Order Theory

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2020–2021

Course 01 18 September 2020 Partially ordered structures

- (complete) partial orders
- (complete) lattices
- **•** Fixpoints

Abstractions

- Galois connections, upper closure operators (first-class citizens)
- Concretization-only framework
- Operator abstraction
- Fixpoint abstraction

Partial orders

Given a set X, a relation $\Box \in X \times X$ is a partial order if it is:

1 reflexive: $\forall x \in X$, $x \sqsubset x$

- 2 antisymmetric: $\forall x, y \in X, (x \sqsubset y) \land (y \sqsubset x) \implies x = y$
- **3** transitive: $\forall x, y, z \in X, (x \sqsubset y) \land (y \sqsubset z) \implies x \sqsubset z$

 (X,\square) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.

Examples: partial orders

Partial orders:

- \bullet (\mathbb{Z}, \leq) (completely ordered)
- \bullet ($\mathcal{P}(X), \subseteq$)

(not completely ordered: $\{1\} \not\subseteq \{2\}, \{2\} \not\subseteq \{1\}$)

- \circ $(S, =)$ is a poset for any S
- $(\mathbb{Z}^2, \sqsubseteq)$, where $(a, b) \sqsubseteq (a', b') \iff (a \ge a') \wedge (b \le b')$ (ordering of interval bounds that implies inclusion)

Examples: preorders

Preorders:

 \bullet ($\mathcal{P}(X), \sqsubseteq$), where $a \sqsubseteq b \iff |a| \leq |b|$

(ordered by cardinal)

 $(\mathbb{Z}^2, \sqsubseteq)$, where $(a, b) \sqsubseteq (a', b') \iff \{ x \mid a \le x \le b \} \subseteq \{ x \mid a' \le x \le b' \}$

(inclusion of intervals represented by pairs of bounds)

not antisymmetric: $[1, 0] \neq [2, 0]$ but $[1, 0] \sqsubseteq [2, 0] \sqsubseteq [1, 0]$

Equivalence: ≡

$$
X \equiv Y \iff (X \sqsubseteq Y) \land (Y \sqsubseteq X)
$$

We obtain a partial order by quotienting by \equiv .

[Partial orders](#page-2-0)

Examples of posets (cont.)

• Given by a Hasse diagram, e.g.:

Examples of posets (cont.)

Infinite Hasse diagram for (**N** ∪ { ∞ }*,* ≤):

Use of posets (informally)

Posets are a very useful notion to discuss about:

- logic: formulas ordered by implication \implies
- **program verification: program semantics** \Box **specification** (e.g.: behaviors of program ⊆ accepted behaviors)
- approximation: \sqsubseteq is an information order ("a \sqsubseteq b" means: "a caries more information than b")

• iteration: fixpoint computation

(e.g., a computation is directed, with a limit: $X_1 \sqsubseteq X_2 \sqsubseteq \cdots \sqsubseteq X_n$)

[Partial orders](#page-2-0)

(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubset c$ and $b \sqsubset c$
- \bullet c is a least upper bound (lub or join) of a and b if
	- \bullet c is an upper bound of a and b
	- for every upper bound d of a and b, $c \sqsubset d$

(Least) Upper bounds

If it exists, the lub of a and b is unique, and denoted as $a \sqcup b$. (proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubset d$ and $d \sqsubseteq c$; by antisymmetry of \sqsubseteq , $c = d$)

Generalized to upper bounds of arbitrary (even infinite) sets t Y *,* Y ⊆ X (well-defined, as \sqcup is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) $a \sqcap b$, \sqcap Y. $(a \sqcap b \sqsubseteq a) \land (a \sqcap b \sqsubseteq b)$ and $\forall c, (c \sqsubseteq a) \land (c \sqsubseteq b) \implies (c \sqsubseteq a \sqcap b)$

Note: not all posets have lubs, glbs

(e.g.: $a \sqcup b$ not defined on $({ a, b }, =)$)

Chains

 $C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \square : $\forall x, y \in C, (x \sqsubseteq y) \vee (y \sqsubseteq x).$

Complete partial orders (CPO)

A poset (X, \square) is a complete partial order (CPO) if every chain C (including \emptyset) has a least upper bound \sqcup C.

A CPO has a least element $\sqcup \emptyset$, denoted \bot .

Examples, Counter-examples:

- (**N***,* ≤) is not complete, but (**N** ∪ { ∞ }*,* ≤) is complete.
- \bullet ({ $x \in \mathbb{Q}$ | 0 ≤ $x \le 1$ }, ≤) is not complete, but $({x \in \mathbb{R} \mid 0 \le x \le 1}, <)$ is complete.
- \bullet ($\mathcal{P}(Y)$, \subset) is complete for any Y.
- \bullet (X,\square) is complete if X is finite.

[Partial orders](#page-2-0)

Complete partial order examples

A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is a poset with

- **1** a lub $a \sqcup b$ for every pair of elements a and b;
- 2 a glb $a \sqcap b$ for every pair of elements a and b.

Examples:

- integers $(\mathbb{Z}, \leq, \text{max}, \text{min})$
- integer intervals (next slide)
- **o** divisibility (in two slides)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [\[Birk76\].](#page-82-1)

Example: the interval lattice

Integer intervals: $({ \nvert a, b \rvert | a, b \in \mathbb{Z}, a \le b } \cup { \emptyset }, \subset, \sqcup, \cap)$ where $[a,b] \sqcup [a',b'] \stackrel{\scriptscriptstyle{\rm def}}{=} [\mathsf{min}(a,a'), \mathsf{max}(b,b')].$

Example: the divisibility lattice

Divisibility $(\mathbb{N}^*, |, \text{lcm}, \text{gcd})$ where $x|y \stackrel{\text{def}}{\iff} \exists k \in \mathbb{N}, kx = y$

Example: the divisibility lattice (cont.)

Let $P \stackrel{\text{def}}{=} \{p_1, p_2, \dots\}$ be the (infinite) set of prime numbers.

