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Availability of vast amounts of Data

web logs 

mobile devices 

sensors 

transactions 

Recent advances in Machine Learning
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Machine Learning Revolution

3

Computer software able to efficiently and autonomously perform tasks  
that are difficult or even impossible to design using explicit programming

Examples: object recognition, image classification, speech recognition, etc.
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ML in Safety-Critical Applications

4

Self-Driving Cars

Image-Based Taxiing, Takeoff, Landing Aircraft Voice Control

Enables new functions that could not be envisioned before
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ML in Safety-Critical Applications

5

Diagnosis and Drug Discovery

Aircraft Collision Avoidance

Approximates complex systems and automates decision-making

Deep Neural Network Compression for Aircraft

Collision Avoidance Systems

Kyle D. Julian1 and Mykel J. Kochenderfer2 and Michael P. Owen3

Abstract—One approach to designing decision making logic for

an aircraft collision avoidance system frames the problem as a

Markov decision process and optimizes the system using dynamic

programming. The resulting collision avoidance strategy can be

represented as a numeric table. This methodology has been used

in the development of the Airborne Collision Avoidance System X

(ACAS X) family of collision avoidance systems for manned and

unmanned aircraft, but the high dimensionality of the state space

leads to very large tables. To improve storage efficiency, a deep

neural network is used to approximate the table. With the use of

an asymmetric loss function and a gradient descent algorithm, the

parameters for this network can be trained to provide accurate

estimates of table values while preserving the relative preferences

of the possible advisories for each state. By training multiple

networks to represent subtables, the network also decreases the

required runtime for computing the collision avoidance advisory.

Simulation studies show that the network improves the safety

and efficiency of the collision avoidance system. Because only the

network parameters need to be stored, the required storage space

is reduced by a factor of 1000, enabling the collision avoidance

system to operate using current avionics systems.

I. INTRODUCTION

Decades of research have explored a variety of approaches

to designing decision making logic for aircraft collision

avoidance systems for both manned and unmanned aircraft

[1]. Recent work on formulating the problem of collision

avoidance as a partially observable Markov decision process

(POMDP) has led to the development of the Airborne Collision

Avoidance System X (ACAS X) family of collision avoidance

systems [2], [3], [4]. The version for manned aircraft, ACAS

Xa, is expected to become the next international standard for

large commercial transport and cargo aircraft. The variant for

unmanned aircraft, ACAS Xu, uses dynamic programming to

determine horizontal or vertical resolution advisories in order

to avoid collisions while minimizing disruptive alerts. ACAS

Xu was successfully flight tested in 2014 using NASA’s Ikhana

aircraft [5].
The dynamic programming process for creating the ACAS

Xu horizontal decision making logic results in a large numeric

lookup table that contains scores associated with different

maneuvers from millions of different discrete states. The

table is extremely large, requiring hundreds of gigabytes of

1Kyle D. Julian is a Ph.D. candidate in the Department of Aero-

nautics and Astronautics, Stanford University, Stanford, CA, 94305

kjulian3@st
anford.edu

2Mykel J. Kochenderfer is an Assistant Professor in the Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

mykel@stanf
ord.edu

3Michael P. Owen is a member of the Technical Staff at Lincoln

Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421

michael.owe
n@ll.mit.ed

u

floating point storage. A simple technique to reduce the size

of the score table is to downsample the table after dynamic

programming. To minimize the degradation in decision quality,

states are removed in areas where the variation between values

in the table are smooth. The downsampling reduces the size

of the table by a factor of 180 from that produced by dynamic

programming. For the rest of this paper, the downsampled

ACAS Xu horizontal table is referred to as the baseline,

original table.
Even after downsampling, the current table requires over

2GB of floating point storage, too large for certified avionics

systems [6]. Although modern hardware can handle 2GB of

storage, the certification process for aircraft computer hard-

ware is expensive and time-consuming, so a solution capable

of running on legacy hardware is desired [7]. While there is

no formal limit for floating point storage on legacy avionics, a

representation occupying less than 120MB would be sufficient.

For an earlier version of ACAS Xa, block compression was

introduced to take advantage of the fact that, for many discrete

states, the scores for the available actions are identical [8]. One

critical contribution of that work was the observation that the

table could be stored in IEEE half-precision with no apprecia-

ble loss of performance. Block compression was adequate for

the ACAS Xa tables that limit advisories to vertical maneuvers,

but the ACAS Xu tables for horizontal maneuvers are much

larger. Recent work explored a new algorithm that exploits the

score table’s natural symmetry to remove redundancy within

the table [9]. However, results showed that this compression

algorithm could not achieve sufficient reduction in storage

before compromising performance.

