Thread-Modular Static Analysis
of Concurrent Programs

MPRI 2—6: Abstract Interpretation,
application to verification and static analysis

Course 16

Antoine Miné

Year 2020-2021

Course 16
19 February 2021

Thread-Modular Analysis of Concurrent Programs Antoine Miné

p.1/77



Introduction

Concurrent programming

Decompose a program into a set of (loosely) interacting processes.

@ exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over” (change in Moore’s law, X2 transistors every 2 years)
@ exploit several computers (distributed computing)

@ ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:

@ combinatorial exposition of execution paths (interleavings)
@ errors lurking in hard-to-find corner cases (race conditions)

@ unintuitive execution models (weak memory consistency)
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Introduction

Scope

In this course:  static thread model
@ implicit communication through shared memory
@ explicit communication through synchronisation primitives
@ fixed number of threads (no dynamic creation of threads)

@ numeric programs (real-valued variables)

Goal: static analysis
@ infer numeric program invariants
@ parameterized by a choice of numeric abstract domains
@ discover run-time errors (e.g., divisions by 0)
@ discover data-races (unprotected accesses by concurrent threads)
@ discover deadlocks (some threads block each other indefinitely)
°

application to analyzing embedded C programs

Course 16 Thread-Modular Analysis of Concurrent Programs Antoine Miné p.3/77



Introduction

Outline

Simple concurrent language

Non-modular concurrent semantics

@ Simple interference thread-modular concurrent semantics

@ Locks and synchronization

Abstract rely-guarantee thread-modular concurrent semantics

Relational interference abstractions

Application : the AstréeA analyzer
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Language and semantics

Language and semantics
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Language and semantics Syntax

Structured numeric language

o finite set of (toplevel) threads: stmt; to stmt,
o finite set of numeric program variables V € V
o finite set of statement locations / € £

@ locations with possible run-time errors w € Q (divisions by zero)

prog = estmtle H R H Zstmtne (parallel composition)

‘stmt’ = tv eng (assignment)
| ‘if exp < 0 then ‘stmt’ £i’ (conditional)
| ‘while ‘exp <0 do ‘stmt’ done’ (loop)
| Zstmt; ‘stmt’ (sequence)

exp = V|[a,c]| —exp|expoexp

¢, €ERU{+00,—c0}, o€ {+,—,%,/u}, xe{=,<,...}
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Language and semantics Trace-based semantic model

Multi-thread execution model

ty ‘ tr
1 yhile random do | * while random do
2 if x < y then % if y < 100 then
B x «—x+1 ©y « y+ [1,3]

Execution model:

@ finite number of threads
@ the memory is shared (x,y)
@ each thread has its own program counter

@ execution interleaves steps from threads t; and ¢,
assignments and tests are assumed to be atomic

—> we have the global invariant 0 < x <y <102
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Language and semantics Trace-based semantic model

Semantic model: labelled transition systems

simple extension of transition systems

Labelled transition system: (X, A, 7,7)

@ XY: set of program states

@ A: set of actions

o 7 C Y x A X X: transition relation we note (¢,a,0') € 7 as 0 >, o’
@ 7 C ¥: initial states

Labelled traces: sequences of states interspersed with actions

a a
denoted as o9 X oy B -0, B Ont1

T is omitted on — for traces for simplicity
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Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

e given: prog = ‘istmt; /1 || -+ || “stmt,

o threads are numbered: T < {1,...,n}

Program states: Y & (T — L) x &

@ a control state L(t) € L for each thread t € T and

@ a single shared memory state p € £ Yvo,z

Initial states:

threads start at their first control point ¢/, variables are set to 0:

T < {(Atli, AV.0)}

Actions:  actions are thread identifiers: A & T
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Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

Transition relation: 7 CY X AX X

def

(L p) 5oL o) &5 (L(), p) = rfemng (L'(2), 0/) A
Vu # t: L(u) = L'(u)