We have a correspondence ι between \mathbb{N}^* and $P \to \mathbb{N}$:

 $\alpha = \iota(x)$ is the (unique) decomposition of x into prime factors

$$
\bullet \ \iota^{-1}(\alpha) \stackrel{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x
$$

ι is one-to-one on functions P → **N** with finite support $(\alpha(a) = 0$ except for finitely many factors a)

We have a correspondence between (**N**∗*,* |*,* lcm*,* gcd) and (**N***,* ≤*,* max*,* min).

Assume that $\alpha = \iota(x)$ and $\beta = \iota(y)$ are the decompositions of x and y, then:

\n- \n
$$
\begin{aligned}\n\text{② } \prod_{a \in P} a^{\max(\alpha(a), \beta(a))} = \text{lcm}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{lcm}(x, y) \\
\text{④ } \prod_{a \in P} a^{\min(\alpha(a), \beta(a))} = \text{gcd}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{gcd}(x, y) \\
\text{④ } (\forall a: \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) \mid (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y\n\end{aligned}
$$
\n
\n

Complete lattices

A complete lattice $(X, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$ is a poset with

- **1** a lub \sqcup S for every set $S \subset X$
- 2 a glb $\sqcap S$ for every set $S \subseteq X$
- ³ a least element ⊥
- \bullet a greatest element \top

Notes:

- 1 implies 2 as $\Box S = \Box \{ y | \forall x \in S, y \sqsubseteq x \}$ (and 2 implies 1 as well),
- 1 and 2 imply 3 and 4: $\bot = \Box \emptyset = \Box X$, $\top = \Box \emptyset = \Box X$,
- a complete lattice is also a CPO.

Complete lattice examples

• real segment $[0, 1]$: $({x \in \mathbb{R} | 0 \le x \le 1}, ≤, max, min, 0, 1)$

• powersets
$$
(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)
$$
 (next slide)

• any finite lattice

(\sqcup Y and \sqcap Y for finite $Y \subseteq X$ are always defined)

• integer intervals with finite and infinite bounds:

$$
\left(\left\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \le b \right\} \cup \{\emptyset\}, \sum_{i \in I} \Box, \Box, \emptyset, [-\infty, +\infty] \right)
$$
\nwith $\Box_{i \in I} [a_i, b_i] \stackrel{\text{def}}{=} [\min_{i \in I} a_i, \max_{i \in I} b_i].$
\n(in two slides)

Example: the powerset complete lattice

Example: $(\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})$

Example: the intervals complete lattice

The integer intervals with finite and infinite bounds: ({ [a*,* b] | a ∈ **Z** ∪ { −∞ }*,* b ∈ **Z** ∪ { +∞ }*,* a ≤ b } ∪ { ∅ }*,* \subseteq , \sqcup , \cap , \emptyset , $[-\infty, +\infty]$)

Derivation

Given a (complete) lattice or partial order $(X, \subseteq, \sqcup, \sqcap, \perp, \top)$ we can derive new (complete) lattices or partial orders by:

- **•** duality (X*,* w*,* u*,* t*,* >*,* ⊥)
	- $\bullet \sqsubset$ is reversed
	- \bullet II and \Box are switched
	- L and T are switched
- **o** lifting (adding a smallest element) $(X \cup \{\perp'\}, \sqsubseteq', \sqcup', \sqcap', \perp', \top)$ \bullet a \Box' b \Longleftrightarrow a = \Box' v a \Box b $\bot' \sqcup' a = a \sqcup' \bot' = a$, and $a \sqcup' b = a \sqcup b$ if $a, b \neq \bot'$ $\bot' \sqcap'$ $a = a \sqcap' \bot' = \bot'$, and $a \sqcap'$ $b = a \sqcap b$ if $a, b \neq \bot'$ \perp' replaces \perp
	- \bullet T is unchanged

Derivation (cont.)

Given (complete) lattices or partial orders: $(X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \perp_1, \top_1)$ and $(X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \perp_2, \top_2)$

We can combine them by:

\n- \n
$$
(X_1 \times X_2, \sqsubseteq, \sqcup, \sqcap, \perp, \top)
$$
 where\n
	\n- \n $(x, y) \sqsubseteq (x', y') \iff x \sqsubseteq_1 x' \land y \sqsubseteq_2 y'$ \n
	\n- \n $(x, y) \sqcup (x', y') \stackrel{\text{def}}{=} (x \sqcup_1 x', y \sqcup_2 y')$ \n
	\n- \n $(x, y) \sqcap (x', y') \stackrel{\text{def}}{=} (x \sqcap_1 x', y \sqcap_2 y')$ \n
	\n- \n $\perp \stackrel{\text{def}}{=} (\perp_1, \perp_2)$ \n
	\n- \n $\top \stackrel{\text{def}}{=} (\top_1, \top_2)$ \n
	\n\n
\n

• smashed product (coalescent product, merging \perp_1 and \perp_2) $((X_1 \setminus \{\perp_1\}) \times (X_2 \setminus \{\perp_2\})) \cup \{\perp\}, \sqsubset, \sqcup, \sqcap, \perp, \top)$

(as $X_1 \times X_2$, but all elements of the form (\perp_1, y) and (x, \perp_2) are identified to a unique ⊥ element)

Derivation (cont.)

Given a (complete) lattice or partial order $(X, \subseteq, \sqcup, \sqcap, \perp, \top)$ and a set S:

- \bullet point-wise lifting (functions from S to X) $(S \to X, \sqsubseteq', \sqcup', \sqcap', \bot', \top')$ where $x \sqsubseteq' y \iff \forall s \in S: x(s) \sqsubseteq y(s)$ $\forall s \in S{:}(x \sqcup' y)(s) \stackrel{\mathrm{def}}{=} x(s) \sqcup y(s)$ $\forall s \in S$: $(x \sqcap' y)(s) \stackrel{\mathrm{def}}{=} x(s) \sqcap y(s)$ $\forall \mathsf{s} \in \mathsf{S} \colon \bot'(\mathsf{s}) = \bot$ $\forall s \in S$: $\top'(s) = \top$
- smashed point-wise lifting

 $((S \rightarrow (X \setminus \{\bot\})) \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top')$

as $S \to X$, but identify to \perp' any map x where $\exists s \in S: x(s) = \bot$

(e.g. map each program variable in S to an interval in X)

Distributivity

A lattice $(X, \square, \square, \square)$ is distributive if:

