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Introduction

Language syntax

tstatt = X« expg (assignment)
\ lif exp 1 0 then stat? (conditional)
| ‘while ‘exp < 0 do ‘stat’ done’ (loop)
‘ Estat; ‘stat’ (sequence)
exp = X (variable)
‘ —exp (negation)
‘ exp ¢ exp (binary operation)
| c (constant c € Z)
‘ [C, C/] (random input, c,c’ € ZU {+£o0 })

Simple structured, numeric language
@ X €V, where V is a finite set of program variables
e ¢ € L, where L is a finite set of control points
@ numeric expressions: 1 € {=,<,...}, o€ {+,—,%,/}

H . /
@ random inputs: X < [c, ']
model environment, parametric programs, unknown functions, ...
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Introduction

Expression semantics

E[e]: (V—2Z)— P(2)

@ semantics of an expression in a memory state p € £ Yvoz
@ outputs a set of values in P(Z)

e divisions by zero return no result (omit error states for simplicity)
e random inputs lead to several values (non-determinism)

@ defined by structural induction

E[lc.c]lp =

E[X]p det
E[-e]lp =
E[ea+e]p =
E[e1 —e2]p =
E[e1 xe2]p =

Eles/e2]p =

{x€eZ|lc<x<}

{p(X)}

{—vIveE[e]p}
{vi+w|vicE[e]p,wecEe]p}
{vi—w|vi€eE[a]p,v2 € E[e]p}
{vixw|vieE[ea]pwecE[e]p}
{vi/velvi €E[e]p,v2a €E[e]p, vo #0}
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Introduction

Invariant semantics and properties

Invariant property: true of all program executions.

o .2 X =&
);:[100’01.0]' X = C[X « [0,10]] X1
T~ 0do 4 X;=C[Y < 100] X% UC[Y « Y +10] X5
e e Xy = C[X > 0] A;
done 6 X5:C[[X<O]]X3

(atomic command semantics C[ com] on next slide)

e X; € P(E): set of memory states at program point / € L
eg: X3 ={pe&|p(X)e[0,10], 10p(X) + p(Y) € [100,200] N 10Z }

@ we look for the smallest solution (X});c, of the system

@ /C & isinvariant at j if X; C [

@ state invariants / can express absence of assertion failures,
overflows, memory errors, non-termination, etc.
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Introduction

From programs to equations

Atomic commands: C[com] : P(€) — P(€)
com = { X « exp, exp >0 }: assignments and tests.

o C[X—e]X & {p[X—V]|peX,veE[e]p}
def

o C[lex0]X = {peX|IveE[p]pv=x0}

C[-] are U—morphisms: C[s] X = U,cxC[s] {p}, monotonic, continuous

Systematic derivation of the equation system:  eq(‘stat’)

by structural induction:
eq(1X €)' (X = C[X - e] Xun )

3 def
eq(“s1; 6252(/3) 2¢ eq(élslw) U (1252(3)

eq(*1if e > 0 then 253) def

{ X2 = CLep<0] Xy } Ueq(Ps™) U{Xps = Apy UC[e k0] X }
eq(“*while ?e 1 0 do 35 done®®) def

{ X2 = X1 U Xpa, Xz = Clepa0] X } Ueq(Ps™) U { A5 = C[enk 0] X }
where: X3 is a fresh variable storing intermediate results

Course 02 Program Semantics and Properties Antoine Miné p. 6 /103



Introduction

From control-flow graphs to equations

Programs can also be viewed as a control-flow graphs.

10
xH[o,lo]l
20 X =€
v, 100l Xy = C[X «[0,10]] &,
loop .Y x<o X3 =C[Y <+ 100] X UC[Y + Y +10] X5
invariant .. 3@ _"_ 5 g 7 X =C[X>0]x
Xzol 6 Xs=C[X X —-1]X
X = ClIX < 0]] X3
40
XeX-1
5@ Y ~Y+10
CFG: (L, e, A) (X)ier
ZSSr?/s;(ﬁie' ec L - {Xe =¢
arcs: AC L X com X L X":U(j,c,i)eAC[[CEXf ifi#e

Benefit: can also reason on unstructured programs.
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Introduction

Transition semantics

Program execution as discrete transitions between states.
@ 2 : set of states
@ 7 C Y x X: a transition relation, written ¢ =, ¢/, or 0 — o'

(sometimes, we use labelled transition systems instead: 7T C X X AX X, o 2 a’)

= a form of small-step semantics.

Application: on our programming language

o ¥ & L x&: a control point and a memory state

e initial states 7 & {¢} x & and
final states F < {¢'} x & for program ‘stat’

o 7 defined by structural induction on Cstat? (next slides)

but transition systems can model many other languages: imperative languages,
A—calculus, abstract machines, concurrent programs, mobile systems, ...
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Introduction

Transition semantics example

X + [—o0, o0];
bwhile <X # 0do X + X — 1 done ©

Xexl / X20
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Introduction

From programs to transition relations

Transitions:  7[‘stat’] C ¥ x ¥

def

T[AX el = {(/1,p) = (02,p[X > V]) [pEE, vEE[e]p}

7[%if e 1 0 then 23] &

{(1,p) = (£2,p)|pe &, IveE[e]p:vx0} U
{(11,p) = (43,p) |p€ &, v EE[e] p:via0}UT[?s?]

. lef
7[* while e 1 0 do “*s** done’®] =

{(1,p) = (2,p)|peE}U
{(02,p) = (£3,p)|p€ & IveE[e] pvx0}uUT[®s“) U

(43, p)
{(t4,p) = (02,p) | p €} U
{(22,p) = (¢5,p)|p€ &, IveE[e]prvia0}

7'[“51;”52‘3] def T[“sl”] U 7_[525243]
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Introduction

Reachability semantics and post-conditions

Reachability semantics

@ R C X states reachable from Z by 7 (transitively)

@ R N F final reachable states
—> we can check program post-conditions and
non-termination

Link with the equational semantics

RN ({I} X 5) = {I} X Xi >~ X; (X are the reachable states at i € £)

Alternate form for reachability

C[stat ]| Z C & defined by structural induction:

e C[X < e] and C[erx 0] as in the equational semantics

o Clsi; 21X X C[](C[s1]X)

o C[lif e Othen s] X % (C[s](C[ex0]X))U(C[e%0]X)

o C[while e =10 do s done ] X ' C[e 4 0] (Upso (C[s] o C[es0]) X)
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Introduction

Trace semantics

Semantics:
@ trace: a sequence of states (finite or infinite)

@ execution trace: a sequence of states linked by the transition
relation 7

The semantics of a program is now a set of traces.