@ based on the transition relation of individual threads seen as
sequential processes stmt: 7[stmt:] C (L x &) x (L x &)

e choose a thread t to run
o update p and L(t)
o leave L(u) intact for u # t

see course 2 for the full definition of T[stmt]

e each transition 0 —[gtnt,] o’ leads to many transitions — !
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Language and semantics Trace-based semantic model

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

. t
Blocking states: B = {o|Vo':Vt:0 /A, o'}

Maximal traces: M, (finite or infinite)

def ty th—1 ) t;
Mo = {oo—+ = on|n>0N00 ELNop € BAYIi<nici—7 0it1} U

It . tj
{0'0*0>(71... [n>0A00 €EZAYIi <w:oi 7+ 041}

Finite prefix traces: 7,

de th— i i
T 1:f{aot4~- —)1O'n’n20/\0'0EI/\VI<n:0‘;i>TO','+1}

Tp = Ifp Fp where
tn_
Fp(X):IU{UOg‘-~ian+1|n20/\aoi-~- —>10nEX/\Jnt47—J,,+1}
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Language and semantics Trace-based semantic model

Fairness

Fairness conditions: avoid threads being denied to run forever

Given enabled(o,t) <% Jo' € X0 5, 0

s 1 t, .
an infinite trace g — -0 = - - - is:

@ weakly fair if Vt € T:

3i:Vj > i:enabled(cj,t) = Vi:3j>iaj=t

no thread can be continuously enabled without running
@ strongly fair if Vt € T:

Vi:3j > i:enabled(oj,t) = Vi:3j >iaj=1t

no thread can be infinitely often enabled without running

Proofs under fairness conditions  given:

@ the maximal traces M, of a program
@ a property X to prove (as a set of traces)
@ the set F of all (weakly or strongly) fair and of finite traces

— prove M, NF C X instead of My, C X
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Language and semantics Trace-based semantic model

Fairness (cont.)

Example: while x >0 do x - x+1 done || x < —2
@ may not terminate without fairness

@ always terminates under weak and strong fairness

Finite prefix trace abstraction

Moo N F C X is abstracted into testing a,<(Moo N F) C ay<(X)
for all fairness conditions F, ciu<(Moo N F) = atux(Mos) = Tp

recall that o, <(T) def {teX*|3ue T:t <X u} is the finite prefix abstraction
and T = o, < (Mco)

—> fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions J
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Language and semantics Trace-based semantic model

Reminder: reachable state abstraction

Reachable state semantics: R € P(X)

Reachable states in any execution:

RdZEf{U| dn >0, og,...,0,:
op €I, Vi<n:§|t€T:a;—t>Ta;+1Aa:an}

R = Ifp Fr where Fr(X)=ZU{o|3o’ € X,t € T: 0’ lh—o’}

Can prove (non-)reachability, but not ordering, termination, liveness
and cannot exploit fairness.

Abstraction of the finite trace semantics.

R = ap(Tp) where ap(X) d:ef{J|Hn20,aogv--an€X:U:an}
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Language and semantics Reminders: sequential semantics

Reminders: sequential semantics
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Language and semantics Reminders: sequential semantics

Equational state semantics of sequential program

@ see Ifp f as the least solution of an equation x = f(x)
@ partition states by control: P(L x &) ~ L — P(E)
Xy € P(E): invariant at £ € L
Veel:X, € {me&|(l,m)eR}

— set of recursive equations on X

Example:
2 .
[{2162, X =T
|14 [-o0, 4ol X, =Cli 2] X
“while i< n do X3 = C[n ¢ [—o0, +00]] X2
it [0,1] =0 then Xy =30 A7
IGI'HI'-"-]. X5:C[[i<n]]X4
fi X6 =45
Hdone X7:X5.UC[[I'<—I'+I]]X5
. Xg=C[i>n]Xs
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Language and semantics Reminders: sequential semantics