Discretized score tables like this can be represented as

Gaussian processes [10] or kd-trees [11]. Decision trees offer

a way to compress the table by organizing the data into a tree

structure to remove table redundancy. In addition a decision

tree can increase compression by simplifying areas of the table

with low variance, although this will result in a lossy compres-

sion. Decision trees are a popular machine learning algorithm

and have been applied to numerous problems including land

cover classification and energy consumption prediction [12],

[13].
Other approaches to compressing the table seek to find a

robust nonlinear function approximation that represents the

table. Linear regression is popular for smaller datasets, but

this approach does not generalize well for large datasets with

many more examples than features. Support Vector Machines

(SVM) are also a popular regression algorithm. By storing

only the supporting vectors found by the algorithm, less data

would need to be stored, effectively compressing the dataset.
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07/10/2019, 23*16A self-driving Uber ran a red light last December, contrary to company claims - The Verge

Page 1 of 3https://www.theverge.com/2017/2/25/14737374/uber-self-driving-car-red-light-december-contrary-company-claims

  

A self-driving Uber ran a red
light last December, contrary to
company claims
Internal documents reveal that the car was at fault
By Andrew Liptak @AndrewLiptak  Feb 25, 2017, 11:08am EST

TRANSPORTATION UBER RIDE-SHARING

8

Last December, a self-driving Uber was caught on camera running a red light in
San Francisco, shortly after the vehicles began testing on the roads. While Uber
claimed at the time that a driver was at fault, a report from The New York Times

ML in Safety-Critical Applications

6

07/12/20, 12:05Self-Driving Uber SUV Didn't Recognize Jaywalking Pedestrian In Fatal Crash : NPR

Page 1 of 3https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-ube…did-not-recognize-jaywalking-pedestrian-in-fatal-?t=1607339086095

Feds Say Self-Driving Uber SUV Did
Not Recognize Jaywalking
Pedestrian In Fatal Crash
Richard Gonzales November 7, 201910:57 PM ET

The self-driving Uber SUV that struck pedestrian Elaine Herzberg on March 18, 2018, in Tempe,
Ariz.

Tempe Police Department via AP

The self-driving Uber SUV involved in a crash that killed a Tempe, Ariz.,
woman last year did not recognize her as a jaywalking pedestrian and its
braking system was not designed to avoid an imminent collision,
according to a federal report released this week.

07/10/2019, 22)58

IBM's Watson recommended 'unsafe and incorrect' cancer treatments - STAT

Page 1 of 2

https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/

I

1

 2

IBM’s Watson supercomputer recommended ‘unsafe and incorrect’

cancer treatments, internal documents show

By Casey Ross3 @caseymross4 and Ike Swetlitz

July 25, 2018

Alex Hogan/STAT

nternal IBM documents show that its Watson supercomputer often spit out

erroneous cancer treatment advice and that company medical specialists and

customers identified “multiple examples of unsafe and incorrect treatment

recommendations” as IBM was promoting the product to hospitals and physicians

around the world.

The documents — slide decks presented last summer by IBM Watson Health’s

deputy chief health officer — largely blame the problems on the training of
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Neural Networks
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Neural Networks
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input layer output layerhidden layers

output maxj xN, j

…

x0,0

x0,1

x0,2

x0,|L0|

x0,3 …

xi,j = max {∑
k

wi−1
j,k ⋅ xi−1,k + bi,j, 0}

Rectified Linear Unit (ReLU)

x1,0

x1,1

x1,|L1|

xN,0

xN,|LN|

Feed-Forward Fully-Connected Neural Networks 
with ReLU Activation Functions
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Feed-Forward Fully-Connected 
ReLU Networks as Programs

9

x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88
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Maximal Trace Semantics
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

[[M]]

M
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Neural Network Verification
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

{[[M]]}

M

Beyond trace properties
Collecting semantics

Collecting semantics: Col : Prog æ P(D)Col(prog) def= {J prog K }Col(prog) is the strongest property of a program in P(D)

(relative to the choice of the semantic domain D and function J · K )

we can interpret program verification as property inclusion:

Col(prog) ™ PP is weaker than Col(prog) in the information order of properties

generally, the collecting semantics cannot be computed;

we settle for a weaker property S ˘ that
is sound: Col(prog) ™ S ˘implies the desired property: S ˘

™ P
Course 02

Program Semantics and Properties
Antoine Miné

p. 98 / 102

Collecting Semantics
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Stability

Safety

Fairness

Stop Max Speed 100

+ =
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]
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Goal G3 in [Kurd03]

Stability

Goal G4 in [Kurd03]

Safety

Fairness

Stop Max Speed 100

+ =
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Local Stability

15

The classification is unaffected by small input perturbations
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Local Stability
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ℛδ,ϵ
x

def= {[[M]] ∈ %(Σ*) ∣ STABLEδ,ϵ
x ([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that are stable in the neighborhood  of a given input 
ℛδ,ϵ

x [[M]]
Pδ,ϵ(x) x

Distance-Based Perturbations

Pδ,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ δ(x, x′ ) ≤ ϵ}

Example (  distance): L∞ P∞,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ maxi |xi − x′ i | ≤ ϵ}