Trace properties:

Traces carry more information than states
and can prove more expressive properties:

@ temporal properties (a occurs before b)
@ computation length (possibly infinite)

@ liveness (termination, inevitability)
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Introduction

Trace semantics example

X + [—o0, 0];
bwhile <X # 0do X + X — 1 done ©

x=0

X x—l/
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Introduction

Roadmap

Goal:

express all these semantics as fixpoints

o relate these semantics by abstraction relations
@ introduce variants (backward semantics, infinite trace semantics, ...)
@ study which semantics to choose for which class of properties
@ beyond trace properties
Caveat:

@ start generally from transition systems (not high-level syntax)
= uniform view of semantics independent from programming language
@ remain at the level of concrete collecting semantics

e express precisely all properties in a class of interest
e uncomputable

the next course will return to numeric programs
and introduce computable abstractions to achieve computable static analysis
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State semantics and properties

State semantics and properties
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State semantics and properties Forward semantics

Forward reachability

Forward image:  post, : P(¥X) — P(X)

post (S) = {¢'|Fo € S0 =o'}
post.. is a strict, complete U—morphism in (P(X), C,U,N, 0, X).

post..(Uje; Si) = Uje; post..(S;), post..(0) =0

Blocking states: B & {o|Vo' € X:0 A o'}

(states with no successor: valid final states but also errors)

R(Z): states reachable from Z in the transition system

R(Z) 2t {o|3n>0,00,...,00:00 € Z,0 =0p,Vi:o; — 0it1}
= Unzo pOStg(Z)

(reachable <= reachable from Z in n steps of T for some n > 0)
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State semantics and properties Forward semantics

Fixpoint formulation of forward reachability

R(Z) can be expressed in fixpoint form:

R(Z) = Ifp Fr where Fr(S) < T U post.(S) J

Fr shifts S and adds back 7

Alternate characterization: R = Ifp; Gr where G (S) sy post, (S).

Gp shifts S by 7 and accumulates the result with S

(proofs on next slide)
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State semantics and properties Forward semantics

Fixpoint formulation proof

proof: of R(Z) = Ifp Fr where FR(S) L7y post.(S)

(P(x),<C) is a CPO and post, is continuous, hence Fp is continuous:
Fr(Uie1 Ai) = Ujel FR(A).

By Kleene's theorem, Ifp Fr = Unen F (0).

We prove by recurrence on n that: Vn: F7, (0) = Uj<, post’ ().
(states reachable in less than n steps)

o FX(0) =
@ assuming the property at n,
Fl@) = Fr(U,., post.(2))

= ZUpost, (U post’ (T))
= TU U post (post (7))
= IV U1§:<n+1 post.(T)

= Uicps postr(D)

Hence: Ifp Fr = Unen Ft (8) = Ujen post’.(Z) = R(Z).

The proof is similar for the alternate form, given that Ifp; Gr = Upen G;’Q(I) and
G (T) = FRH(0) = Uj<, post)(Z).
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State semantics and properties Forward semantics

Graphical illustration
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Initial states 7.
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State semantics and properties Forward semantics

Graphical illustration
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State semantics and properties

Graphical illustration

Forward semantics
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State semantics and properties Forward semantics

Graphical illustration
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lterate F3 ().
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State semantics and properties

Graphical illustration

Forward semantics

lterate Ff(Z).
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State semantics and properties Forward semantics

Graphical illustration

w000
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o—>0 >0
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lterate F3(Z).
F(Z) = F3(Z) = we reached a fixpoint R(Z) = F3 ().
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State semantics and properties Forward semantics

Multiple forward fixpoints

Recall: R(Z) = Ifp Fg where Fr(S) & Z U post,(S).

Note that Fr may have several fixpoints.

Example:
S ]
e—>e
S ] A
O N O e
oo e e
o0—»0 o—> 0
O—»O0—>»0—>»0 O—>»O0—>»0—>»O0
O<+—O O0«+—0
Initial state 7 R(Z) = Ifp Fr gfp Fr
Exercise:

Compute all the fixpoints of Gr(S) & S U post,(S) on this example.
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State semantics and properties Forward semantics

Example application of forward reachability

@ Infer the set of possible states at program end: R(Z) N F.

o <+ 0;
while i < 100 do
i+ i+1;
j<Jj+[0,1]
done ¢

e initial states Z: j € [0, 10] at control point e,
e final states F: any memory state at control point e,
o = R(Z)N F: control at e, i = 100, and j € [0, 110].
@ Prove the absence of run-time error: R(Z)NB C F.
(never block except when reaching the end of the program)
To ensure soundness, over-approximations are sufficient.
(if RY(Z) D R(Z), then RE(Z)NBC F = R(Z)NBC F)

Course 02 Program Semantics and Properties Antoine Miné
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State semantics and properties Forward semantics

Link with invariance proof methods

Invariance proof method:  find an inductive invariant /| C &

e 1C| (contains initial states)
eVoeclo—o = o€l (invariant by program transition)

@ that implies the desired property: | C P.

Link with the state semantics R(Z):

e if / is an inductive invariant, then Fr(/) C /
Fr(l)=ZUpost () CIUl=1
= an inductive invariant is a post-fixpoint of Fp
o R(Z) = Ifp Fr
= R(Z) is the tightest inductive invariant
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State semantics and properties Forward semantics

Link with the equational semantics

By partitioning forward reachability wrt. control points,
we retrieve the equation system form of program semantics.

Control point partitioning

As ¥

def

YL xE P(T) ~ L — P(E).

We have a Galois isomorphism:

Course 02

(P(2),C) == (L = P(£), %)

XCY &5 wee £ X)) CY()

def

ac(S) = MAp|(tp) €S}

ve(X) & {(Lp)|te L, peX(t)}

given Fgq =i aroFronyy

we get back an equation system A,. . Xy = Feqe(X1,..., &)
agoys =7coag=id (noabstraction)

simply reorganize the states by control point
after actual abstraction, partitioning makes a difference (flow-sensitivity)
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State semantics and properties Forward semantics

Link with Hoare logic

Hoare logic:  proof method where we
@ annotate program points with local sate invariants in P(X)

@ use logic rules to prove their correctness
{P} stat1 {R} {R}stat2{Q}

{Ple/XI} X — e{P} (P} staty; statz {Q}
{PAb}stat{Q} PA-b=Q {P A b} stat {P}
{P}if b then stat {Q} {P} while b do stat {P A —b}

{P}stat{Q} P'=P Q=Q
{P'}stat {Q'}

Link with the state semantics R(Z):

Feq E apoFgro ¢ partitions Fr by control point
and Ifp Fr gives the tightest inductive invariant
@ any post-fixpoint of Fe, gives valid Hoare triples
@ Ifp Feq gives the tightest Hoare triples
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State semantics and properties Forward semantics

Solving the equational semantics

Solve /\I'G[l,”] Xi - Fi(XL e ‘7Xf7)

Each F; is continuous in fp(g)n — P(g) (complete U—morphism)
aka F % (Fi,..., Fp) is continuous in P(E)" — P(E)"

By Taski's fixpoint theorem, Ifp F exists.

x0 Ly xR (kL
x0 =g Xt L pxk, L xk
x0 <o Xl kL &)

The limit of (XX, ..., Xk) is Ifp F.

