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ODE fragments

In the ODE semantics, using the flow of information backward, we can detect
which correlations are not relevant for the system, and deduce a small set of
portions of chemical species (called fragments) the behavior of the concen-
tration of which can be described in a self-consistent way.

(ie. the trajectory of the reduced model are the exact projection of the trajec-
tory of the initial model).

Can we do the same for the stochastic semantics?

Jérôme Feret 4 Wednesday, the 6th of November, 2018



Stochastic fragments ?
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A model with ubiquitination

k1 k2

P
k1−→ ?P P? k1−→ ?P?

P
k2−→ P? ?P

k2−→ ?P?

? k3
?P

k3−→ ∅
?P? k3−→ ∅

?
k4 P? k4−→ ∅

?P? k4−→ ∅
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Statistical independence
We check numerically that:

Et (n?P?) = Et

(
(n?P + n?P?)(nP? + n?P?)

nP + nP? + n?P + n?P?

)
.
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with k1 = k2 = k3 = k4 = 1
and two instances of P at time t = 0.
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Reduced model

k2k1

P
k1−→ ?P

P
k2−→ P?

k3 ?P
k3−→ ∅

+ side effect: remove one P

k4
P? k4−→ ∅

+ side effect: remove one P
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Comparison between the two models
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Coupled semi-reactions
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Reduced model
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Comparison between the two models
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Although the reduction is correct in the ODE semantics.
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Degree of correlation
(in the unreduced model)
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Distant control
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Reduced model

k+/k− A
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Comparison between the two models
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Degree of correlation
(in the unreduced model)
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A model with symmetries

k1 k1

P
k1−→ ?P P? k1−→ ?P?

P
k1−→ P? ?P

k1−→ ?P?

k2
?P? k2−→ ∅
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Degree of correlation
(in the unreduced model)

Et (n?P?) = Et

(
(n?P + n?P?)(nP? + n?P?)

nP + nP? + n?P + n?P?

)
.
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Equivalent chemical species

We check numerically that:

Et (nP?) = Et (n?P).
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Reduced model

2·k1

P
2·k1−−→ ?P

k1

?P
k1−→ ?P?

k2
?P? k2−→ ∅

Exponential reduction!!!
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Comparison between the two models
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Weighted Labelled Transition Systems

A weighted-labelled transition systemW is given by:

• Q, a countable set of states;

• L, a set of labels;

• w : Q×L×Q→ R+
0 , a weight function;

• π0 : Q→ [0, 1], an initial probability distribution.

We also assume that:

• the system is finitely branching, i.e.:

-- the set {q ∈ Q | π0(q) > 0} is finite
-- and, for any q ∈ Q, the set {l, q ′ ∈ L ×Q | w(q, l, q ′) > 0} is finite.

• the system is deterministic:
if w(q, λ, q1) > 0 and w(q, λ, q2) > 0, then: q1 = q2.
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Trace distribution

A cylinder set of traces is defined as:

τ
∆
= q0

λ1,I1→ q1 . . . qk−1
λk,Ik→ qk

where:

• (qi)0≤i≤k ∈ Qk+1 and (λi)1≤i≤k ∈ Lk,
• (Ii)1≤i≤k is a family of open intervals in R+

0 .

The probability of a cylinder set of traces is defined as follows:

Pr(τ) ∆
= π0(q0)

k∏
i=1

w(qi−1, li, qi)

a(qi−1)

(
e−a(qi−1)·inf(Ii) − e−a(qi−1)·sup(Ii)

)
,

where a(q) ∆
=
∑

λ,q ′w(q, λ, q
′).
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Abstraction between WLTS
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Soundness

Given:

• two WLTS S ∆
= (Q,L,→, w, I , π0) and S] ∆= (Q],L], , w], I], π]0),

• two abstraction functions βQ : Q→ Q] and βL : L→ L],

S] is a sound abstraction of S , if and only if, for any cylinder set τ of traces of
S , we have:

Pr(βT(τ)) =
∑

τ ′
(Pr(τ ′) | βT(τ) = βT(τ ′)),

where,

βT(q0
λ1,I1→ q1 . . . qk−1

λk,Ik→ qk)
∆
= βQ(q0)

βL(λ1),I1→ βQ(q1) . . . β
Q(qk−1)

βL(λk),Ik→ βQ(qk).
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Completeness