Abstract equation system

Given a numeric abstract domain:

o abstract elements £ abstracting P (&)
with concretization v : £ — P(&)

e sound abstract operators CE[ X < e], C*[e0], U
ffis sound <= VX' € &8 F(y(XP)) C y(FH(XY))

@ a widening operator V

we can over-approximate in the abstract the solution of the system

Benefits:

@ separate programming language from equation language

@ various choices of solving strategies

chaotic iterations [Bour93], etc.
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Language and semantics Reminders: sequential semantics

Semantics in denotational form

Alternate view as an input-output state function C[[ stmt |

Clstmt] : P(€E) — P(E)

C[X « e]R E {pIX > V]|peR,veE[e]p}
Clex<O0]R ' {peR|IveE[e]pvix0}
C[if exaOthensfi]R % (C[s] oClex0])RUC[es40]R
Cls1; =] L[] oC[s1]

C[while ex<iOdosdone]R & Clest 0] (IfpAY.RU(C[s] oC[ex0])Y)
@ mutate memory states in £
@ structured: nested loops yield nested fixpoints
@ big-step: forget information on intermediate locations /¢
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Language and semantics Reminders: sequential semantics

Abstract semantics in denotational form

Cistmt] : EF — &

CH[X + e] R* and C*[ e 0] R* are given
C![if e Othen s £fi] X! & (CH[s] o C[e 0] )X? ¥ CHle 0] X*
Cts; 5] < CHs2] o C¥[s1]
C![while e i 0 do s done ] X! &'
Cilesk O] (limAYEYEV (X! LU (CH[s] o CF[e=0])YH))

The abstract interpreter mimics an actual interpreter.
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Language and semantics Reminders: sequential semantics

Equational vs. denotational form

Equational: Denotational:
while (i < nb)
{
alil =12;
i++;
é} }
X =T C[while c do b done | X &f
Xy = Fp(X1) Cl=c] (fpAY.XUC[b](C[c]Y))
X3 = F3(1) C[if c thent £i] X =

Xo = Fa(As, X4) CIt](Cle] X)UC[~c] X

@ linear memory in program length @ linear memory in program depth

@ flexible solving strategy @ fixed iteration strategy

flexible context sensitivity fixed context sensitivity
(follows the program structure)
@ easy to adapt to concurrency, _
using a product of CFG @ no inductive definition of the product

= thread-modular analysis

Course 16 Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 20 /77



Language and semantics Non-modular concurrent semantics

Non-modular concurrent semantics
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Language and semantics Non-modular concurrent semantics

Equational concurrent state semantics

Equational form:

o foreach L € T — L, a variable X with value in £

@ equations are derived from thread equations eqg(stmt;) as:
X, = UtGT{ F(XL,, 5 X)) |
Xy, = F(Xey, ..., Xey)) € eq(stmty):
Vi < N:Li(t) =4, Yu # t: Li(u) = Li(u) }
Join with U equations from eq(stmt:) updating a single thread t € T.

(see course 2 for the full definition of eq(stmt))
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Language and semantics Non-modular concurrent semantics

Equational state semantics (illustration)

O A A
/8

Product of control-flow graphs:

.
N

@ control state = tuple of program points
= combinatorial explosion of abstract states

@ transfer functions are duplicated
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Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

Example: inferring 0 < x < y <102

t | t
1 yhile random do | * while random do
2 if x < y then 5 if y < 100 then
B x e x+1 £6y<—y+[1,3]