Naive application of Tarski's theorem
called Jacobi iterations by analogy with linear algebra
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State semantics and properties Forward semantics

Solving the equational semantics (cont.)

Other iteration techniques exist [Cous92].

def
XL =R (XK, Xk

k+1 def k+1 k+1
P AR STE LR A 1. 1

def
XS R (L xR xk)

use new results as soon available

1 def | Fi(XE . Xk ifi=¢(k+1)
a Xl.k otherwise

wrt. a fair schedule ¢ : N — [1, n]
Vi€ [1,n: YN > 0:3k > N: (k) =i

k+
Xi

@ worklist algorithms
@ asynchonous iterations (parallel versions of chaotic iterations)
all give the same limit! (this will not be the case for abstract static analyses. ..)
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State semantics and properties Forward semantics

Inductive abstract interpreter

Principle:
@ follow the control-flow of the program

@ replace the global fixpoint with local fixpoints (loops)

def

C[X<+e]X = {p[X—v]|lpecX,veE[e]p}
CﬂelxlO]]Xdef{p6X|E|v€Eﬂp]]p:vD<10}

Clsi;]X € C[%](C[s]X)

C[if e Othens]X < (C[s ]](C[[emO]]X)) (C[ep4 0] X)

C[while e 10 do s done] X < C[ ek 0] (Ifp F)
where F(Y) € X UC[s](C[ex=0]Y)

informal justification for the loop semantics:

All the C[s] functions are continuous, hence the fixoints exist.
By induction on k, F¥(0) = Uj<x (C[s] oC[e=0] )X
hence, Ifp F = U; (C[s] oC[e=0])'X

We fall back to a special case of (transfinite) chaotic iteration
that stabilizes loops depth-first.
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State semantics and properties Backward semantics

Backward semantics
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State semantics and properties Backward semantics

Backward co-reachability

C(F): states co-reachable from F in the transition system:

C(F) o {o|3n>0,00,...,00:0 =00,0, € F,Vi:o; — 0jy1}
= Un>o Pre7(F)

where pre (S) = {0 |30’ € S0 = 0’} (pre, = post, 1)
C(F) can also be expressed in fixpoint form:

C(]:) = |fp FC where FC(S) d:ef F U preT(S)J

Justification:  C(F) in 7 is exactly R(F) in 77 1.

Alternate characterization: C(F) = Ifpr Gc where G¢(S) = S U pre,(S)
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State semantics and properties Backward semantics

Graphical illustration

0O—»0—»0
Pl
\A

O—>»O0—»0

OoO—» O

O—»O0—>»0—>0—»0

N

O—O0—>»0—>»O0 (@)

O—O0—>0—>0—]»0

Final states F.
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State semantics and properties Backward semantics

Graphical illustration
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State semantics and properties

Graphical illustration

Backward semantics
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State semantics and properties

Graphical illustration

Backward semantics

Course 02
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State semantics and properties

Graphical illustration

Backward semantics

Course 02
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State semantics and properties Backward semantics

Graphical illustration
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State semantics and properties Backward semantics

Application of backward co-reachability

e INC(B\ F)
Initial states that have at least one erroneous execution.

o j< 0 o initial states Z: j € [0,100] at o
Wh_lle ’_> ek o final states F: any memory state at e
i+—i—1;
jj+ [07 10] e blocking states 3: final,
assert (j < 200) or j > 200 (assertion failure)
done o e ZNC(B\ F): ate, i>20

@ Over-approximating C is useful to isolate possibly incorrect
executions from those guaranteed to be correct.

o lterate forward and backward analyses interactively
—> abstract debugging [Bour93|.
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State semantics and properties Backward semantics

Backward co-reachability in equational form

Principle:
As before, reorganize transitions by label £ € L,
to get an equation system on (A7), with X, C &

Example:
S
X1=C[[J—>O]]X2

i 0; X2:£3 -
2 while * i > 0 do X;=C[i>0]XUC[i<0]X

B i1 Criei

5 - . (’)10 X4:<£[[I%I—1HX5

5 j+]o, Py
A Xs = C[j+j+][0,10]] X5

Xo=TF

o final states {(6} x F.
o CIXe]lXx ™ (p|3veE[e]pp[Xrsv]eX)
o Clex0]X & {peX|aveE[p]pva0}=Clex0]X

(also possible on control-flow graphs. . .)
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State semantics and properties Sufficient precondition semantics

Sufficient precondition semantics
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State semantics and properties Sufficient precondition semantics

Sufficient preconditions

S(Y): states with executions staying in ).

S(Y) = o|Vn>0,00,...,00:(c =09 AViio; = 0j41) = o, €V}
= mnzo pre?(Y)

where pre_(S) & {5 |Vo':0 50’ = o' €S}

(states such that all successors satisfy S, ;f)\rE is a complete N—morphism)

S(Y) can be expressed in fixpoint form:

S(¥) = gfp Fs where Fs(S) = Y N pre,(S) ]

proof sketch:  similar to that of R(Z), in the dual.

Fs is continuous in the dual CPO (P(X), D), because pre, is:
Fs(Nie1 Ai) = Nies Fs(A)).
By Kleene's theorem in the dual, gfp Fs = Nyen FE(X).

We would prove by recurrence that FZ(X) = Nj<n pre. (V).
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State semantics and properties Sufficient precondition semantics

Graphical illustration
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Final states F.
Goal: when stopping, stop in F
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State semantics and properties Sufficient precondition semantics

Graphical illustration
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Final states F.
Goal: stay in Y = FU (X \ B)
Iteration F2())
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State semantics and properties Sufficient precondition semantics

Graphical illustration
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Graphical illustration
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State semantics and properties Sufficient precondition semantics

Graphical illustration
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Final states F.
Goal: stay in Y = FU (X \ B)
Sufficient preconditions S(Y) to stop in F
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State semantics and properties Sufficient precondition semantics

Graphical illustration

_w0—>0—0
) :0—>0—+0

e—>0—>0—>0— >0

oe—>0—>0—>0. | @

o—— 0 >0 >0 >0

-/
Final states F.
Goal: stay in Y = FU (X \ B)
Sufficient preconditions S()) to stop in F C(F)

Note: S()) € C(F)
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State semantics and properties Sufficient precondition semantics

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

(P(%),C) &= (P(X),9)

e R(Z)CY <= T CS(Y)
definition of a Galois connection
all executions from Z stay in )
<= 7 includes only sufficient pre-conditions for )

0 s50S(V)=U{X|R(X)CV}
by Galois connection property
S(Y) is the largest initial set whose reachability is in )

We retrieve Dijkstra's weakest liberal preconditions.