- $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$ and
- $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$

Examples, Counter-examples:

(P(X)*,* ⊆*,* ∪*,* ∩) is distributive

o intervals are not distributive $([0, 0] \sqcup [2, 2]) \sqcap [1, 1] = [0, 2] \sqcap [1, 1] = [1, 1]$ but $([0,0] \sqcap [1,1]) \sqcup ([2,2] \sqcap [1,1]) = \emptyset \sqcup \emptyset = \emptyset$

common cause of precision loss in static analyses: merging abstract information early, at control-flow joins vs. merging executions paths late, at the end of the program Given a lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ and $X' \subseteq X$ $(X', \sqsubseteq, \sqcup, \sqcap)$ is a sublattice of X if X' is closed under \sqcup and \sqcap

Example, Counter-examples:

- if Y ⊆ X, (P(Y)*,* ⊆*,* ∪*,* ∩*,* ∅*,* Y) is a sublattice of $(P(X), \subseteq, \cup, \cap, \emptyset, X)$
- \bullet integer intervals are not a sublattice of $(P(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})$ $[\min(a, a'), \max(b, b')] \neq [a, b] \cup [a', b']$

another common cause of precision loss in static analyses: \sqcup cannot represent the exact union, and loses precision

Functions

- A function $f : (X_1, \square_1, \square_1, \perp_1) \rightarrow (X_2, \square_2, \square_2, \perp_2)$ is
	- **•** monotonic if

$$
\forall x, x', x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x')
$$

(aka: increasing, isotone, order-preserving, morphism)

• strict if $f(\perp_1) = \perp_2$

• continuous between CPO if $\forall C$ chain ⊆ X_1 , { $f(c) | c \in C$ } is a chain in X_2 and $f(\sqcup_1 C) = \sqcup_2 \{ f(c) | c \in C \}$

- a (complete) \sqcup −morphism between (complete) lattices if $\forall S \subseteq X_1$, $f(\sqcup_1 S) = \sqcup_2 \{ f(s) | s \in S \}$
- **extensive if** $X_1 = X_2$ **and** $\forall x, x \sqsubset_1 f(x)$
- reductive if $X_1 = X_2$ and $\forall x, f(x) \sqsubset_1 x$

Fixpoints

Given $f: (X, \square) \to (X, \square)$

- x is a fixpoint of f if $f(x) = x$
- x is a pre-fixpoint of f if $x \sqsubseteq f(x)$
- x is a post-fixpoint of f if $f(x) \sqsubset x$

We may have several fixpoints (or none)

- $fp(f) \stackrel{\text{def}}{=} \{ x \in X \mid f(x) = x \}$
- $\mathsf{lfp}_\mathsf{x} \, f \stackrel{\text{\tiny def}}{=} \, \mathsf{min}_\sqsubseteq \set{ \mathsf{y} \in \mathsf{fp}(f) \, | \, \mathsf{x} \sqsubseteq \mathsf{y} } \, \mathsf{if} \, \, \mathsf{it} \, \, \mathsf{exists}$ (least fixpoint greater than x)
- lfp $f \stackrel{\text{def}}{=}$ lfp \perp f

(least fixpoint)

dually: $\mathsf{gfp}_\mathsf{x} \, f \stackrel{\textup{def}}{=} \, \mathsf{max}_\sqsubseteq \set{ \mathsf{y} \in \mathsf{fp}(\mathsf{f}) \, | \, \mathsf{y} \sqsubseteq \mathsf{x}}{ \, | \, \mathsf{gfp} \, \mathsf{f} \stackrel{\textup{def}}{=} \, \mathsf{gfp}_\top \mathsf{f}$ (greatest fixpoints)

Fixpoints: illustration

Fixpoints: example

Monotonic function with two distinct fixpoints

Fixpoints: example

Monotonic function with a unique fixpoint

Fixpoints: example

Non-monotonic function with no fixpoint

Uses of fixpoints: examples

• Express solutions of mutually recursive equation systems

Example:

The solutions of
$$
\begin{cases} x_1 = f(x_1, x_2) \\ x_2 = g(x_1, x_2) \end{cases}
$$
 with x_1, x_2 in lattice X

are exactly the fixpoint of \vec{F} in lattice $X \times X$, where

$$
\vec{F}\left(\begin{array}{c}x_1,\\x_2\end{array}\right)=\left(\begin{array}{c}f(x_1,x_2),\\g(x_1,x_2)\end{array}\right)
$$

The least solution of the system is Ifp \vec{F} .
Uses of fixpoints: examples

• Close (complete) sets to satisfy a given property

Example: $r \subseteq X \times X$ is transitive if: $(a, b) \in r \wedge (b, c) \in r \implies (a, c) \in r$

The transitive closure of r is the smallest transitive relation containing r .

Let $f(s) = r ∪ { (a, c) | (a, b) ∈ s ∧ (b, c) ∈ s }$, then lfp f:

- \bullet lfp f contains r
- \bullet Ifp f is transitive
- \bullet lfp f is minimal

 \implies Ifp f is the transitive closure of r.

Tarski's fixpoint theorem

Tarksi's theorem

If $f: X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proved by Knaster and Tarski [\[Tars55\].](#page-82-0)

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

We prove $\text{If } p f = \bigcap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).

Tarski's fixpoint theorem

Tarksi's theorem

If $f: X \to X$ is monotonic in a complete lattice X then fp (f) is a complete lattice.

Proof:

We prove lfp $f = \bigcap \{ x | f(x) \sqsubset x \}$ (meet of post-fixpoints). Let $f^* = \{x \mid f(x) \sqsubseteq x\}$ and $a = \sqcap f^*$.

 $\forall x \in f^*, \ a \sqsubseteq x$ (by definition of \sqcap) so $f(a) \sqsubset f(x)$ (as f is monotonic) so $f(a) \sqsubseteq x$ (as x is a post-fixpoint). We deduce that $f(a) \sqsubseteq \sqcap f^*$, i.e. $f(a) \sqsubseteq a$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f: X \to X$ is monotonic in a complete lattice X then fp (f) is a complete lattice.

Proof:

We prove lfp $f = \bigcap \{ x | f(x) \sqsubset x \}$ (meet of post-fixpoints).