M ⊧ ℛδ,ϵ
x ⇔ {[[M]]} ⊆ ℛδ,ϵ

x

Theorem

M ⊧ ℛδ,ϵ
x ⇔ [[M]] ⊆ ⋃ℛδ,ϵ

x

Corollary

STABLEδ,ϵ
x ([[M]]) def= 




∀t ∈ [[M]] : (∃t′ ∈ [[M]] : ∀0 ≤ i ≤ |L0 | : t′ 0(x0,i) = xi)
∧ (∃x′ ∈ Pδ,ϵ(x) : ∀0 ≤ i ≤ |L0 | : t0(x0,i) = x′ i)
⇒ maxj tω(xN,j) = maxj t′ ω(xN,j)
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Numerical Abstractions
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Forward Analysis

18

…

…

1. proceed forwards from 
an abstraction of all 
possible perturbations

2. check output for inclusion  
in expected output: 
included        stable 
otherwise       alarm 

→
→!
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Example

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

0.5

0.75

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0
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Example

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

0.5

0.75

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

P(⟨0.5,0.75⟩) def= {x ∈ ℛ × ℛ ∣ 0 ≤ x0 ≤ 1 ∧ 0 ≤ x1 ≤ 1}
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Interval Domain

20

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1
1

3

3

x20

x30

x31

0

x21

-1.5

1

-14
0.5

-1

-8

0

x00 ↦ [0, 1]

x01 ↦ [0, 1]

x10 ↦ [4, 6]
ReLU

x11 ↦ [3, 4]

x11 ↦ [3, 4]
ReLU

x10 ↦ [4, 6]

x20 ↦ [17, 24]

x20 ↦ [17, 24]

x21 ↦ [0, 3]

x21 ↦ [0, 3]

x30 ↦ [0, 10]

x31 ↦ [−4, 4]

not precise enough!

ReLU

ReLU

xi,j ↦ [a, b]
a, b ∈ ℛ
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with Symbolic Constant Propagation [Li19]

Interval Domain

21

xi,j ↦ {∑i−1
k=0 ck ⋅ xk + c ck, c ∈ ℛ|Lk|

[a, b] a, b ∈ ℛ

xi, j ↦ {∑i−1
k=0 ck ⋅ xk + c

[a, b]
xi, j ↦ {xi, j

[0, b]

xi, j ↦ {0
[0, 0]

ReLU

xi, j ↦ {∑i−1
k=0 ck ⋅ xk + c

[a, b]
0 ≤ a

b ≤ 0

a < 0 ∧ 0 < b

ReLU

ReLU
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Interval Domain
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x11 ↦ {0.5 ⋅ x00 + 0.5 ⋅ x01 + 3
[3, 4]

x10 ↦ {x00 + x01 + 4
[4, 6] x20 ↦ {2 ⋅ (x00 + x01 + 4) + 3 ⋅ (0.5 ⋅ x00 + 0.5 ⋅ x01 + 3)

[17, 24]

x21 ↦ {(x00 + x01 + 4) − 1 ⋅ (0.5 ⋅ x00 + 0.5 ⋅ x01 + 3)
[1, 2]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x31 ↦ {x00 + x01 − 1
[−1, 1]
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x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

Interval Domain
with Symbolic Constant Propagation [Li19]

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x40 ↦ {1.5 ⋅ x00 + 1.5 ⋅ x01 + 2 ⋅ x31 + 2
[0, 5]

x41 ↦ {x31
[0, 1]

x31 ↦ {x00 + x01 − 1
[−1, 1]

x31 ↦ {x31
[0, 1]

ReLU

not precise enough!
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xi, j ↦ {[0, 0]
[0, 0]

xi, j ↦ {[A, B]
[a, b]

xi, j ↦ [0,
b(xi, j − a)

b − a ]
[0, b]

xi, j ↦ [xi, j,
b(xi, j − a)

b − a ]
[a, b]

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

    
   x

≤ ReLU(x)

0 ≤ a

b ≤ 0

a < 0 ∧ 0 < bxi, j ↦ {[A, B]
[a, b]

ReL
U

ReLU

ReLU

ReLU

DeepPoly Domain [Singh19] 

xi+1,j ↦ {[∑k ci,k ⋅ xi,k + c, ∑k di,k ⋅ xi,k + d] ci,k, c, di,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

b ≤ − a

−a < b
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]



Caterina UrbanStatic Analysis of Neural NetworksCourse 10 26

DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6]

x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]
[3, 4]
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24]

x21 ↦ {[x10 − x11, x10 − x11]
[1, 2]
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8]

x31 ↦ {[0.5 ⋅ x20 − 1.5 ⋅ x21 − 8, 0.5 ⋅ x20 − 1.5 ⋅ x21 − 8]
[−1, 1]

x31 ↦ {[0, 0.5 ⋅ x31 + 0.5]
[0, 1]

ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x40 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 2, 1.5 ⋅ x00 + 1.5 ⋅ x11 + 2]
[2, 5]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x40 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 2, 1.5 ⋅ x00 + 1.5 ⋅ x11 + 2]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]

x41 ↦ {[0, 0.5 ⋅ x00 + 0.5 ⋅ x01]
[0, 1]
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x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

DeepPoly Domain [Singh19] 

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]

x41 ↦ {[0, 0.5 ⋅ x00 + 0.5 ⋅ x01]
[0, 1]
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]
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Efficient Formal Safety Analysis of Neural Networks

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, Suman Jana
Columbia University, NYC, NY 10027, USA

{tcwangshiqi, kpei, jaw2228, junfeng, suman}@cs.columbia.edu

Abstract

Neural networks are increasingly deployed in real-world safety-critical domains
such as autonomous driving, aircraft collision avoidance, and malware detection.
However, these networks have been shown to often mispredict on inputs with minor
adversarial or even accidental perturbations. Consequences of such errors can be
disastrous and even potentially fatal as shown by the recent Tesla autopilot crashes.
Thus, there is an urgent need for formal analysis systems that can rigorously check
neural networks for violations of different safety properties such as robustness
against adversarial perturbations within a certain L-norm of a given image. An
effective safety analysis system for a neural network must be able to either ensure
that a safety property is satisfied by the network or find a counterexample, i.e.,
an input for which the network will violate the property. Unfortunately, most
existing techniques for performing such analysis struggle to scale beyond very
small networks and the ones that can scale to larger networks suffer from high
false positives and cannot produce concrete counterexamples in case of a property
violation. In this paper, we present a new efficient approach for rigorously checking
different safety properties of neural networks that significantly outperforms existing
approaches by multiple orders of magnitude. Our approach can check different
safety properties and find concrete counterexamples for networks that are 10×
larger than the ones supported by existing analysis techniques. We believe that our
approach to estimating tight output bounds of a network for a given input range
can also help improve the explainability of neural networks and guide the training
process of more robust neural networks.

1 Introduction

Over the last few years, significant advances in neural networks have resulted in their increasing
deployments in critical domains including healthcare, autonomous vehicles, and security. However,
recent work has shown that neural networks, despite their tremendous success, often make dangerous
mistakes, especially for rare corner case inputs. For example, most state-of-the-art neural networks
have been shown to produce incorrect outputs for adversarial inputs specifically crafted by adding
minor human-imperceptible perturbations to regular inputs [36, 14]. Similarly, seemingly minor
changes in lighting or orientation of an input image have been shown to cause drastic mispredictions
by the state-of-the-art neural networks [29, 30, 37]. Such mistakes can have disastrous and even
potentially fatal consequences. For example, a Tesla car in autopilot mode recently caused a fatal
crash as it failed to detect a white truck against a bright sky with white clouds [3].

A principled way of minimizing such mistakes is to ensure that neural networks satisfy simple
safety/security properties such as the absence of adversarial inputs within a certain L-norm of a given
image or the invariance of the network’s predictions on the images of the same object under different
lighting conditions. Ideally, given a neural network and a safety property, an automated checker
should either guarantee that the property is satisfied by the network or find concrete counterexamples
demonstrating violations of the safety property. The effectiveness of such automated checkers hinges
on how accurately they can estimate the decision boundary of the network.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Reading Assignment
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ReLU(x)

b
b − a

x ≤ ReLU(x)

ReLU(x) ≤
b
b − a

(x − a)
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Safety

Stability
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]

Fairness

Stop Max Speed 100

+ =
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ACAS Xu [Julian16][Katz17]

36

Airborne Collision Avoidance System for Unmanned Aircraft
implemented using 45 feed-forward fully-connected ReLU networks

A DNN implementation of ACAS Xu presents new certification challenges.
Proving that a set of inputs cannot produce an erroneous alert is paramount
for certifying the system for use in safety-critical settings. Previous certification
methodologies included exhaustively testing the system in 1.5 million simulated
encounters [20], but this is insu�cient for proving that faulty behaviors do not
exist within the continuous DNNs. This highlights the need for verifying DNNs
and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action
advisories. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The input state is composed of seven dimensions (shown in
Fig. 6) which represent information determined from sensor measurements [19]:
(i) ⇢: Distance from ownship to intruder; (ii) ✓: Angle to intruder relative to
ownship heading direction; (iii)  : Heading angle of intruder relative to ownship
heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) ⌧ :
Time until loss of vertical separation; and (vii) aprev: Previous advisory. There
are five outputs which represent the di↵erent horizontal advisories that can be
given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak
left, or strong left. Weak and strong mean heading rates of 1.5 �/s and 3.0 �/s,
respectively.

Ownship

vown

Intruder

vint

⇢

 

✓

Fig. 6: Geometry for ACAS Xu Horizontal Logic Table

The array of 45 DNNs was produced by discretizing ⌧ and aprev, and produc-
ing a network for each discretized combination. Each of these networks thus has
five inputs (one for each of the other dimensions) and five outputs. The DNNs
are fully connected, use ReLU activation functions, and have 6 hidden layers
with a total of 300 ReLU nodes each.