(proof sketch on next slide)
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State semantics and properties Sufficient precondition semantics

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that R(Z) = Ifp; Gr where Gr(S) = S U post_(S).
Likewise, S() = gfpy, Gs where Gs(S) = SN pre.(S).

We have a Galois connection: (P(X), C) % (P(%), Q).
post..

post.(A) C B {o/|Joe Ao —d'}CB

(Vo€ Aiocd -0’ = o' €B)

(AC{o|Vo':0 -0’ = o' €B})

A C pre.(B)

11ee

G,
As a consequence (P(X), C) % (P(X), Q).
R
The Galois connection can be lifted to fixpoint operators:
x—gfp, Gs

(P(%),9) ﬁ (P(%), Q).

Exercise: complete the proof sketch.
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State semantics and properties Sufficient precondition semantics

Application of sufficient preconditions

Initial states such that all executions are correct: ZNS(F U (X \ B)).
(the only blocking states reachable from initial states are final states)

rogam I o inital states 72 j € [0,10] at o

o <0 @ final states F: any memory state at o
while / < 100 do ) _ ]
P i1 ° bIo'cklng states B3: either final
j—j+[0,1] or j > 105 (assertion failure)
assert (j < 105) e TNS(FU(T\B)): ate, je[0,5]
done o | (note that ZNC(F U (X \ B)) gives 7)

@ application to inferring function contracts
@ application to inferring counter-examples

@ requires under-approximations to build decidable abstractions
but most analyses can only provide over-approximations!
— research topic
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Finite trace semantics Traces and trace operations

Traces

Trace: sequence of elements from X

Course 02

€: empty trace (unique)

o trace of length 1 (assimilated to a state)
00, .-.,0n—1: trace of length n

3" the set of traces of length n

Y<" < Ujc, X': the set of traces of length at most n

Y* < Ujen I': the set of finite traces

state sets Z, F C ¥ are also sets of traces, of length 1

transition relation 7 C ¥ x X is also a set of traces, of length 2

Program Semantics and Properties Antoine Miné p. 41 / 103



Finite trace semantics Traces and trace operations

Trace operations

Operations on traces:

o length: |t| € N of a trace t € X*

@ concatenation -

(00, ---s0n) - (00 0h) o 00wy Oy Oy O

et Etoe =t

3~

@ junction 7

~

~( 7\ def /
(00s.-,00) (00,01 .-, 01) = 00y, 0n, 00,00,
when o, = o,
undefined if o, # o, and for €
(join two consecutive traces, the common element o, = 0'6 is not repeated)
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Finite trace semantics Traces and trace operations

Trace operations (cont.)

Extension to sets of traces:

e A-B= {a-blacA be B}

{€} is the neutral element for -

o A°B = {a~blac A be B, ab defined }

Y is the neutral element for —

A° o {e) A0 DY
APtL  LfA AN Al f A~ A
AT E L UncoA” AT T UncAT"

Note: A" # {a"|ac A}, A" {a~"|ac A} when |A|l > 1

Note: - and ™ distribute U and N
(U,‘e/ A,‘)A(Uje_/ B,‘) = Ui€/7j€_1 (A,'/-\Bj), etc.
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Finite trace semantics Finite prefix trace semantics

Finite prefix trace semantics
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Finite trace semantics Finite prefix trace semantics

Prefix trace semantics

To(Z): finite partial execution traces starting in Z.

To(Z) = {00,...,05|n>0,00 €Z,Vi:0; = oit1}
= UnZO I~ (")

(traces of length n, for any n, starting in Z and following )

To(Z) can be expressed in fixpoint form:

To(Z) = Ifp F, where Fp)(T) € ZU T 7 J

(Fp appends a transition to each trace, and adds back 7)

(proof on next slides)
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Finite trace semantics Finite prefix trace semantics

Prefix trace semantics: graphical illustration

I = {a}
O—»0—>»0 < {(a,b), (b, b), (b, c)}

def

Iterates:  Tp(Z) = Ifp Fp where Fp(T) = ZUT 7

o F(0)=10

o FY(0)=1={a}

o F2(0) ={a, ab}

o F3(0) ={a, ab, abb, abc}

o F(0)={a, ab’ abic|ic[l,n—1],j€[l,n—-2]}
© Tp(Z) = Un>o FJ(0) = { a, ab’ abic|i>1}
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Finite trace semantics Finite prefix trace semantics

Prefix trace semantics: proof

proof of:  Tp(Z) = Ifp Fp where Fp(T)=ZU T 7

Similar to the proof of R(Z) = Ifp Fg where Fr(S) 7y post.(S).

Fp is continuous in a CPO (P(X*), C):
Fp(Uier Ti)
= IU(U,‘E[ T,')r\T
= ZTUWUig Tim7)=VUig (ZU T 1)
hence (Kleene), Ifp Fp = Un>o Fj(0)
We prove by recurrence on n that Vn: FJl(0) = Uj<, Z77 7"
@ F(0)=0,
° For(0)
TUR)@) 7
= ZU(Ujch I 1
= ZUUicn (T 1
= I 0UU, (T
= U< IT7™!
Thus, Ifp Fp = Upen FJ(0) = Upen Uicn Z777 = UienZ7 770

Note: we also have T,(Z) = Ifpz Gp where G,(T) =T U T 7.

Course 02 Program Semantics and Properties Antoine Miné p. 47 / 103



Finite trace semantics Finite prefix trace semantics

Prefix trace semantics: expressive power

The prefix trace semantics is the collection of
finite observations of program executions.

= this is the semantics of testing!

Limitations:

@ no information on infinite executions,
(we will add infinite traces later)

e can bound maximal execution time: T,(Z) C £="

but cannot bound minimal execution time.
(we will consider maximal traces later)

@ cannot distinguish between finished and unfinished executions
= no liveness property (see later)
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Finite trace semantics Finite prefix trace semantics

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

A state in the state semantics
corresponds to any partial execution trace terminating in this state.

We have a Galois embedding between finite traces and states:

(P(X7),9) <———» (P(%), <)

o ap(T) = {oceX|300,...,0nET:0=0,}

(last state in traces in T)

o 75(S) ¥ {00,...,0n€T* |0, €S}

(traces ending in a state in S)

(proof on next slide)
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Finite trace semantics Finite prefix trace semantics

Abstracting traces into states (proof)

proof of:  (cp,7p) forms a Galois embedding.

Instead of the definition a(c) C a <= ¢ C «(a), we use the alternate
characterization of Galois connections: a and - are monotonic, v o « is extensive, and
« o7y is reductive.

Embedding means that, additionally, o o v = id.

@ «ap, yp are U—morphisms, hence monotonic

@ (voap)(T)
={00,...,0n|on€ap(T)}

={00,...,00|30(,...,0m € Tion=0p,}
oT

®  (apo7p)(S)
={o|3o0,...,0n €EVp(S):oc=0n}
={o|3Jo0,...,0n:0n €S, 0=0n}
=S
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Finite trace semantics Finite prefix trace semantics

Abstracting prefix trace semantics into reachability

We can abstract semantic operators and their least fixpoint.