Equation system:
X14=1
Aog =14 U C[[X > y]]X2,4 @] C[[X — x+ 1]] 34
X3’4 = C[[X < yﬂ X274
X5 =414 U C[[y > 100]])(‘175 U C[[y —y+ [173]]])(1,6
X275 = X1,5 ] ClIX > y]]Xg}s U ClIX — X+ 1]].)(3’5 ]
Ap 4 U C[[y > 100]] Ao 5 U C[[y —y+ [1,3]]]-)(2,6
X3’5 = CIIX < y]] X2’5 @]} X3’4 U Cl[y > 100]] X3)5 U ClIy —y+ [173]]])(3,6
X176 = C[[y < 100]] X1’5
Xopg =X UC[x>y]doeUC[x<x+1]X36UC[y <100] Xy 5
X3’5 = CIIX < y]] nge @]} C[[y < 100]])(‘3’5
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Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

Example: inferring 0 < x < y <102

ty tr
1 yhile random do | ** while random do
2 if x < y then 5 if y < 100 then
B x «—x+1 © 'y« y+ [1,3]

Pros:
@ easy to construct
@ easy to further abstract in an abstract domain &£*

Cons:
@ explosion of the number of variables and equations
@ explosion of the size of equations
— efficiency issues

@ the equation system does not reflect the program structure
(not defined by induction on the concurrent program)
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Language and semantics Non-modular concurrent semantics

Wish-list

We would like to:

@ keep information attached to syntactic program locations
(control points in £, not control point tuples in T — L)

@ be able to abstract away control information

(precision/cost trade-off control)
@ avoid duplicating thread instructions
@ have a computation structure based on the program syntax

(denotational style)

Ideally: thread-modular denotational-style semantics

analyze each thread independently by induction on its syntax

but remain sound with respect to all interleavings !
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Simple interference semantics

Simple interference semantics
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i=0; i=0;
while (i < nb) while (i < nb)
{
ali] --; ali] ++;
i++; i++;
} }

Principle:

@ analyze each thread in isolation
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i=0; i=0;

while (i < nb) while (i < nb)

{
afi] - afi] ++;
i++; i++;
} I

e

@ analyze each thread in isolation

Principle:

@ gather the values written into each variable by each thread

— so-called interferences
suitably abstracted in an abstract domain, such as intervals
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i=0;

while (i < nb)

0;

while (i < nb)

afil -
i++;

a[i] ++;
i++;

} }

Principle:
@ analyze each thread in isolation

@ gather the values written into each variable by each thread
— so-called interferences
suitably abstracted in an abstract domain, such as intervals

@ reanalyze threads, injecting these values at each read
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i=0; i=0;

while (i < nb) while (i < nb)
afil --;
i++;

ali] ++;
i++;

1 }

Principle:

Course 16

analyze each thread in isolation

gather the values written into each variable by each thread
— so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences
= one more level of fixpoint iteration
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Intuition

Example

 while random do
% if y < 100 then
y—y+[1,3

1 yhile random do
2 4if x < y then
B xex+1
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Simple interference semantics Intuition

Example

‘1 while random do  while random do
2 if x < y then % if y < 100 then
B xex+1 ©y+y+[1,3]

Analysis of t1 in isolation

1:x=y=0 X =1
@:x=y=0 Xo =X U(C[x+x+1]AUC[x>y] X,
(3): L Xs=C[x<y]X,
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Simple interference semantics Intuition

Example

‘1 while random do  while random do
2 if x < y then % if y < 100 then
B xex+1 ©y+y+[1,3]

Analysis of ty in isolation

@:x=y=0 Xy =1
(5):x =0, y €[0,102] Xs =X UC[y < y+[1,3]] X UC[y > 100] A5
(6):x =0, y €[0,99] Xe = C[y <100] A5

output interferences: y < [1,102]
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Simple interference semantics Intuition

Example

1 yhile random do  while random do
2 if x < y then % if y < 100 then
B xex+1 %y y+11,3]

Re-analysis of t; with interferences from t»

input interferences: y < [1,102]

1:x=y=0 Xy =1

@:x€1[0,102, y=0 X=X, UC[x < x+1]X3UC[x > (y|[1,102])] X»
(3):x €10,102], y =0 Xs =C[x < (y|[1,102])] A

output interferences: x < [1,102]

subsequent re-analyses are identical (fixpoint reached)