Given:

• two WLTS S ∆
= (Q,L,→, w, I , π0) and S] ∆= (Q],L], , w], I], π]0),

• two abstraction functions βQ : Q→ Q] and βL : L→ L],

• a concretization function γQ : Q→ R+,

S] is a sound and complete abstraction of S , if and only if,

1. it is a sound abstraction;

2. for any cylinder set τ] of abstract traces of S] which ends in the abstract
state q]k, we have:

γQ(s) = Pr(qk = s | τ such that βT(τ) ∈ τ])×
∑

{γQ(s ′) | βQ(s ′) = q]k}.
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Markovian Property

We consider a stochastic process:

• T = R+
0 : time range;

• Q: a countable set of states;

• (X t)t∈T: a family of random variables over Q;

We say that (X t) satisfies the Markovian property,
if, for any family (st)t∈T of states indexed over T, and any time t1 < t2,
we have:

Pr(Xt2 = st2 | Xt1 = st1) = Pr(Xt2 = st2 | Xt = st, ∀t < t1).
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Lumpability property

Given:

• a stochastic process (X t) which satisfies the Markovian property,

• an initial distribution π0 : Q→ [0, 1],

• an equivalence relation ∼ over Q,

we define the lumped process (Yt) on the state space Q/∼ as:

Pr(Yt = [xt]/∼ | Y0 = [s0]/∼)
∆
= Pr(X t ∈ [st]/∼ | X 0 ∈ [s0]/∼).

We say that (X )t is ∼-lumpable with respect to π0 if and only if, the stochastic
process (Yt) satisfies the Markovian property as well.
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Strong lumpability
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A stochastic process is ∼-strongly lumpable, if:
it is ∼-lumpable with respect to any initial distribution.
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Weak lumpability
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A stochastic process (X t) is ∼-weakly lumpable, if:
there exists an initial distribution with respect to which (X t) is ∼-lumpable.

Jérôme Feret 35 Wednesday, the 6th of November, 2018



Overview

1. Introduction
2. Examples of information flow
3. Symmetric sites
4. Stochastic semantics
5. Lumpability
6. Bisimulations
7. Hierarchy of semantics
8. Conclusion

Jérôme Feret 36 Wednesday, the 6th of November, 2018



Forward bisimulation

Let ∼Q be an equivalence relation over Q and ∼L be an equivalence relation
over L.

We say that (∼Q, ∼L) is a forward bisimulation,
if and only if, for any q1, q2 ∈ Q such that q1 ∼Q q2:

• a(q1) = a(q2);
• and for any λ? ∈ L, q ′? ∈ Q,

fwd(q1, [λ?]/∼L, [q
′
?]/∼Q) = fwd(q2, [λ?]/∼L, [q

′
?]/∼Q)

[q ′?]/∼Q

q1

q2

[λ?]/∼L

[λ?]/∼L
[q1]/∼Q

where: fwd(q, [λ?]/∼L, [q
′
?]/∼Q) =

∑
λ ′,q ′

(w(q, λ ′, q ′) | λ ′ ∼L λ?, q
′ ∼Q q

′
?).
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Backward bisimulation

Let ∼Q be an equivalence relation over Q and ∼L be an equivalence relation
over L.

We say that (∼Q, ∼L) is a backward bisimulation,
if and only if, there exists γ : Q→ R+, such that:
for any q ′1, q

′
2 ∈ Q which satisfies q ′1 ∼Q q

′
2:

• a(q ′1) = a(q ′2);
• and for any λ? ∈ L, q? ∈ Q,

bwd([q?]/∼Q, [λ?]∼/L, q
′
1) = bwd([q?]/∼Q, [λ?]∼/L, q

′
2)

γ(q1)

[λ?]/∼L

[q ′1]/∼Q
[λ?]/∼L

q ′1

q ′2

q1
q2

q3
q4

[q?]/∼Q

γ(q ′1)

γ(q ′2)γ(q4)
γ(q3)

γ(q2)

where: bwd([q?]/∼Q, [λ?]∼/L, q
′) =

∑
q,λ ′

(
γ(q)
γ(q ′)w(q, λ

′, q ′) |q ∼Q q?, λ
′ ∼L λ?