Recall that:
o T,(Z) =IfpF, where Fp(T) = ZU T,
o R(I) = Ifp Fr where Fr(S) & Z U post,(S),
Tp
° (P(Z*)v g) T? (P(z)a g)

We have: ap o0 Fp = Fr o ap;
by fixpoint transfer, we get: a,(7,(Z)) = R(Z).

(proof on next slide)
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Finite trace semantics Finite prefix trace semantics

Abstracting prefix traces into reachability (proof)

proof: of ap 0 Fy = Fr o ap

(ap 0 Fp)(T)

=ap(ZUTT)

={o|Jog,..., 00 €EZUT T:0=0,}
=7ZU{o|3Jog,...,0n € T T:0=0,}
=ZU{o|3oo,...,0nE Tiop =0}
=ZUpost ({o]|Jog,....,on€ T:o=0,})
— T Upost.(ap(T))

= (Froap)(T)
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Finite trace semantics Finite prefix trace semantics

Abstracting traces into states (example)

j <0

i+ 0;

while i < 100 do
i<+ i+1;
j«Jj+[0,1]

done

@ prefix trace semantics:
i and j are increasing and 0 < j < <100

@ forward reachable state semantics:
0<j<i<100

— the abstraction forgets the ordering of states.
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Finite trace semantics Finite prefix trace semantics

Prefix closure

Prefix partial order: < on X*

x=<y & Juertx-u=y

Note: (X*, <) is not a CPO
Prefix closure:  pp, : P(X*) — P(X¥)
pp(T) E {u|FteTu=<t,u#e}

pp is an upper closure operator on P(X* \ {e}).

(monotonic, extensive T C pp(T), idempotent pp 0 pp = pp)

The prefix trace semantics is closed by prefix:

pp(Tp(Z)) = Tp(2)-
(note that € ¢ T,(Z), which is why we disallowed € in pp)
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Finite trace semantics Finite prefix trace semantics

Another state/trace abstraction: Ordering abstraction

Another Galois embedding between finite traces and states:

(P(X*), €) == (P(¥),)

o ao(T) £ {o|300,...,0n€T,i<no=o0;}

(set of all states appearing in some trace in T)

0 %(S) ¥ {o00,...,0n|n>0,Vi<no;cS}

(traces composed of elements from S)

proof sketch:

@ and 7, are monotonic, and a, 0, = id.

(Yoo ao)(T) ={o0,...,0n|Vi<m3oy,....o0 € T,j<moj=0;}2T.
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Finite trace semantics Finite prefix trace semantics

Semantic correspondence by ordering abstraction

We have: ao(75(Z)) = R(Z).

proof:

We have ap = ap 0 pp (i.e.: a state is in a trace if it is the last state of one of its
prefix).

Recall the prefix trace abstraction into states: R(Z) = ap(7p(Z)) and the fact that
the prefix trace semantics is closed by prefix: pp(7p(Z)) = Tp(Z).

We get ao(75(Z)) = ap(pp(Tp(T))) = ap(Tp(1)) = R(T).

This is a direct proof, not a fixpoint transfer proof (our theorems do not apply ...)

alternate proof: generalized fixpoint transfer
Recall that 7,(Z) = Ifp Fp where Fp(T) ' U T~ 7 and R(Z) = Ifp Fr where

Fr(S) <7y post.(S), but ao 0 Fp = Fr o o does not hold in general, so, fixpoint
transfer theorems do not apply directly.

However, a, 0 Fp = Fr o a, holds for sets of traces closed by prefix. By induction, the
Kleene iterates aj and af, involved in the computation of Ifp Fp and Ifp Fr satisfy

Vn:ao(ap) = aj,, and so ao(Ifp Fp) = Ifp Fr.
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Finite trace semantics Finite suffix trace semantics

Finite suffix trace semantics
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Finite trace semantics Finite suffix trace semantics

Suffix trace semantics

Similar results on the suffix trace semantics,
going backwards from F:

° 7;(‘?) d:Cf{0-07"'70-n‘n2070'nG‘F,\Vi:o'i—)O',’_;'_]_}

(traces following 7 and ending in a state in F)
o Ti(F) = UnZO (r—") " F

o Ts(F)=IfpFs where Fo(T) & FUT™T

(Fs prepends a transition to each trace, and adds back F)

Backward state co-rechability abstracts the suffix trace semantics:

@ au(Ti(F)) = C(F) where as(T) ¥ {o|3oo,...,0n € Tio =00}

@ ps(Ts(F)) = Ts(F) where ps(T) def {u|3Ftex*:t-ueT,u#e}
(closed by suffix)
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Finite trace semantics Finite suffix trace semantics

Graphical illustration

O F = {c}

O—»0—>»0 T = {(a, b), (b, b), (b,c)}
a b c

lterates:  T<(F) = Ifp F; where Fy(T) < FUr—T.

o FO(0) =10
° Fsl(w)_]:z{c}
F2(0) = {c, bc}
F3(0) = {c, bc, bbc, abc}
oFS"((Z)) {c,bic,abic|ie[l,n—1],j€[l,n—-2]}

o To(F) =Unxo F(0) = {c,bic,abc|i>1}
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Finite trace semantics Finite suffix trace semantics

Application: termination inference

A program terminates if we can find a ranking function
strictly decreasing function with a lower bound

0 1 »0 1 »0 1 +0
2 2
0 0 0 0

Termination semantics:

@ start with final states, that terminate in O step
@ go backwards in the program traces
and annotate with one more step
This semantics:
@ infers the optimal ranking function
o discovers initial states for which the program terminates

@ can be abstracted into a static analysis
(work by Cousot & Cousot & Urban)
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Finite trace semantics Finite partial trace semantics

Finite partial trace semantics
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Finite trace semantics Finite partial trace semantics

Symmetric finite partial trace semantics

T all the finite partial execution traces.

(not necessarily starting in Z or ending in F)

TdZEf {00,...,0,,]n20,Vi:a;—>a,~+1}

— UHZO zmen
= UnZO TA"AZ

The semantics (and iterates) are forward/backward symmetric:
@ 7 =T,(X), hence T = Ifp Fp.. where F,,(T) CyuTor

(prefix partial traces from any initial state)

def

© T =7T4X), hence T = Ifp Fs. where Fs,.(T) = XUT™T

(suffix partial traces to any final state)

o Fo(0) = FLO) = U, T7777 = Uy 7 E =T NE
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Finite trace semantics Finite partial trace semantics

Abstracting partial traces into prefix traces

Prefix traces abstract partial traces
as we forget all about partial traces not starting in Z.