Course 16 Thread-Modular Analysis of Concurrent Programs Antoine Miné p.28 /77



Simple interference semantics Intuition

Example

1 yhile random do  while random do
2 if x < y then % if y < 100 then
B xex+1 %y y+11,3]

Derived abstract analysis:

@ similar to a sequential program analysis, but iterated
can be parameterized by arbitrary abstract domains

o efficient few reanalyses are required in practice

@ interferences are non-relational and flow-insensitive
limit inherited from the concrete semantics
Limitation:
we get x,y € [0,102]; we don't get that x < y
simplistic view of thread interferences (volatile variables)
based on an incomplete concrete semantics (we'll fix that later)
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Simple interference semantics Formalizing the simple interference semantics

Formalizing the simple interference semantics
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences

Interferences in | = T x V xR
(t, X, v) means that t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences | C I.

Expressions : E¢[exp] : & x P(1) = P(R) x P(Q) for thread t
@ add interference / € 1, as input
@ add error information w € €2 as output

locations of / operators that can cause a division by 0

Example:
@ Apply interferences to read variables:
EIXT(p, 1) = ({p(X)}U{v]Tu# e (u X, v) €1}, 0)
@ Pass recursively | down to sub-expressions:
El—el(p, 1) “ let (V, 0) = Ee[e] (p, ) in ({~v|vE V}, O)
@ etc.
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

Ci[stmt] : P(E) x P(Q) x P(I) = P(E) x P(Q2) x P(I)

pass interferences to expressions

°

@ collect new interferences due to assignments

@ accumulate interferences from inner statements
°

collect and accumulate errors from expressions

CG[X «e](R, O, 1) %
(0.0, 1) U |, cp ({pIX = VI[vE V) Op (£ X, V)|V EV,})

ef
Ci[s1; 521 de Ci[s2] o Ce[[s1]

. def
noting (V,, 0,) < Ed[e] (p, 1)
LI is now the element-wise U in P(&) x P(Q) x P(I)
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Program semantics: P[prog] € Q

Given prog ::= stmt; || --- || stmt,, we compute:

P[[prog]] = [pr)\< 07 />'|_|t€T [Ct[[Stmttﬂ <807 (2)7 I>]Q,I}Q

@ each thread analysis starts in an initial environment set
& = {Av0}

e [X]q, projects X € P(E) x P(2) x P(I) on P(Q2) x P(I)
and interferences and errors from all threads are joined

the output environments from a thread analysis are not easily exploitable

@ P[prog] only outputs the set of possible run-time errors

We will need to prove the soundness of P[prog]
with respect to the interleaving semantics. ..
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Simple interference semantics Formalizing the simple interference semantics

Interference abstraction

Abstract interferences |*

P(l) = P(T x V x R) is abstracted as I = (T x V) = R!
where R¥ abstracts P(R) (e.g. intervals)

Abstract semantics with interferences Cg[[s}]

derived from C![s] in a generic way:

Example: Cf[[X —e] (R, Q, 1)
@ for each Y in e, get its interference Y,,ﬁ{ = |_|gz {M(u, Y)Y |u#t}
@ if Y7ﬁa #* J-ga' replace Y in e with get( Y, Rt ) I_lg2 Yfz
get(Y, RY) extracts the abstract values variable Y from Rf ¢ £*
@ compute (R, 0') = Ct[e] (RY, O)
@ enrich I#(t, X) with get(X, R¥)
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Simple interference semantics Formalizing the simple interference semantics

Static analysis with interferences

Pilprog] = |imMO, F).(O, )V i [Cilstmt:] (£ 0, F)]

Qlt | g

o effective analysis by structural induction

e P[prog] is sound with respect to P[prog]