 $f(a) \sqsubset a$ so $f(f(a)) \sqsubset f(a)$ (as f is monotonic) so $f(a) \in f^*$ (by definition of f^*) so $a \sqsubset f(a)$. We deduce that $f(a) = a$, so $a \in fp(f)$.

Note that $y \in \text{fp}(f)$ implies $y \in f^*$. As $a = \bigcap f^*$, $a \sqsubseteq y$, and we deduce $a = \mathsf{lfp} f$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f: X \to X$ is monotonic in a complete lattice X then fp (f) is a complete lattice.

Proof:

Given $S \subseteq \text{fp}(f)$, we prove that $\text{Ifp}_{\Box S} f$ exists.

Consider $X' = \{ x \in X \mid \sqcup S \sqsubseteq x \}.$ X' is a complete lattice. Moreover $\forall x' \in X', f(x') \in X'.$ f can be restricted to a monotonic function f' on X' . We apply the preceding result, so that Ifp $f' = \mathsf{lfp}_{\sqcup\,\mathsf{S}}\,f$ exists. By definition, lfp $_{\sqcup\,S}\,f\in\operatorname{\mathsf{fp}}(f)$ and is smaller than any fixpoint larger than all $s \in S$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f: X \to X$ is monotonic in a complete lattice X then fp (f) is a complete lattice.

Proof:

By duality, we construct gfp f and gfp $_{\square S}$ f .

The complete lattice of fixpoints is: $(\text{fp}(f), \sqsubseteq, \lambda S.\text{Ifp}_{\sqcup S}f, \lambda S.\text{gfp}_{\sqcap S}f, \text{Ifp }f, \text{gfp }f).$

Not necessarily a sublattice of $(X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$!

Tarski's fixpoint theorem: example

Lattice: $({$ f Ifp, fp1, fp2, pre, gfp $}, \sqcup$, \sqcap , Ifp, gfp) Fixpoint lattice: $({\{ \text{ If } p, \text{ f}p1, \text{ f}p2, \text{ g}fp \}, \sqcup', \sqcap', \text{ If } p, \text{ g}fp)$ (not a sublattice as $fp1 \sqcup' fp2 = gfp$ while $fp1 \sqcup fp2 = pre$,

but gfp is the smallest fixpoint greater than pre)

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathsf{lfp}_a f$ exists.

Inspired by Kleene [\[Klee52\].](#page-82-1)

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathsf{lfp}_a f$ exists.

We prove that $\{f^n(a) | n \in \mathbb{N}\}$ is a chain and $\mathsf{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}.$

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubset f(a)$ then $\mathsf{lfp}_a f$ exists.

We prove that $\{f^n(a) | n \in \mathbb{N}\}$ is a chain and $\mathsf{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}.$

 $a \sqsubset f(a)$ by hypothesis. $f(a) \sqsubset f (f (a))$ by monotony of f. (Note that any continuous function is monotonic. Indeed, $x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y);$ by continuity $f(x) \sqcup f(y) = f(x \sqcup y) = f(y)$, which implies $f(x) \sqsubset f(y)$.) By recurrence $\forall n, f^{n}(a) \sqsubseteq f^{n+1}(a)$. Thus, $\{f^{n}(a) | n \in \mathbb{N}\}$ is a chain and $\Box \{f^{n}(a) | n \in \mathbb{N}\}$ exists.

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathsf{lfp}_a f$ exists.

$$
f(\sqcup \{f^n(a) | n \in \mathbb{N}\})
$$

= $\sqcup \{f^{n+1}(a) | n \in \mathbb{N}\}\$ (by continuity)
= $a \sqcup (\sqcup \{f^{n+1}(a) | n \in \mathbb{N}\}\)$ (as all $f^{n+1}(a)$ are greater than a)
= $\sqcup \{f^n(a) | n \in \mathbb{N}\}\.$
So, $\sqcup \{f^n(a) | n \in \mathbb{N}\}\in \text{fp}(f)$

Moreover, any fixpoint greater than a must also be greater than all $f^{n}(a)$, $n \in \mathbb{N}$. So, $\Box \{ f^n(a) | n \in \mathbb{N} \} = \text{Ifp}_a f.$

Well-ordered sets

- (S, \sqsubseteq) is a well-ordered set if:
	- $\bullet \sqsubset$ is a total order on S
	- every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\Box X \in X$

Consequences:

- any element $x \in S$ has a successor $x + 1 \stackrel{\text{def}}{=} \Box \{v \mid x \sqsubset v\}$ (except the greatest element, if it exists)
- if $\exists y, x = y + 1, x$ is a limit and $x = \bigsqcup \{ y | y \sqsubset x \}$ (every bounded subset $X \subseteq S$ has a lub $\sqcup X = \sqcap \{ y | \forall x \in X, x \sqsubseteq y \}$)

Examples:

- (**N***,* ≤) and (**N** ∪ { ∞ }*,* ≤) are well-ordered
- (\mathbb{Z}, \leq) , (\mathbb{R}, \leq) , (\mathbb{R}^+, \leq) are not well-ordered
- **o** ordinals $0, 1, 2, \ldots, \omega, \omega + 1, \ldots$ are well-ordered (ω is a limit) well-ordered sets are ordinals up to order-isomorphism

(i.e., bijective functions f such that f and f^{-1} are monotonic)

Constructive Tarski theorem by transfinite iterations

Given a function $f: X \to X$ and $a \in X$. the transfinite iterates of f from a are:

$$
\begin{cases}\n x_0 \stackrel{\text{def}}{=} a \\
 x_n \stackrel{\text{def}}{=} f(x_{n-1}) \\
 x_n \stackrel{\text{def}}{=} \sqcup \{x_m \mid m < n\} \quad \text{if } n \text{ is a successor ordinal}\n\end{cases}
$$

Constructive Tarski theorem

If $f : X \to X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then $\mathsf{lfp}_a f = x_\delta$ for some ordinal δ .