Galois connection:
(P(£), Q) &= (P(X*).C)

oz

(keep only traces starting in 7)

o az(T) ¥ TN(Z ¥

o (T) = TU((Z\T)- )

We then have: 7,(Z) = az(T).

(add all traces not starting in Z)

similarly for the suffix traces: Ts(F) = ar(T) where ax(T) L rn (x*-F)

(proof on next slide)
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Finite trace semantics Finite partial trace semantics

Abstracting partial traces into prefix traces (proof)

proof

a7 and 7z are monotonic.
(az0vz)(T)=(TU(S\I)-Z)NT-¥*)=TNI-T*C T.
(yzoaz)(T)=(TNZ-Z*)U(Z\I)-Z*=TU(XZ\Z)-=* D T.

So, we have a Galois connection.

A direct proof of T,(Z) = az(T) is straightforward,

by definition of 7,, az, and T.

We can also retrieve the result by fixpoint transfer.

T = Ifp Fpe where Fpu(T) & S UT—7.

Tp = Ifp Fp where Fp(T) &' 70U T 7.

We have: (az o Fpu)(T)=(XUTm)NZ-X*)=ZU(T 1)N(Z-x*) =

ZU(TNEZ- %)~ 71)=(Fpoaz)(T).
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T partial finite traces




Maximal trace semantics
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Maximal trace semantics

The need for maximal traces

The partial trace semantics cannot distinguish between:

while # 0 = 0 do done | while  [0,1] = 0 do doneJ

(we get a* for both programs)

Principle: restrict the semantics to complete executions only
@ keep only executions finishing in a blocking state B

@ add back infinite executions
the partial semantics took into account infinite execution by including all their
finite parts, but we no longer keep them as they are not maximal!

Benefit:

@ avoid confusing prefix of infinite executions with finite executions
@ allow reasoning on trace length
@ allow reasoning on infinite traces (non-termination, inevitability, liveness)
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Maximal trace semantics

Infinite traces

Notations:

@ 0g,...,0p,.... an infinite trace (length w)
@ Y“: the set of all infinite traces
o Y X v JYw: the set of all traces

Extending the operators:

/ def /
@ (00,...,0n) (00s--.) = 00y---,0n, 0. ..
(append to a finite trace)
def .
ot -t/ = tiftex¥ (append to an infinite trace does nothing)
~( ! def / h _
e (00,...,0n) (00,01 ...) = 00,...,0n,07,... when o, = 0

o t7t ¥t ifteyv

o prefix: x <y <L JueT¥x-u=y
- distributes infinite U and N

~ distributes infinite U, but not infinite N
{a“}  (Mpen{a™|n>m})={a*}"0 =10 but
Nnen ({a“} 7 {a™ [n > m}) = Npen {a¥} = {a¥}
However A7 (N;ey Bi) = Ui (AT B;) if AC ©*.
Course 02

(Xv, <) is a CPO
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Maximal trace semantics

Maximal traces

Maximal traces: Mo, € P(X*°)
@ sequences of states linked by the transition relation T,
@ start in any state (Z =X),
e either finite and stop in a blocking state (F = B),

@ or infinite.

Mo d:ef{Uo,...,onEZ*|0n€B,Vi<n:a,-—)a,-+1}U
{Uo,...,Un,...Ezw’Vi<w20;—>Ji+1}

(can be anchored at Z and F as: Moo N (Z-X°) N ((X* - F)uxv))
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Maximal trace semantics

Partitioned fixpoint formulation of maximal traces

Goal: we look for a fixpoint characterization of M.

We consider separately finite and infinite maximal traces.

@ Finite traces: already done!
From the suffix partial trace semantics, recall:
Moo NEF =To(B) = Ifp Fs
recall that F(T) & BU7T™T in (P(X*),C)...

@ Infinite traces:
Additionally, we will prove: My NX“ = gfp G

def

where G5(T) = 77T in (P(X%), Q).
Note: only backward fixpoint formulation of maximal traces exist!

(proof in following slides)
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Maximal trace semantics

Infinite trace semantics: graphical illustration

B~ {c}
O—»0—>»0 T = {(a, b), (b, b), (b,c)}
C

Iterates: Mo, N XY = gfp Gs where G5(T) = e ~T.

o GO(X¥) =x¥

o Gl(I¥) = abT¥ U bbL® U bcE¥

o G2(X¥) = abbX® U bbb¥* U abc¥® U bbc¥®

o G3(X¥) = abbb¥® U bbbb¥® U abbc¥® U bbbc¥¥
o GI(X¥)={ab"t, b"t, ab"Lct, b"ct|t € T¥}

0 Moo NX¥ =Np>o GS”(Z‘“) = {ab¥, b}
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Maximal trace semantics

Infinite trace semantics: proof

where G5(T) & 77T in (P(X¥),C)

proof:

Gs is continuous in (P(X¥),2): Gs(Nics T;) = Nics Gs(T;).
By Kleene's theorem in the dual: gfp Gs = Npen G2 ().
We prove by recurrence on n that Vn: G2(X%) = (77 ") " X%:

0 GO(X¥)=%%=(r0) %%,

@ GM(Z¥)=77GHZY) =7"((r"")"x¥) = (7 ") zv.

gfp G

Course 02

Mpen (T77) XY

{00,... € X¥|VYn > 0:09,..

S On—1 €T}

{00,...€X¥|Vn>0:Vi< nio; = oj11 }

Mo Nx¥
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Maximal trace semantics

Least fixpoint formulation of maximal traces

Idea: To get a least fixpoint formulation for whole M,
merge finite and infinite maximal trace least fixpoint forms.

Fixpoint fusion

Moo NX* is best defined on (P(X*),C,U,N, 0, X*).

Moo NX¥ is best defined on (P(X¥),D,N,U, X%, (), the dual lattice

(we transform the greatest fixpoint into a least fixpoint!)

We mix them into a new complete lattice (P(X°°),C, LI, 11, L, T):
e ALB <L (ANXI*)C(BNI*)A(ANI¥)D(BNIY)

AUB * (ANT*)U(BNTY))U((ANT®)N (BN EY))

AMNB ¥ (ANTHN(BNI*))U(ANZ¥)U(BNZY))

1 yw

T &y

def

In this lattice, M, = Ifp Fs where F(T) = BUT™ T.J

(proof on next slides)
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Maximal trace semantics

Fixpoint fusion theorem

Theorem: fixpoint fusion

If X1 = |fp Fl in (P(Dl), El) and X2 = |fp F2 in (P(D2), 22)
and D1 N'Dy =,
then X1 U Xo =Ifp F in (P(D1UDy),C) where:

o F(X) ¥ R(XND1)U F(XNDy),

def

e AL B — (Aﬂpl) ) (BﬂDl)/\(AﬁDQ) Lo (Bﬁpg).

proof:

We have:

F(X1 UX2) = Fl((Xl UXQ) ﬂ’Dl) U FQ((Xl @] XQ) ﬂDQ) = Fl(Xl) U FQ(XQ) = X1 UXo,
hence X3 U X is a fixpoint of F.