@ termination ensured by a widening

@ parameterized by a choice of abstract domains R, &*

e interferences are flow-insensitive and non-relational in R*
e thread analysis remains flow-sensitive and relational in &*

reminder: [X]q, [Y]q iz keep only X's component in Q, Y's components in Q and 1
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Simple interference semantics Path-based soundness proof

Path-based soundness proof
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Simple interference semantics Path-based soundness proof

Control paths of a sequential program

atomic ::= X < exp | exp< 0
m : stmt — P(atomic™)

(X —e) € (X<« e}

m(if e 0 thens fi) = ({ex0}-m(s))U{enti0}

m(while e >0 do s done) & (U,.ZO({ e 0} - ﬂ(s))i) {e0}

m(s1; 8) € w(s1) - 7(s2)

m(stmt) is a (generally infinite) set of finite control paths

e.g.
(i + 0; while i < 10do i<« i+1ldone; x + i) =i+ 0-(i<10-i4+ i+1)*-x+i
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Simple interference semantics Path-based soundness proof

Path-based concrete semantics of sequential programs

Join-over-all-path semantics
[P]:(P(&)xP(Q) = (P(E) xP(Q)) P C atomic*

[PI(R, 0) = || (Clsalo---oCl[s1])(R, O)

51~...~S,,6P

Semantic equivalence
C[stmt] = [n(stmt)]

no longer true in the abstract
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Simple interference semantics Path-based soundness proof

Path-based concrete semantics of concurrent programs

T, = {interleavings of m(stmt;), t € T}

= {p € atomic* |Vt € T, proj,(p) € (stmt,) }

Interleaving program semantics

P.[prog] = [ [m (&, 0)lq

(proj(p) keeps only the atomic statement in p coming from thread t)

(~ sequentially consistent executions [Lamport 79])

Issues:

@ too many paths to consider exhaustively
@ no induction structure to iterate on
— abstract as a denotational semantics
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Simple interference semantics Path-based soundness proof

Soundness of the interference semantics

P.[prog] C P[prog] I

o define ([PIX %' | |{Clsi;.- isn] X|s1-...-sn€ P},

then ([7(s)] = Ce[s];
@ given the interference fixpoint / C | from P[prog],

Proof sketch:

prove by recurrence on the length of p € 7, that:
o vpel [pI&, 0)]s VieT,

p" e[ ¢lproj.(p) (&, 0, I)]e such that
VX eV, p(X) = p/'(X)or (u, X, p(X)) € I for some u # t.

o [ [PI{&: 0)]q € User[ [proj(p)1( &, 0, g

Notes:
@ sound but not complete
@ can be extended to soundness proof under weakly consistent memories
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Simple interference semantics Locks and synchronization

Locks and synchronization
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Simple interference semantics Locks and synchronization

Scheduling

stmt = lock(m)
|  unlock(m)

m € M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread
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Simple interference semantics Locks and synchronization

Mutual exclusion

lock(m) unlock(m)
W w w
Pl — @ @@

R R W R
lock(m) unlock(m)

We use a refinement of the simple interference semantics
by partitioning wrt. an abstract local view of the scheduler C
0 & w ExC, & w~ Co &t
def def

0l =TxVXR ~» | =TxCxVxR,
I# = (TxV) 5 R~ IFE (TxCxV)— R

lef
C = Crace UCsync separates
@ data-race writes C,;ce

o well-synchronized writes Csync
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Simple interference semantics Locks and synchronization

Mutual exclusion

lock(m) unlock(m)
|' W w '| w

1 °
T T ]

Data-race effects C,... ~ P(M)

Across read / write not protected by a mutex.
Partition wrt. mutexes M C M held by the current thread t.