Network Properties. It is desirable to verify that the ACAS Xu networks
assign correct scores to the output advisories in various input domains. Fig. 7
illustrates this kind of property by showing a top-down view of a head-on en-
counter scenario, in which each pixel is colored to represent the best action if
the intruder were at that location. We expect the DNN’s advisories to be con-
sistent in each of these regions; however, Fig. 7 was generated from a finite set

5 input sensor measurements 

• : distance from ownship to intruder

• : angle to intruder relative to ownship heading direction

• : heading angle to intruder relative to ownship heading direction

• : speed of ownship

• : speed of intruder

ρ
θ
ψ
vown
vint

22 / 30

Properties of Interest

1. No unnecessary turning advisories
2. Alerting regions are consistent
3. Strong alerts do not appear when vertical separation 

is large

5 output horizontal advisories 

• Strong Left

• Weak Left

• Clear of Conflict

• Weak Right

• Strong Right
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ACAS Xu Properties [Katz17]

Example: “if intruder is near and approaching from the left, go Strong Right”

250 ≤ ρ ≤ 400

0.2 ≤ θ ≤ 0.4

…

…

…

…

…

…

…
…

ρ

θ

ψ

vown

vint

SL

WL

CoC

WR

SR
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Safety

38

M ⊧ 8I
O ⇔ {[[M]]} ⊆ 8I

O

Theorem

M ⊧ 8I
O ⇔ [[M]] ⊆ ⋃8I

O

Corollary

8I
O

def= {[[M]] ∈ %(Σ*) ∣ SAFEI
O([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that satisfy the input and output specification  and 
8I

O [[M]]
I O

SAFEI
O([[M]]) def= ∀t ∈ [[M]] : t0 ⊧ I ⇒ tω ⊧ O

Input-Output Properties

: input specificationI
: output specificationO
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Numerical Abstractions
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Forward Analysis

40

…

…

1. proceed forwards from 
an abstraction of the 
input specification I

2. check output for inclusion  
in output specification : 
included        safe 
otherwise       alarm 

O
→
→!
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Example

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turnθ

ρ
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Example

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x11 ↦ {[x00 − x01, x00 − x01]
[−1, 2]

x11 ↦ {[x11, 2
3 ⋅ x11 + 2

3 ]
[−1, 2]

ReLU

x10 ↦ {[x00 + x01, x00 + x01]
[−1, 2]

x10 ↦ {[x10, 2
3 ⋅ x10 + 2

3 ]
[−1, 2]ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

    
   x

≤ ReLU(x)
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x20 ↦ {
[x10 + x11, x10 + x11]
[0, 8

3 ]

x21 ↦ {
[x10 − x11, x10 − x11]
[− 7

3 , 7
3 ]

x21 ↦
[0, 0.5 ⋅ x21 + 7

6 ]

[0, 7
3 ]

ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)
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DeepPoly Domain [Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12 ]

not precise enough!
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x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn

Interval Domain
with Symbolic Constant Propagation [Li19]

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]
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x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn

Interval Domain
with Symbolic Constant Propagation [Li19]

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x10 ↦ {x00 + x01
[−1, 2] x10 ↦ {x10

[0, 2]

x11 ↦ {x11
[0, 2]x11 ↦ {x00 − x01

[−1, 2]
ReLU

ReLU
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x00

x01

x10

1
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with Symbolic Constant Propagation [Li19]
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0 ≤ ρ ≤ 1
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[0, 2]x21 ↦ {x10 − x11

[−2, 2]
ReLU
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DeepPoly Domain [Singh19] 
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−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12 ]

not precise enough!
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Product Domain
DeepPoly with Symbolic Constant Propagation
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Product Domain
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x00 + x01
[x00 + x01, x00 + x01]
[−1, 2]

x10 ↦
x10 → [0, 2]
[x10, 2

3 ⋅ x10 + 2
3 ] → [−1, 2]

[0, 2]
ReLU

x11 ↦
x00 − x01
[x00 − x01, x00 − x01]
[−1, 2]

x11 ↦
x11 → [0, 2]
[x11, 2

3 ⋅ x11 + 2
3 ] → [−1, 2]

[0, 2]
ReLU
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x21 ↦

x21 → [0, 2]
[0, 0.5 ⋅ x21 + 0.5] → [0, 5

3 ]

[0, 5
3 ]
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3 ]
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x20 ↦

x10 + x11 → [0, 4]
[x10 + x11, x10 + x11] → [0, 8

3 ]

[0, 8
3 ]
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Product Domain
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Star-Based Reachability Analysis of Deep
Neural Networks

Hoang-Dung Tran1, Diago Manzanas Lopez1, Patrick Musau1, Xiaodong
Yang1, Luan Viet Nguyen2, Weiming Xiang1, and Taylor T. Johnson1