Generalisation of "Kleene" fixpoint theorem, from [\[Cous79\].](#page-82-2)

Proof

 f is monotonic in a CPO X , $\sqrt{ }$ J $\overline{\mathcal{L}}$ $x_0 \stackrel{\text{def}}{=} a \sqsubseteq f(a)$ $x_n \stackrel{\text{def}}{=} f(x_{n-1})$ if *n* is a successor ordinal $x_n \stackrel{\text{def}}{=} \Box \{ x_m \, | \, m < n \}$ if *n* is a limit ordinal

Proof:

We prove that $\exists \delta$, $x_{\delta} = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$. Assume by contradiction that $\exists \delta$, $x_{\delta} = x_{\delta+1}$. If *n* is a successor ordinal, then $x_{n-1} \sqsubset x_n$. If *n* is a limit ordinal, then $\forall m < n$, $x_m \sqsubset x_n$. Thus, all the x_n are distinct. By choosing $n > |X|$, we arrive at a contradiction. Thus *δ* exists.

Proof

 f is monotonic in a CPO X , $\sqrt{ }$ J $\overline{\mathcal{L}}$ $x_0 \stackrel{\text{def}}{=} a \sqsubseteq f(a)$ $x_n \stackrel{\text{def}}{=} f(x_{n-1})$ if *n* is a successor ordinal $x_n \stackrel{\text{def}}{=} \Box \{ x_m \, | \, m < n \}$ if *n* is a limit ordinal

Proof:

Given δ such that $x_{\delta+1} = x_{\delta}$, we prove that $x_{\delta} = \text{Ifp}_a f$.

 $f(x_\delta) = x_{\delta+1} = x_\delta$, so $x_\delta \in \text{fp}(f)$. Given any $y \in fp(f)$, $y \sqsupseteq a$, we prove by transfinite induction that $\forall n, x_n \sqsubseteq y$. By definition $x_0 = a \sqsubseteq y$. If n is a successor ordinal, by monotony, $x_{n-1} \sqsubset y \implies f(x_{n-1}) \sqsubset f(y)$, i.e., $x_n \sqsubset y$. If *n* is a limit ordinal, $\forall m \lt n$, $x_m \sqsubset y$ implies $x_n = \bigsqcup \{ x_m \mid m < n \} \sqsubset y$. Hence, $x_{\delta} \sqsubseteq y$ and $x_{\delta} = \mathsf{lfp}_a f$.

Ascending chain condition (ACC)

An ascending chain C in (X,\sqsubseteq) is a sequence $c_i \in X$ such that $i\leq j\implies c_i\sqsubseteq c_j.$

A poset (X, \square) satisfies the ascending chain condition (ACC) iff for every ascending chain C , $\exists i \in \mathbb{N}, \, \forall j \geq i, \, c_i = c_j.$

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite
- **•** the pointed integer poset ($\mathbb{Z} \cup \{\perp\}$, \sqsubseteq) where $x \sqsubset v \iff x = \bot \lor x = v$ is ACC and DCC
- the divisibility poset (N^{*}, |) is DCC but not ACC.

Kleene fixpoints in ACC posets

"Kleene" finite fixpoint theorem

If $f : X \to X$ is monotonic in an ACC poset X and $a \sqsubset f(a)$ then $\mathsf{lfp}_a f$ exists.

Proof:

We prove $\exists n \in \mathbb{N}$, $\text{Ifp}_a f = f^n(a)$.

By monotony of f, the sequence $x_n = f^n(a)$ is an increasing chain. By definition of ACC, $\exists n \in \mathbb{N}$, $x_n = x_{n+1} = f(x_n)$. Thus, $x_n \in \text{fp}(f)$.

Obviously, $a = x_0 \sqsubset f(x_n)$. Moreover, if $y \in \text{fp}(f)$ and $y \sqsupseteq a$, then $\forall i, y \sqsupseteq f^i(a) = x_i$. Hence, $y \sqsupseteq x_n$ and $x_n = \text{Ifp}_a(f)$.

Comparison of fixpoint theorems

Given two posets (C, \leq) and (A, \sqsubseteq) , the pair $(\alpha : C \rightarrow A, \gamma : A \rightarrow C)$ is a Galois connection iff:

$$
\forall a \in A, c \in C, \, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)
$$

which is noted $(C, \leq) \xrightarrow[\alpha]{\sim}$ $\frac{\gamma}{\longrightarrow}(A,\sqsubseteq).$

 \bullet α is the upper adjoint or abstraction; A is the abstract domain.

 \bullet γ is the lower adjoint or concretization; C is the concrete domain.

Galois connection example

Abstract domain of intervals of integers **Z** represented as pairs of bounds (a*,* b).

We have:
$$
(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)
$$

\n- \n
$$
I \stackrel{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})
$$
\n
\n- \n
$$
(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')
$$
\n
\n- \n
$$
\gamma(a, b) \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}
$$
\n
\n

$$
\bullet \ \alpha(X) \stackrel{\text{def}}{=} (\min X, \max X)
$$

proof:

Galois connection example

Abstract domain of intervals of integers **Z** represented as pairs of bounds (a*,* b).

We have:
$$
(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)
$$

\n- \n
$$
I \stackrel{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})
$$
\n
\n- \n
$$
(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')
$$
\n
\n- \n
$$
\gamma(a, b) \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}
$$
\n
\n

$$
\bullet\;\alpha(X)\stackrel{\scriptscriptstyle\rm def}{=} (\min X,\max X)
$$

proof:

$$
\alpha(X) \sqsubseteq (a, b)
$$

\n
$$
\iff \min X \ge a \land \max X \le b
$$

\n
$$
\iff \forall x \in X : a \le x \le b
$$

\n
$$
\iff \forall x \in X : x \in \{y \mid a \le y \le b\}
$$

\n
$$
\iff X \subseteq \gamma(a, b)
$$

Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$, we have:

- **1** $\gamma \circ \alpha$ is extensive: $\forall c, c \leq \gamma(\alpha(c))$ proof: $\alpha(c) \sqsubset \alpha(c) \implies c \leq \gamma(\alpha(c))$
- **2** $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

³ *α* is monotonic

proof: $c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$

⁴ *γ* is monotonic

$$
\begin{aligned}\n\mathbf{9} \quad & \gamma \circ \alpha \circ \gamma = \gamma \\
& \text{proof: } \alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a))) \text{ and} \\
a \sqsupseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a)))\n\end{aligned}
$$

6 $\alpha \circ \gamma \circ \alpha = \alpha$

0 $\alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

 \bullet $\gamma \circ \alpha$ is idempotent

Alternate characterization

If the pair $(\alpha : C \rightarrow A, \gamma : A \rightarrow C)$ satisfies:

- $\mathbf{1}$ γ is monotonic,
- α is monotonic,
- \bullet $\gamma \circ \alpha$ is extensive
- θ $\alpha \circ \gamma$ is reductive

then (α, γ) is a Galois connection.