)
.
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Logical implications

• if (∼Q, ∼L) is a forward bisimulation, then the process is ∼Q-strongly
lumpable,
moreover, it induces a sound abstraction;

• if (∼Q, ∼L) is a backward bisimulation, then the process is ∼Q-weakly
lumpable, for the initial distributions which satisfy:

q ∼Q q
′ ⇒ [π0(q) · γ(q ′) = π0(q ′) · γ(q)];

it induces a sound and complete abstraction for these initial distribu-
tions;

• there exist forward bisimulations which are not backward bisimulations;

• there exist backward bisimulations which are not forward bisimulations.
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Counter-example I

A forward bisimulation which is not a backward bisimulation:
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Counter-example II

A backward bisimulation which is not a forward bisimulation:
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Uniform backward bisimulation

Given q?, q ′ ∈ Q and λ? ∈ L, we denote:

pred([q?]/∼Q, [λ?]∼/L, q
′)
∆
= {(q, λ) | w(q, λ, q ′) > 0, q ∼Q q?, λ ∼L λ?}.

If,

• q1 ∼Q q2 =⇒ a(q1) = a(q2);

• for any q ′1,q
′
2 ∈ Q, such that q ′1 ∼Q q

′
2, and any q? ∈ Q and λ? ∈ L,

there is a 1-to-1 mapping between pred([q?]/∼Q, [λ?]∼/L, q
′
1) and

pred([q?]/∼Q, [λ?]∼/L, q
′
2) which is compatible with w,

then:

• (∼Q, ∼L) is a backward bisimulation (with γ(q) = 1, ∀q ∈ Q).
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Abstraction algebra

(Sound/Complete) abstractions can be:

• composed: S[

S

S]

• factored: S[

S

S]

• combined with a symmetric product (c.f. lub or pushout):

∃!
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Compatibility between composition and
pushout
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ConcretizationConcretization
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From individuals to population

• Individual semantics:
In the individual semantics, each agent is tagged with a unique identifier
which can be tracked along the trace;

• Population semantics:
In the population semantics, the state of the system is seen up to injec-
tive substitution of agent identifier;
equivalently, the state of the system is a multi-set of chemical species.
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Fragments

An annotated contact map is valid with respect to the stochastic semantics,
if:

• Whenever the site x and y both occurs in the same or in distinct agent
of type A in a rule, then, there should be a bidirectional edge between
the site x and the y of A.

• Whenever there is a bond between two sites, each of which either car-
ries an internal state of, is connected to some other sites of its agent,
then the bond if oriented in both directions.
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From population to fragments

• Population of fragments:

1. In the annotated contact, each agent is fitted with a binary equiv-
alence over its sites. We split the interface of agents into equiv-
alence classes of sites. Then we abstract away which subagents
belong to the same agent.

2. Whenever an edge is not oriented in the annotated contact map,
we cut each instance of this bond into two half bonds, and abstract
away which partners are bond together.
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ConcretizationConcretization
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Symmetries among sites

Let R be a set of rules andM0 be an initial mixture.

Two sites x1 and x2 are symmetric in the agent A in the set of rules R and the
initial mixtureM0 whenever the following three properties are satisfied:

1. for each rule of the model, if we swap the site x1 and the site x2 in one
instance of A in a rule of R, we get a rule that is isomorphic to a rule in
R. (this rule may be the same, or a different one)

2. given two such symmetric rules, the quotient between the sum of the
rates of the isomorphic rules and the product between the number of
automorphisms in the left hand side, and the number of symmetric iso-
morphic rules, is the same.

3. each agent A inM0 has their sites x1 and x2 free, with the same internal
state.
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Hierarchy of semantics
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Overview

1. Introduction
2. Examples of information flow
3. Symmetric sites
4. Stochastic semantics
5. Lumpability
6. Bisimulations
7. Hierarchy of semantics
8. Conclusion
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Conclusion

• A framework for reducing stochastic rule-based models.

-- We use:
∗ the sites the state of which are uncorrelated;
∗ the sites having the same capabilities of interactions.

-- Algebraic operators combine these abstractions.

• We use backward bisimulations in order to prove statistical invariants,
we use them to reduce the dimension of the continuous-time Markov
chains.
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Future works

• Investigate the use of hybrid bisimulation.

• Propose approximated simulation algorithms to approximate different
scale rate reactions.

-- hybrid systems,
-- tau-leaping,
-- . . .
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