1 Institute for Software Integrated Systems, Vanderbilt University, TN, USA
2 Department of Computer and Information Science, University of Pennsylvania, PA,

USA

Abstract. This paper proposes novel reachability algorithms for both
exact (sound and complete) and over-approximation (sound) analysis for
deep neural networks (DNNs). The approach uses star sets as a symbolic
representation of sets of states, which are known in short as stars and
provide an e↵ective representation of high-dimensional polytopes. Our
star-based reachability algorithms can be applied to several problems in
analyzing the robustness of machine learning methods, such as safety
and robustness verification of DNNs. Our star-based reachability algo-
rithms are implemented in a software prototype called the neural net-
work verification (NNV) tool that is publicly available for evaluation and
comparison. Our experiments show that when verifying ACAS Xu neural
networks on a multi-core platform, our exact reachability algorithm is on
average about 19 times faster than Reluplex, a satisfiability modulo the-
ory (SMT)-based approach. Furthermore, our approach can visualize the
precise behavior of DNNs because the reachable states are computed in
the method. Notably, in the case that a DNN violates a safety property,
the exact reachability algorithm can construct a complete set of coun-
terexamples. Our star-based over-approximate reachability algorithm is
on average 118 times faster than Reluplex on the verification of prop-
erties for ACAS Xu networks, even without exploiting the parallelism
that comes naturally in our method. Additionally, our over-approximate
reachability is much less conservative than DeepZ and DeepPoly, recent
approaches utilizing zonotopes and other abstract domains that fail to
verify many properties of ACAS Xu networks due to their conservative-
ness. Moreover, our star-based over-approximate reachability algorithm
obtains better robustness bounds in comparison with DeepZ and Deep-
Poly when verifying the robustness of image classification DNNs.

1 Introduction

Deep neural networks (DNNs) have become one of the most powerful techniques
to deal with challenging and complex problems such as image processing [15]
and natural language translation [9, 16] due to its learning ability on large data
sets. Recently, the power of DNNs has inspired a new generation of intelligent
autonomy which makes use of DNNs-based learning enable components such as

Reading Assignment

Caterina UrbanStatic Analysis of Neural NetworksCourse 10



Caterina UrbanStatic Analysis of Neural NetworksCourse 10 55

Safety

Stability
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]

Fairness
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ML Impacts Our Society
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rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.
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ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until
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Can AI Be a Fair Judge in Court?Estonia Thinks So
Estonia plans to use an artificial intelligence program to decide some
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Machine Bias: Investigating the algorithms

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-
sister from school when she spotted an unlocked kid’s blue Hu!y bicycle and a silver
Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stu!.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.

Compare their crime with a similar one:
The previous summer, 41-year-old Vernon

Machine Bias
There’s software used across the country to predict future criminals. And it’s biased

against blacks.

by Julia Angwin, Je! Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ProPublica DonateShare on Facebook Share on Twitter Comment
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Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8  M I N  R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”
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The classification is independent of the values of the sensitive inputs
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Dependency Fairness
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ℱi
def= {[[M]] ∈ %(Σ*) ∣ UNUSEDi([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that do not use the value of the sensitive input node  for classification
ℱi [[M]]

x0,i

UNUSEDi([[M]]) def= 







∀t ∈ [[M]], v ∈ ℛ : t0(x0,i) ≠ v ⇒ ∃t′ ∈ [[M]] :
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
∧ t′ 0(x0,i) = v
∧ maxj tω(xN,j) = maxj t′ ω(xN,j)

Intuitively: any possible classification  
outcome is possible from any value 

of the sensitive input node x0,i
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Dependency Fairness
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ℱi
def= {[[M]] ∈ %(Σ*) ∣ UNUSEDi([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that do not use the value of the sensitive input node  for classification
ℱi [[M]]

x0,i

UNUSEDi([[M]]) def= 







∀t ∈ [[M]], v ∈ ℛ : t0(x0,i) ≠ v ⇒ ∃t′ ∈ [[M]] :
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
∧ t′ 0(x0,i) = v
∧ maxj tω(xN,j) = maxj t′ ω(xN,j)

Intuitively: any possible classification  
outcome is possible from any value 

of the sensitive input node x0,i

Beyond trace properties

Non-trace properties

Note: expressing properties in P(D)

is more general than expressing properties in D

Example: non-interference for variable X

P def= { T œ P(�ú) | ’‡0, . . . , ‡n œ T : ’‡Õ
0: ‡0 © ‡Õ

0 =∆

÷‡Õ
0, . . . , ‡Õ

m œ T : ‡Õ
m © ‡m }

where (¸, fl) © ( Õ̧ , flÕ) ≈∆ ¸ = Õ̧ · ’V ”= X : fl(V ) = flÕ(V )

(changing the initial value of X does not a�ect the set of final environments up to the

value of X)

There is no Q ™ �Œ such that P = fl¿(Q).