Let Y be a fixpoint. Then Y = F(Y) = F1(Y ND1) U F2(Y N'Dy), hence,
YND1=F(YND;1)and Y NDyis a fixpoint of F1. Thus, X3 C1 Y ND;. Likewise,
Xa E2 Y NDy. We deduce that X = X1 UXo C (YND1)U(YND2) =Y, and so, X
is F's least fixpoint.

note:  we also have gfp F = gfp F1 U gfp F>.
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Maximal trace semantics

Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that M., = Ifp F;
in (P(X®),C) with F(T) & BUT™T

proof:
We have:

@ M NX*=IfpFin (P(X*),Q),

0 M NX¥=IfpGsin (P(X¥),D) where G(T) = 77T,

@ in P(X°), we have
Fs(A) = (Fs(A)NZ)U(F(A)NZEY) = F(ANT*) U G(ANX¥).

So, by fixpoint fusion in (P(X>°),C), we have:
Mo = (Mo NZ*)U (Mo NZY) = Ifp Fs.

Note: a greatest fixpoint formulation in (X°°, C) also exists!
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Maximal trace semantics Abstracting maximal traces into partial traces

Abstracting maximal traces into partial traces
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Maximal trace semantics Abstracting maximal traces into partial traces

Finite and infinite partial trace semantics

Two steps to go from maximal to finite partial traces:
@ add all partial traces
@ remove infinite traces (in this order!)

Partial trace semantics T

all finite and infinite sequences of states
linked by the transition relation 7:

Too € {00,...,0n € T*|Vi< nioj = oiy1} U
{Uo,...,O'n,...GZW|VI'<OJZO','—>O','+1}

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to M:
Too = Ifp Fus in (P(£%°),E) where Foo(T) £ TUTTT,

proof:  similar to the proof of M, = Ifp Fs.
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Maximal trace semantics Abstracting maximal traces into partial traces

Finite trace abstraction

Finite partial traces 7 are an abstraction of all partial traces 7
(forget about infinite executions)

We have a Galois embedding:

(P(x%),C) &= (P(£"). C)

Qx

@ L is the fused ordering on X* U X“:
ACB £5 (ANT*)C(BNI*)A(ANZI¥) D (BNIY)

def

o o (T) ¥ Tnx
(remove infinite traces)

° 7(T) =T
(embedding)

o T = a.(T%)

(proof on next slide)
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Maximal trace semantics Abstracting maximal traces into partial traces

Finite trace abstraction (proof)

proof:

We have Galois embedding because:
@ . and 4 are monotonic,
@ given T C ¥*, we have (ax 07 )(T)=TNX* =T,
@ (vxoax)(T)=TnNX*JT, as we only remove infinite traces.
Recall that 7o = Ifp Fsx in (P(X°°),C) and T = Ifp Fsx in (P(X*), C), where
Fo(T) ¥ sU T 7.
As ax 0 Fsx = Fsx 0 i and a«(0) = 0, we can apply the fixpoint transfer theorem to

get ax(T) =T

Course 02 Program Semantics and Properties Antoine Miné p. 79 / 103



Maximal trace semantics Abstracting maximal traces into partial traces

Prefix abstraction

Idea: complete maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

(P(E*\{e}),S) == (P(E*\ {e}), )

o ax(T) = {texr®\{e}|JueT:t<u}

(set of all non-empty prefixes of traces in T)

v<(T) E {tex™®\{e}|Vuer®\{e:u=<t = uecT}

(traces with non-empty prefixes in T)

proof:
a~ and < are monotonic.
(a<oy<)(T)={tec T|pp(t) ST} C T (prefix-closed trace sets).

(vzoeax)(T)=pp(T) 2 T.
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Maximal trace semantics Abstracting maximal traces into partial traces

Abstraction from maximal traces to partial traces

Finite and infinite partial traces 7., are an abstraction
of maximal traces Moo: Too = a<(Mxo).

proof:

Firstly, Too and a<(Mso) coincide on infinite traces. Indeed, Too N X* = Moo N XY
and a< does not add infinite traces, so: Too N X% = aj(/\/loo) nxX«.

We now prove that they also coincide on finite traces. Assume

00,...,0n € a<(Mc), then Vi < n:o; — 01, 50, 00,...,0n € Too.
Assume o, ...,0n € Too, then it can be completed into a maximal trace, either finite
or infinite, and so, og,...,0n € a<(Mco).

Note: no fixpoint transfer applies here.
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Maximal trace semantics Abstracting maximal traces into partial traces

Enriched hierarchy of semantics

R(I) C(]:) forward /backward states
aPT Ta,,
773(.'[) 7;(;) prefix/suffix finite traces

?
Too

.

Moo maximal traces

partial finite traces

partial traces

See [Cous02] for more semantics in this diagram.
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Trace properties

Trace properties

Trace property: P € P(X*)

Verification problem: M N (Z-£*°)CP

or, equivalently, as Moo C P’ where P’ Py ((E\Z)-x*)

Examples:
@ termination: P & 2,
@ non-termination: P & P
@ any state property SC X: P & g,
@ maximal execution time: P & y <k
@ minimal execution time: P & y =k
e ordering, e.g: P = (X \ {b})*-a-X* b.L>

(a and b occur, and a occurs before b)
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Trace properties

Safety properties for traces

Idea: a safety property P models that “nothing bad ever occurs”

@ P is provable by exhaustive testing;
(observe the prefix trace semantics: 7,(Z) C P)

e P is disprovable by finding a single finite execution not in P.

Examples:
@ any state property: P % for SC T,
e ordering: P < £\ ((£\ {a})* - b- L),

no b can appear without an a before,

but we can have only a, or neither a nor b
(not a state property)

. . def .
@ but termination P = ¥* is not a safety property.
disproving requires exhibiting an infinite execution
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Trace properties

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ¢)
00 (—,y*j *
(P(Z )7 g) T) (P(z )7 g)

def

o a<(T) ={teX|JueT:t<u}
0 1<(T) E {texr®|VueT u<t — ueT}

. def .
The associated upper closure p,.<x = 7= o a< is:
p«< = limop, where:
def

0 pp(T) = {uexX>®|3qteT:u=t},

def

o Iim(T) = Tu{teX¥|VueXu=<t = uveT}

Definition: P € P(X*°) is a safety property if P = p.<(P).
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Trace properties

Definition of safety properties (examples)

Definition: P C P(X*°) is a safety property if P = p.<(P).