(proof left as exercise)

Uniqueness of the adjoint

 $Given (C, \leq) \xrightarrow{\leftarrow} \frac{1}{\alpha}$ $\frac{\gamma}{\Longrightarrow}(A,\sqsubseteq),$ each adjoint can be uniquely defined in term of the other:

\n- **0**
$$
\alpha(c) = \Box \{ a \mid c \leq \gamma(a) \}
$$
\n- **0** $\gamma(a) = \lor \{ c \mid \alpha(c) \sqsubseteq a \}$
\n

Proof: of 1 $\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a$. Hence, $\alpha(c)$ is a lower bound of $\{ a \mid c \leq \gamma(a) \}$. Assume that a' is another lower bound. Then, $\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a$. By Galois connection, we have then $\forall a, \, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a$. This implies $a' \sqsubseteq \alpha(c)$. Hence, the greatest lower bound of $\{ a \mid c \le \gamma(a) \}$ exists, and equals $\alpha(c)$.

The proof of 2 is similar (by duality).

Properties of Galois connections (cont.)

If
$$
(\alpha : C \rightarrow A, \gamma : A \rightarrow C)
$$
, then:

 \bullet ∀X ⊂ C, if \vee X exists, then $\alpha(\vee X) = \Box {\alpha(x)} | x \in X$.

2 $\forall X \subseteq A$, if $\Box X$ exists, then $\gamma(\Box X) = \land {\gamma(x) | x \in X}$.

Proof: of 1

By definition of lubs, $\forall x \in X, x \leq \vee X$. By monotony, $\forall x \in X$, $\alpha(x) \sqsubseteq \alpha(\vee X)$. Hence, $\alpha(\vee X)$ is an upper bound of $\{\alpha(x) \mid x \in X\}$. Assume that y is another upper bound of $\{\alpha(x) \mid x \in X\}$. Then, $\forall x \in X$, $\alpha(x) \sqsubseteq y$. By Galois connection $\forall x \in X$, $x \leq \gamma(y)$. By definition of lubs, \vee X < $\gamma(y)$. By Galois connection, α (\vee X) \sqsubset γ . Hence, $\{\alpha(x) \mid x \in X\}$ has a lub, which equals $\alpha(\vee X)$.

The proof of 2 is similar (by duality).

Deriving Galois connections

Given
$$
(C, \leq) \xrightarrow[\alpha]{\gamma} (A, \sqsubseteq)
$$
, we have:

\n- \n
$$
\text{duality: } (A, \underline{\square}) \xrightarrow{\alpha} (C, \underline{\triangleright})
$$
\n
$$
(\alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \text{ is exactly } \gamma(a) \geq c \iff a \sqsupseteq \alpha(c)
$$
\n
\n

\n- point-wise lifting by some set
$$
S
$$
:
\n- $(S \to C, \leq) \xrightarrow{\hat{\gamma}} (S \to A, \subseteq)$ where
\n- $f \leq f' \iff \forall s, f(s) \leq f'(s), \quad (\dot{\gamma}(f))(s) = \gamma(f(s)),$
\n- $f \subseteq f' \iff \forall s, f(s) \subseteq f'(s), \quad (\dot{\alpha}(f))(s) = \alpha(f(s)).$
\n

Given
$$
(X_1, \subseteq_1)
$$
 $\xrightarrow{\gamma_1} (X_2, \subseteq_2)$ $\xrightarrow{\gamma_2} (X_3, \subseteq_3)$:
\n• composition: (X_1, \subseteq_1) $\xrightarrow{\gamma_1 \circ \gamma_2} (X_3, \subseteq_3)$
\n $((\alpha_2 \circ \alpha_1)(c) \subseteq_3 a \iff \alpha_1(c) \subseteq_2 \gamma_2(a) \iff c \subseteq_1 (\gamma_1 \circ \gamma_2)(a))$

- If $(C, \leq) \xrightarrow[\alpha]{}$ $\frac{\gamma}{\alpha\rightarrow}$ (A,\sqsubseteq) , the following properties are equivalent: **1** α is surjective ($\forall a \in A, \exists c \in C, \alpha(c) = a$)
	- **2** γ is injective $\gamma' \in A$, $\gamma(a) = \gamma(a') \implies a = a'$
	- 3 $\alpha \circ \gamma = id$ ($\forall a \in A, \, id(a) = a$)
- Such (*α, γ*) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\sim}$ *γ*
—— γ (A, ⊑)

Proof:

- If $(C, \leq) \xrightarrow[\alpha]{}$ $\frac{\gamma}{\alpha\rightarrow}$ (A,\sqsubseteq) , the following properties are equivalent:
	- **1** α is surjective ($\forall a \in A, \exists c \in C, \alpha(c) = a$)
	- **2** γ is injective $\gamma' \in A$, $\gamma(a) = \gamma(a') \implies a = a'$
	- 3 $\alpha \circ \gamma = id$ ($\forall a \in A$, $id(a) = a$)

Such (*α, γ*) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\sim}$ *γ*
—— γ (A, ⊑)

Proof: $1 \implies 2$

Assume that $\gamma(a) = \gamma(a')$. By surjectivity, take *c*, *c'* such that $a = \alpha(c)$, $a' = \alpha(c')$. Then $\gamma(\alpha(c)) = \gamma(\alpha(c'))$. And $\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c'))).$ As $\alpha \circ \gamma \circ \alpha = \alpha$, $\alpha(c) = \alpha(c')$. Hence $a = a'$.