=∆ non-interference is not a trace property in P(�Œ).

Reading assignment: hyperproperties.

Course 02
Program Semantics and Properties

Antoine Miné
p. 100 / 102

M ⊧ ℱi ⇔ {[[M]]} ⊆ ℱi
M ⊧ ℱi ⇔ {[[M]]} ⊆ ℱi

Theorem
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collecting semantics

dependency semantics

parallel semantics
α;

{[[M]]}

{[M]};
∙

[[M]]∙

{[M]};
↝

[[M]]↝

{[M]}; α∙

α∙

α↝

α↝

α;

α;

outcome semantics
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collecting semantics

dependency semantics

parallel semantics
α;

{[[M]]}

{[M]};
∙

[[M]]∙

{[M]};
↝

[[M]]↝

{[M]}; α∙

α∙

α↝

α↝

α;

α;

outcome semantics
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"
#$

%%%

#$
ℱ

%%
$

%
$

%
#

%%
#

%
$

%
#

%%
$
%%
#

&partitioning a set of traces 
that satisfies dependency 
fairness with respect to the 
outcome classification yields 
sets of traces that also satisfy 
dependency fairness
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> def= {{σ ∈ Σ ∣ maxj σ(xN,j) = i} ∣ 0 ≤ i ≤ |LN |}

M ⊧ ℱi ⇔ {{t ∈ [[M]] ∣ tω ∈ O} ∣ O ∈ >} ⊆ ℱi

Lemma

⟨%(%(Σ*)), ⊆ ⟩ ⟨%(%(Σ*)), ⊆∙ ⟩

γ∙

α∙

α∙(S) def= {{t ∈ T ∣ tω ∈ O} ∣ T ∈ S ∧ O ∈ >} outcome abstraction

outcomes
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

M

Outcome Semantics

[[M]]∙
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Outcome Semantics

67

⟨%(%(Σ*)), ⊆ ⟩ ⟨%(%(Σ*)), ⊆∙ ⟩

γ∙

α∙

α∙(S) def= {{t ∈ T ∣ tω ∈ O} ∣ T ∈ S ∧ O ∈ >}

> def= {{σ ∈ Σ ∣ maxj σ(xN,j) = i} ∣ 0 ≤ i ≤ |LN |}

M ⊧ ℱi ⇔ {{t ∈ [[M]] ∣ tω ∈ O} ∣ O ∈ >} ⊆ ℱi

Lemma

outcome abstraction

outcomes

[[M]]∙
def= α∙({[[M]]}) = {{t ∈ [[M]] ∣ tω ∈ O} ∣ O ∈ >}

M ⊧ ℱi ⇔ [[M]]∙ ⊆ α∙(ℱi) ⇔ [[M]]∙ ⊆ ℱi

Theorem
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collecting semantics

dependency semantics

parallel semantics
α;

{[[M]]}

{[M]};
∙

[[M]]∙

{[M]};
↝

[[M]]↝

{[M]}; α∙

α∙

α↝

α↝

α;

α;

outcome semantics
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"
#$

%%%

#$
ℱ

%
$

%
#

%%
$
%%
#

%%
$
%%
#

%
$

%
#

&to reason about dependency 
fairness we do not need to 
consider all intermediate 
computations between the 
initial and final states of a trace
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α↝(S) def= {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ T} ∣ T ∈ S} dependency abstraction

⟨%(%(Σ*)), ⊆∙ ⟩ ⟨%(%(Σ × Σ)), ⊆↝ ⟩

α↝

γ↝
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

M

Dependency Semantics

[[M]]↝
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α↝(S) def= {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ T} ∣ T ∈ S} dependency abstraction

[[M]]↝
def= α↝([[M]]∙) = {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ [[M]] ∧ tω ∈ O} ∣ O ∈ >}

M ⊧ ℱi ⇔ [[M]]↝ ⊆↝ α↝(α∙(ℱi)) ⇔ [[M]]↝ ⊆↝ α↝(ℱi)
Theorem

⟨%(%(Σ*)), ⊆∙ ⟩ ⟨%(%(Σ × Σ)), ⊆↝ ⟩

α↝

γ↝
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"
#$

%%%

#$
ℱ

%%
$
%%
#

%
$

%
#

%
$

%
#

%%
$
%%
#

%%
$
%
$
%
#
%%
#

%% %%%%

&partitioning with respect to 
the outcome classification 
induces a partition of the 
space of values of the input 
nodes used for classification
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α↝(S) def= {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ T} ∣ T ∈ S} dependency abstraction

[[M]]↝
def= α↝([[M]]∙) = {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ [[M]] ∧ tω ∈ O} ∣ O ∈ >}