Examples and counter-examples:

@ state property P L S® for SCY:
pp(5%°) = lim(5°°) = §° = safety;

e termination P & ¥*:
pp(X*) = L*, but lim(X*) = £ # £* = not safety;

@ even number of steps P = (£2)>°:
pp((£2)%°) = £ #£ (¥£2)°>° = not safety.
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Trace properties

Proving safety properties

Invariance proof method: find an inductive invariant /

@ set of finite traces | C ¥*

e 7C/

(contains traces reduced to an initial state)

e Vog,...,on€ l:oy — 0ny1 = 00,...,0n,0n+1 € 1

(invariant by program transition)

and implies the desired property: [ C P.

Link with the finite prefix trace semantics 7,(Z):

An inductive invariant is a post-fixpoint of Fp: Fy(/) €/
def

where Fp(T) = ZU T 7.
To(Z) = Ifp Fp, is the tightest inductive invariant.
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Trace properties

Correctness of the invariant method for safety

Soundness:

if P is a safety property and an inductive invariant / exists
then: Moo N(Z-X®)CP

proof:

Using the Galois connection between M. and T, we get:

Moo N(Z - T) C pas(Moo N (T - T)) = Yex(aa (Moo 1 (T - £))) =
Yoz (@uz(Moo) N(T - 27)) = %< (T N(Z - 27)) = 712<(Tp(2)).

Using the link between invariants and the finite prefix trace semantics, we have:
To(Z)C1CP.

As P is a safety property, P = v.<(P), so, v«<(7Tp(Z)) € v«<(P) = P, and so,

Moo N(T-E%)CP.

Completeness: an inductive invariant always exists

proof:  T,(Z) provides an inductive invariant.

Course 02 Program Semantics and Properties Antoine Miné p. 89 / 103



Trace properties

Disproving safety properties

Proof method:

A safety property P can be disproved by constructing a finite prefix
of execution that does not satisfy the property:

MoN(ZT-E°)¢ P = 3teTo(I):t¢P

proof:
By contradiction, assume that no such trace exists, i.e., TP(I) C P.

We proved in the previous slide that this implies Moo N (Z - £>°) C P.

Examples:

@ disproving a state property P & goo.
= find a partial execution containing a state in X \ S;

def

e disproving an order property P = £\ ((X \ {a})* - b-X*)
= find a partial execution where b appears and not a.
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Trace properties

Liveness properties

Idea: liveness property P € P(X)

Liveness properties model that“something good eventually occurs”

@ P cannot be proved by testing
(if nothing good happens in a prefix execution,
it can still happen in the rest of the execution)

@ disproving P requires exhibiting an infinite execution not in P
Examples:

e termination: P & >

def

@ inevitability: P = ¥*-a-¥X*,

(a eventually occurs in all executions)

@ state properties are not liveness properties.
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Trace properties

Definition of liveness properties

Definition: P € P(X*) is a liveness property if p.<(P) = £*°.

Examples and counter-examples:

@ termination P & ¥

pp(X*) = X* and lim(X*) = £°° = liveness;
e inevitability: P & ¥*. 5.5
pp(P) =PUX* and lim(P U X*) = ¥>° = liveness;

def

@ state property P = S for S C ¥:
pp(5%°) =1lim(5%°) = 5> # £ if S # ¥ = not liveness;

e maximal execution time P & ¥ <k.
pp(Z5F) = lim(E=K) = =k £ ¥°° — not liveness;

@ the only property which is both safety and liveness is >°°.
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Trace properties

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

e find f : ¥ — S where (S,C) is well-ordered,;
( is called a “ranking function”)

eoceB = f=minS;

e 0 —o = f(o')C f(0).

(f counts the number of steps remaining before termination)
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Trace properties

Disproving liveness properties

Property:
If Pis a liveness property, then Vt € ¥*:Jdu € P:t < u.

proof:

By definition of liveness, p,<(P) = X°°, so t € p,<(P) = lim(cap(P)).
As t € X* and lim only adds infinite traces, t € ap(P).

By definition of ap, Ju € P:t < u.

Consequence:

@ liveness cannot be disproved by testing.
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Trace properties

Trace topology

A topology on a set can be defined as:
— either a family of open sets (closed under union)
— or family of closed sets (closed under intersection)

Trace topology: on sets of traces in X

@ the closed sets are: C & { P € P(£)| P is a safety property }

@ the open sets can be derived as O {X>®\c|lce(C}

Topological closure:  p: P(X) = P(X)

° p(x) N {ceC|x Cc} (upper closure operator in (P(X),C))
@ on our trace topology, p = p.<.
Dense sets:
@ x C X is dense if p(x) = X;
@ on our trace topology, dense sets are liveness properties.
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Trace properties

Decomposition theorem

Theorem: decomposition on a topological space
Any set x C X is the intersection of a closed set and a dense set.

proof:

We have x = p(x) N (x U (X \ p(x))). Indeed:
p(x) 0 (x U (X \ p(x))) = (p(x) N x) U (p(x) N1 (X \ p(x))) = p(x) "1x = x a5 x C p(x).
@ p(x) is closed

@ x U (X \ p(x)) is dense because: p(x U (X \ p(x))) (x) U p(X\ p(x))
(x) U(X\ p(x))

X

2p
2p
Consequence: on trace properties

Every trace property is the conjunction of
a safety property and a liveness property.

proving a trace property can be decomposed into
a soundness proof and a liveness proof
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Beyond trace properties

Properties

We generalize the notion of properties and program verification.

General setting:

@ programs: prog € Prog
e semantics: [-] : Prog — D in some semantic domain D

@ property: the set of allowed program semantics P € P(D)

C gives an information order on properties

P C P’ means that P’ is weaker than P (allows more semantics)

e verification problem: [prog] € P
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Beyond trace properties

Collecting semantics

Collecting semantics:  Col : Prog — P(D)

o Col(prog) = {[ prog] }
e Col(prog) is the strongest property of a program in P(D)

(relative to the choice of the semantic domain D and function [-])

@ we can interpret program verification as property inclusion:

Col(prog) C P
P is weaker than Col(prog) in the information order of properties
@ generally, the collecting semantics cannot be computed;
we settle for a weaker property S that

e is sound: Col(prog) C S*
o implies the desired property: S* C P
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Beyond trace properties

Retrieving state and trace properties

Reachability state semantics:

o D E P(X)
o [[] = R(2)

Trace semantics:
o D E P(X™)
o [[] £ Myun(Z-X)

State and trace properties: interpreted in P(D)

p1(x) for some x € D
where p|(x) £ {y € D|y C x} € P(D)

(proof: AC B <= A€ p;(B))
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Beyond trace properties

Non-trace properties

Note: expressing properties in P(D)
is more general than expressing properties in D

Example: non-interference for variable X
PE{TeP(E*)| Voo,...,on€ T:Vol00 =0 =
04y ..o €T 0, =0m}

where (£,p) = (0',p') < (=0 AVYV # X:p(V)=p'(V)

(changing the initial value of X does not affect the set of final environments up to the

value of X)

There is no Q € X such that P = p(Q).
= non-interference is not a trace property in P(X).

Reading assignment: hyperproperties.
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