- If $(C, \leq) \xrightarrow[\alpha]{}$ $\frac{\gamma}{\alpha\rightarrow}$ (A,\sqsubseteq) , the following properties are equivalent: **1** α is surjective ($\forall a \in A, \exists c \in C, \alpha(c) = a$) **2** γ is injective $\gamma' \in A$, $\gamma(a) = \gamma(a') \implies a = a'$
	- 3 $\alpha \circ \gamma = id$ ($\forall a \in A$, $id(a) = a$)
- Such (*α, γ*) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\sim}$ *γ*
—— γ (A, ⊑)

Proof: $2 \implies 3$

Given $a \in A$, we know that $\gamma(\alpha(\gamma(a))) = \gamma(a)$. By injectivity of γ , $\alpha(\gamma(a)) = a$.

- If $(C, \leq) \xrightarrow[\alpha]{}$ $\frac{\gamma}{\alpha\rightarrow}$ (A,\sqsubseteq) , the following properties are equivalent: **1** α is surjective ($\forall a \in A, \exists c \in C, \alpha(c) = a$) **2** γ is injective $\gamma' \in A$, $\gamma(a) = \gamma(a') \implies a = a'$
	- 3 $\alpha \circ \gamma = id$ ($\forall a \in A$, $id(a) = a$)

Such (*α, γ*) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\sim}$ *γ*
—— γ (A, ⊑)

Proof: $3 \implies 1$ Given $a \in A$, we have $\alpha(\gamma(a)) = a$. Hence, $\exists c \in C$, $\alpha(c) = a$, using $c = \gamma(a)$.

Galois embeddings (cont.)

$$
\left(\mathcal{C},\leq\right)\xrightarrow[\alpha]{\gamma} \left(A,\sqsubseteq\right)
$$

A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.

Galois embedding example

Abstract domain of intervals of integers **Z** represented as pairs of ordered bounds (a, b) or \perp .

We have:
$$
(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\sim} (I, \sqsubseteq)
$$

\n• $I \stackrel{\text{def}}{=} \{ (a, b) | a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \le b \} \cup \{\bot\}$
\n• $(a, b) \sqsubseteq (a', b') \iff (a \ge a') \land (b \le b'), \quad \forall x: \bot \sqsubseteq x$
\n• $\gamma(a, b) \stackrel{\text{def}}{=} \{ x \in \mathbb{Z} | a \le x \le b \}, \quad \gamma(\bot) = \emptyset$
\n• $\alpha(X) \stackrel{\text{def}}{=} (\min X, \max X), \text{ or } \bot \text{ if } X = \emptyset$

proof:

Galois embedding example

Abstract domain of intervals of integers **Z** represented as pairs of ordered bounds (a, b) or \perp .

We have:
$$
(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)
$$

\n• $I \stackrel{\text{def}}{=} \{ (a, b) | a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \le b \} \cup \{\bot\}$
\n• $(a, b) \sqsubseteq (a', b') \iff (a \ge a') \land (b \le b'), \quad \forall x: \bot \sqsubseteq x$
\n• $\gamma(a, b) \stackrel{\text{def}}{=} \{ x \in \mathbb{Z} | a \le x \le b \}, \quad \gamma(\bot) = \emptyset$
\n• $\alpha(X) \stackrel{\text{def}}{=} (\min X, \max X), \text{ or } \bot \text{ if } X = \emptyset$

proof:

Quotient of the "pair of bounds" domain (**Z** ∪ {−∞}) × (**Z** ∪ {+∞}) by the relation $(a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b')$ i.e., $(a \le b \land a = a' \land b = b') ∨ (a > b \land a' > b')$.

Upper closures

 $\rho: X \to X$ is an upper closure in the poset (X, \subseteq) if it is:

- **1** monotonic: $x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x')$,
- 2 extensive: $x \sqsubseteq \rho(x)$, and
- **3** idempotent: $\rho \circ \rho = \rho$.

[Galois connections](#page-55-0)

Upper closures and Galois connections

Given
$$
(C, \leq) \xrightarrow[\alpha]{\sim} (A, \sqsubseteq)
$$
,
 $\gamma \circ \alpha$ is an upper closure on (C, \leq) .

Given an upper closure ρ on (X, \subseteq) , we have a Galois embedding: $(X,\sqsubseteq)\xrightarrow[\rho]{\operatorname{id}}(\rho(X),\sqsubseteq)$

 \implies we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

• the notion of abstract representation

(a data-structure A representing elements in $\rho(X)$)

• the ability to have several distinct abstract representations for a single concrete object

(non-necessarily injective *γ* versus id)

Operator approximations

Abstractions in the concretization framework

Given a concrete (C, \leq) and an abstract (A, \sqsubseteq) poset and a monotonic concretization *γ* : A → C

 $(\gamma(a))$ is the "meaning" of a in C; we use intervals in our examples)

• $a \in A$ is a sound abstraction of $c \in C$ if $c \leq \gamma(a)$.

(e.g.: $[0, 10]$ is a sound abstraction of $\{0, 1, 2, 5\}$ in the integer interval domain)

• $g : A \rightarrow A$ is a sound abstraction of $f : C \rightarrow C$ if $\forall a \in A$: $(f \circ \gamma)(a) \leq (\gamma \circ g)(a)$.

(e.g.: $\lambda([a, b]$.[$-\infty, +\infty]$ is a sound abstraction of λX .{ $x + 1 | x \in X$ } in the interval domain)

• $g : A \rightarrow A$ is an exact abstraction of $f : C \rightarrow C$ if $f \circ \gamma = \gamma \circ g$.

(e.g.: $\lambda([a, b], [a + 1, b + 1]$ is an exact abstraction of λX . $\{x + 1 | x \in X\}$ in the interval domain)

[Operator approximations](#page-73-0)

Abstractions in the Galois connection framework

Assume now that
$$
(C, \leq) \xrightarrow[\alpha]{\gamma} (A, \sqsubseteq)
$$
.

- sound abstractions
	- $c \le \gamma(a)$ is equivalent to $\alpha(c) \sqsubseteq a$.
	- $(f \circ \gamma)(a) \leq (\gamma \circ g)(a)$ is equivalent to $(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$.
- Given $c \in \mathcal{C}$, its best abstraction is $\alpha(c)$.