M ⊧ ℱi ⇔ [[M]]↝ ⊆↝ α↝(α∙(ℱi)) ⇔ [[M]]↝ ⊆↝ α↝(ℱi)
Theorem

M ⊧ ℱi ⇔ ∀A, B ∈ [[M]]↝ : (Aω ≠ Bω ⇒ A0 |≠i ∩ B0 |≠i = ∅)
Lemma

⟨%(%(Σ*)), ⊆∙ ⟩ ⟨%(%(Σ × Σ)), ⊆↝ ⟩

α↝

γ↝
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Naïve Abstraction
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…

…

1. proceed backwards 
from all possible 
classification outcomes

2. forget the values of the 
sensitive input nodes

3. check for intersection: 
empty        fair 
otherwise       alarm 

→
→!
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

Naïve Backward Analysis

"#$

%%%

x30 ≥ x31 x31 ≥ x30

1.16 * x20 + 0.07 * x21 ≥ 0.901.16 * x20 + 0.07 * x21 ≤ 0.90

… …

… …

too many disjunctions!
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Back to the Semantics…
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collecting semantics

dependency semantics

parallel semantics
α;

{[[M]]}

{[M]};
∙

[[M]]∙

{[M]};
↝

[[M]]↝

{[M]}; α∙

α∙

α↝

α↝

α;

α;

outcome semantics
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"
#$

%%%

#$
ℱ

&partitioning a set of traces 
that satisfies dependency 
fairness with respect to the 
non-sensitive inputs yields 
sets of traces that also satisfy 
dependency fairness

%
$

%
#

%%
$
%%
# %

$
%
#

%%
$
%%
#
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α;(S) def= {{⟨t0, tω⟩ ∈ R ∣ t0 ∈ I} ∣ R ∈ S ∧ I ∈ ;} parallel abstraction

⟨%(%(Σ × Σ)), ⊆↝ ⟩ ⟨%(%(Σ × Σ)), ⊆; ⟩

α;

γ;
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

M

Parallel Semantics

{[M]}#
↝
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α;(S) def= {{⟨t0, tω⟩ ∈ R ∣ t0 ∈ I} ∣ R ∈ S ∧ I ∈ ;} parallel abstraction

⟨%(%(Σ × Σ)), ⊆↝ ⟩ ⟨%(%(Σ × Σ)), ⊆; ⟩

α;

γ;

{[M]};
↝

def= α;([[M]]↝)
= {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ [[M]] ∧ t0 ∈ I ∧ tω ∈ O} ∣ I ∈ ; ∧ O ∈ >}

M ⊧ ℱi ⇔ {[M]};
↝ ⊆; α;(α↝(α∙(ℱi))) ⇔ [[M]]↝ ⊆↝ α;(α↝(ℱi))

Theorem

M ⊧ ℱi ⇔ ∀I ∈ ; : ∀A, B ∈ {[M]};
↝ : (AI

ω ≠ BI
ω ⇒ AI

0 |≠i ∩ BI
0 |≠i = ∅)

Lemma
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Better Abstraction
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…

…

1. partition the space of values of the non-sensitive input nodes
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…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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Forward and Backward Analysis
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…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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Forward and Backward Analysis

85

…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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…

…

3. proceed backwards for 
each activation pattern

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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Forward and Backward Analysis
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…

…

3. proceed backwards for 
each activation pattern

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns

U

L
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
10

0

1

x00

x01
U = 2
L = 0.25
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
10

0

1

x10

x11

x20

x21

x00

x01
U = 2
L = 0.25
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
10.50.50

0

1

x10

x11

x20

x21

x00

x01

x10

x11

x20

x21 U = 2
L = 0.25
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
0.75 10.750.50.50

0

1

x10

x11

x20

x21

x10

x11

x20

x21

x10

x11

x20

x21

x00

x01
U = 2
L = 0.25
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
0.75 10.750.50.50

0

1

x10

x11

x20

x21

x10

x11

x20

x21

x00

x01

'

U = 2
L = 0.25



Caterina UrbanStatic Analysis of Neural NetworksCourse 10 87

x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9
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x11
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"#$

%%%
0.75 10.750.50.50

0

1

x10

x11
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x21

x00

x01

'

U = 2
L = 0.25
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’
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x10 x20
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"#$

%%%

x30 ≥ x31 x31 ≥ x30

1.16 * x20 + 0.07 * x21 ≥ 0.901.16 * x20 + 0.07 * x21 ≤ 0.90

0.75 10.750.50.50
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'

U = 2
L = 0.25
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caterinaurban / Libra

Code Issues Pull requests Actions Projects Security Insights

 2 branches  0 tags

README.md

Libra

Nowadays, machine-learned software plays an increasingly important role in critical
decision-making in our social, economic, and civic lives.

About

No description or website
provided.

# abstract-interpretation
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# machine-learning

# neural-networks  # fairness

 Readme

 MPL-2.0 License

Releases

No releases published
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 master Go to file  Code 
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.gitignore RQ1 reproducibility 4 months ago
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requirements.txt some documentation 4 months ago

setup.py some documentation 4 months ago
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Static Analysis of Neural Network Training

Static Analysis of Medical Data-Processing Software
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