arithmetics with Vi € [—m},, m§,].

Quadratic total cost (plus the cost of closure).
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Weakly relational domains Zone domain

Abstract operators (cont.)

Example:
Argument
0<Y<10
0<Z2<10
0<Y-2<10
I X+~Y-2Z
—-10< X <10 -10<X<10 0<X<10
-20<X-Y <10 -10<X-Y<O0 -100<X-Y <0
—-20<X—-2Z2<10 -10<X-2<10 -10<X—-2Z2<10
Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Weakly relational domains Zone domain

Widening and narrowing

The zone domain has both strictly increasing and decreasing
infinite chains.

Widening Vv
400 otherwise
Unstable constraints are deleted.

[mVn],-j o

Narrowing A
e nj if mj =400
[m A n]; o Y j =+
mj; otherwise
Only 400 bounds are refined.
Remarks:
@ We can construct widenings with thresholds.

@ V (resp. A) can be seen as a point-wise extension of an
interval widening (resp. narrowing).
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Weakly relational domains Zone domain

Interaction between closure and widening

Widening V and closure * cannot always be mixed safely:

def

e my; = m;v(n) OK
def

e mj; = (m)vn; wrong!
def

e mj; = (mvn;)* wrong

otherwise the sequence (m;) may be infinite!

Example:
X+ 0; ¥ « [-1,1]; fter. | X | Y | X—¥
T P 0 0 [1,1] 1, 1]
while ¢ 1 = 1 do
R « [-1,1]; 1 [_272] [_171] [_171]
5 ’ . 2 [_27 2] [_37 3] [_]-a 1]
if X =Y then Y + X + R
else X « Y + R fi IR .
done 2j [—2),2]] [-2/—-1,2j+1] | [-1,1]
2j+1|[-2-22/+2] | [-2/—-1,2j+1] | [-1,1]

Applying the closure after the widening at e prevents convergence.
Without the closure, we would find in finite time X — Y € [-1,1].

Note: this situation also occurs in reduced products.
(here, D# ~reduced product of n X n intervals, * ~reduction)
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Weakly relational domains Zone domain

Interaction between closure and widening (illustration)

X« 0; Y « [-1,11; iter. | X | Y [ X-Y
IR D 0 0 -1,1] [—1,1]
while ¢ 1 = 1 do
R « [_1,1]; 1 [_2v 2] [_171] [_171]
if X =Y then Y « X + R 2 (-2,2] [-3,3] [-1,1]
else X < Y + R fi M .
done 2j [—2/,2]] [-2/—1,2j+1] | [-1,1]
2j+1 | [-2/-2,2j+2] | [-2j—1,2/+1] | [-1,1]
widening
without
closure
widening
with
closure
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Octagon domain
The octag

Now, | € {Q,R}.
We look for invariants of the form: /\ tVi£V;<c, cel

A subset of 1" defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).

[Mine01b]



Weakly relational domains Octagon domain

Machine representation

Idea: use a variable change to get back to potential constraints.

Let V/ = {V{,..., V4 }.

the constraint: ‘ is encoded as:
Vi—Vi<c (i #J) V31— Vzljfl < ¢ and V2lj -V <c
Vi+Vi<c (i#})) Vg = Ve < ¢ and Vg, — Vg <c
—Vi—V;<c  (i#)) Vii— V5 £ ¢ and Vi- Vg, <c
Vi<c Voia— Vs < 2
Vize Vi = Vi <2
We use a matrix m of size (2n) x (2n) with elements in | U {400}
def
and v+ (m) = {(vi,...,vn) | (vi,—va,..., Vs, —Vy) € v(m) }.
Note:

Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that Vi, j, mj = m;; where 7 =i @ 1.
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Weakly relational domains Octagon domain

Machine representation (cont.)

Example:
h //lvl

Vi+ W, <3
Vo— Vi <3
ViV, <3
Vi- Vo< -3
2V <2
-2V, <38

v,

Lattice
Constructed by point-wise extension of < on | U {400}.
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Weakly relational domains Octagon domain

Algorithms

*

m* is not a normal form for ..

Idea use two local transformations instead of one:

VIi—-V/ <c
{ sz\/?;d = V/-V/<c+d

and

VI - Vi<c
{ Vi_vicg = Vi-Vis(et+d)2

Modified Floyd—Warshall algorithm

def
m*® :e 5(m2n+1)

1 def

(A { ml = m
lef
where: [mkﬂ]ij = min(ny, nix + ni;), 1 < k < 2n

(B) [S(m)]; = min(ng, (niz + ng)/2)

Course 04 Relational Numerical Abstract Domains Antoine Miné

p. 64 / 72



Weakly relational domains Octagon domain

Algorithms (cont.)

Applications
e v+(m)=0 < 3Ji, m§ <0,
o if v1+(m) # (), m® is a normal form:
m® = ming; {n|7yx(n) =~+(m) },
o (m*) Uf (n®) is the best abstraction for the set-union
Y (m) U yx(n).

Widening and narrowing

@ The zone widening and narrowing can be used on octagons.

@ The widened iterates should not be closed.
(prevents convergence)

Abstract transfer functions are similar to the case
of the zone domain.
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Weakly relational domains Octagon domain

Analysis example

Rate limiter

Y < 0; while e 1=1 do

X « [-128,128]; D « [0,16]; )f, '(m”tu:'fini'al
S« Y; Y« X; R« X -8; & Iastpout ft
if R < -D then Y < S - D fi; ; P
X 2 K R: delta Y — S
if R > D then Y « S + D fi
o D:  max. allowed for |R|

Analysis using:
@ the octagon domain,

@ an abstract operator for Vj, < [ao, bo] + >_[ak, bi] x Vi
similar to the one we defined on zones,

@ a widening with thresholds T.
Result: we prove that | Y| is bounded by: min { t € T |t > 144 }.

Note: the polyhedron domain would find | Y| < 128 and does not
require thresholds, but it is more costly.
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Summary

Summary of numerical domains

domain invariants memory cost | time cost (per operation)
intervals Vel h O(|n)) O(|n|)
linear equalities | Y, o, V; = 5 O(|n|?) O(|n]?)
zones Vi—-V,<c O(|n|?) O(|nl®)
polyhedra Z,a;\/,- > B unbounded, exponential in practice

@ abstract domains provide trade-offs between cost and precision

@ relational invariants are often necessary

even to prove non-relational properties

@ an abstract domain is defined by the choice of:

@ some properties of interest and operators

e data-structures and algorithms

(semantic part)

(algorithmic part)

@ an analysis mixes two kinds of approximations:

e static approximations

e dynamic approximations

Course 04
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