(proof: recall that $\alpha(c) = \Box \{ a | c \leq \gamma(a) \}$, so, $\alpha(c)$ is the smallest sound abstraction of c)

 $(e.g.: \alpha({0, 1, 2, 5}) = [0, 5]$ in the interval domain)

• Given $f: C \to C$, its best abstraction is $\alpha \circ f \circ \gamma$

(proof: g sound $\iff \forall a, (\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$, so $\alpha \circ f \circ \gamma$ is the smallest sound abstraction of f)

 $(e.g.: g([a, b]) = [2a, 2b]$ is the best abstraction in the interval domain of $f(X) = \{ 2x | x \in X \}$; it is not an exact abstraction as $\gamma(g([0,1])) = \{0,1,2\} \supseteq \{0,2\} = f(\gamma([0,1]))$

[Operator approximations](#page-73-0)

Composition of sound, best, and exact abstractions

If g and g' soundly abstract respectively f and f' then:

- \bullet if f is monotonic. then $g \circ g'$ is a sound abstraction of $f \circ f'$, $(\text{proof: } \forall a, (f \circ f' \circ \gamma)(a) \leq (f \circ \gamma \circ g') (a) \leq (\gamma \circ g \circ g')(a))$
- if g , g' are exact abstractions of f and f' , then $g \circ g'$ is an exact abstraction,

 $(\text{proof: } f \circ f' \circ \gamma = f \circ \gamma \circ g' = \gamma \circ g \circ g')$

if g and g' are the best abstractions of f and f' , then $g \circ g'$ is not always the best abstraction!

 $(e.g.: g([a, b]) = [a, min(b, 1)]$ and $g'([a, b]) = [2a, 2b]$ are the best abstractions of $f(X) = \{x \in X | x \le 1\}$ and $f'(X) = \{2x | x \in X\}$ in the interval domain, but $g \circ g'$ is not the best abstraction of $f \circ f'$ as $(g \circ g')([0,1]) = [0,1]$ while $(\alpha \circ f \circ f' \circ \gamma)([0,1]) = [0,0])$

Fixpoint approximations

Fixpoint transfer

If we have:

- a Galois connection $(C, \leq) \xrightarrow[\alpha]{-}$ $\frac{\gamma}{\gamma\gamma\gamma}$ (*A*, ⊑) between CPOs
- **monotonic concrete and abstract functions** $f: C \to C, f^{\sharp}: A \to A$
- $\mathsf{a}\,$ commutation condition $\alpha \circ f = f^\sharp \circ \alpha$
- an element a and its abstraction $a^{\sharp} = \alpha(a)$

then $\alpha(\text{Ifp}_a f) = \text{Ifp}_{a^\sharp} f^\sharp.$

(proof on next slide)

Fixpoint transfer (proof)

Proof:

By the constructive Tarksi theorem, Ifp_a f is the limit of transfinite iterations: $a_0 \stackrel{\text{def}}{=} a$, $a_{n+1} \stackrel{\text{def}}{=} f(a_n)$, and $a_n \stackrel{\text{def}}{=} \bigvee \{ a_m \mid m < n \}$ for limit ordinals n. Likewise, Ifp_a# f^{\sharp} is the limit of a transfinite iteration a_n^{\sharp} .

We prove by transfinite induction that $a_n^{\sharp} = \alpha(a_n)$ for all ordinals *n*:

•
$$
a_0^{\sharp} = \alpha(a_0)
$$
, by definition;

 $a_{n+1}^{\sharp} = f^{\sharp}(a_n^{\sharp}) = f^{\sharp}(\alpha(a_n)) = \alpha(f(a_n)) = \alpha(a_{n+1})$ for successor ordinals, by commutation;

 $a_n^{\sharp} = \bigsqcup \{ a_m^{\sharp} | m < n \} = \bigsqcup \{ \alpha(a_m) | m < n \} = \alpha(\bigvee \{ a_m | m < n \}) = \alpha(a_n)$ for limit ordinals, because α is always continuous in Galois connections.

Hence, $\text{Ifp}_{a^{\sharp}} f^{\sharp} = \alpha(\text{Ifp}_{a} f).$

Fixpoint approximation

If we have:

- a complete lattice (C*,* ≤*,* ∨*,* ∧*,* ⊥*,* >)
- \bullet a monotonic concrete function f
- a sound abstraction $f^{\sharp}: A \to A$ of f $(\forall x^{\sharp} : (f \circ \gamma)(x^{\sharp}) \leq (\gamma \circ f^{\sharp})(x^{\sharp}))$
- a post-fixpoint a^{\sharp} of f^{\sharp} $(f^{\sharp}(a^{\sharp}) \sqsubseteq a^{\sharp})$

then a^{\sharp} is a sound abstraction of lfp f : lfp $f\leq \gamma(a^{\sharp}).$

Proof:

By definition, $f^{\sharp}(a^{\sharp}) \sqsubseteq a^{\sharp}$. By monotony, $\gamma(f^{\sharp}(a^{\sharp})) \leq \gamma(a^{\sharp}).$ By soundness, $f(\gamma(a^{\sharp})) \leq \gamma(a^{\sharp}).$ By Tarski's theorem Ifp $f = \wedge \{x \mid f(x) \leq x\}$. Hence, Ifp $f \leq \gamma(a^{\sharp})$.

Other fixpoint transfer / approximation theorems can be constructed. . .

Course 01 Course 01 Course Course Miné and December 2011 and December 2012 and December 2012 and December 201

Bibliography

Bibliography

[Birk76] **G. Birkhoff**. Lattice theory. In AMS Colloquium Pub. 25, 3rd ed., 1976.

[Cous78] **P. Cousot**. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. In Thèse Es Sc. Math., U. Joseph Fourier, Grenoble, 1978.

[Cous79] **P. Cousot & R. Cousot**. Constructive versions of Tarski's fixed point theorems. In Pacific J. of Math., 82(1):43–57, 1979.

[Cous92] **P. Cousot & R. Cousot**. Abstract interpretation frameworks. In J. of Logic and Comp., 2(4):511—547, 1992.

[Klee52] **S. C. Kleene**. Introduction to metamathematics. In North-Holland Pub. Co., 1952.

[Tars55] **A. Tarski**. A lattice theoretical fixpoint theorem and its applications. In Pacific J. of Math., 5:285–310, 1955.