@ Ci[X<«+e]{p, M, 1) adds {(t, M, X, v) |veE[X]{p, M, 1)} to !
@ E[X](p, M, I)=
{pX)YU{v|(t, M X, v)el, t#t, MOM =0}

Bonus: we get a data-race analysis for free!
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Simple interference semantics Locks and synchronization

Mutual exclusion

lock(m) unlock(m)
W w w
Pl — @@

lock(m) unlock(m)

Well-synchronized effects  Csypc = M x P(M)

last write before unlock affects first read after lock
partition interferences wrt. a protecting mutex m (and M)
Ci[unlock(m)] (p, M, I') stores p(X) into /
Ci[lock(m)] (p, M, I) imports values form [ into p

imprecision: non-relational, largely flow-insensitive
— C ~ P(M) x ({data — race} UM)
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Simple interference semantics Locks and synchronization

Deadlock checking

t1 ‘ tr

lock(a) lock(a)
lock lock(b (2
unloa(ci)(c) unlo(ck%a) @
lock(b) lock(a) @ ‘Lb

unlock(b) unlock(a) N\ ) & =
unlock(a) unlock(b) ":C b ”@ WW

During the analysis, gather:
@ all reachable mutex configurations: R C T x P(M)

@ lock instructions from these configurations R x M
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Simple interference semantics Locks and synchronization

Deadlock checking

lock(c) lock(b) a

t1 ‘ tr
lock(a) lock(a) %@
\DCk‘a) blocks

unlock(c) | unlock(a)
lock( lock(a)

unlock(a) unlock(b)

lock(a) blocks

lock(b) blocks

During the analysis, gather:
@ all reachable mutex configurations: R C T x P(M)

@ lock instructions from these configurations R x M
Then, construct a blocking graph between lock instructions
o ((t,m),£) blocks ((t',m"), ¢ if

t # t' and mN m’ = () (configurations not in mutual exclusion)
£ € m' (blocking lock)

A deadlock is a cycle in the blocking graph.
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Simple interference semantics Locks and synchronization

Priority-based scheduling

priority
yield yield

yield

Real-time scheduling:

@ priorities are strict (but possibly dynamic)
@ a process can only be preempted by a process of strictly higher priority

@ a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority
@ partition interferences wrt. thread and priority
support for manual priority change, and for priority ceiling protocol
@ higher priority processes inject state from yield into every point

@ lower priority processes inject data-race interferences into yield
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Beyond non-relational interferences
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Beyond non-relational interferences Inspiration from program logics

Inspiration from program logics
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Beyond non-relational interferences Inspiration from program logics

Reminder: Floyd—Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P}stmt {Q}
@ annotate programs with logic assertions { P} stmt { Q}
(if P holds before stmt, then Q holds after stmt)
@ check that {P}stmt{Q} is derivable with the following rules

(the assertions are program invariants)
{PAexi0}s{Q} PAherk0=Q

{Ple/X]} X <+ e{P} {P}if exi10 then s fi {Q}
{Prsi{Q} {Q}=2{R} {PAera0}s{P}
{P}s1;s2{R} {P}while e 10 do s done {P A e ¥ 0}

{P}s{@}y P=>P Q=0
{Pys{Q}

Link with abstract interpretation:

@ the equations reachability semantics (X;)¢c provides the most precise Hoare
triples in fixpoint constructive form
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Beyond non-relational interferences Inspiration from program logics

Jones' rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].
Rely-guarantee “quintuples”: R, G - {P} stmt {Q}

o if P is true before stmt is executed

@ and the effect of other threads is included in R (rely)

@ then Q@ is true after stmt

@ and the effect of stmt is included in G (guarantee)

where:
@ P and @ are assertions on states (in P(X))
@ R and G are assertions on transitions  (in P(Z x A x X))

The parallel composition rule is:

RV GQ, G1 = {P1}51 {Ql} RV Gl, Gg F {P2}52 {Q2}
R, GV G+ {Pl A\ P2}51 H Sz{Ql A Qz}
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Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

1 yhile random do £ yhile random do

2 if x < y then 5 if y < 100 then
B x ¢ x+1 %y + y+ [1,3]

fi fi

done done

/1: x=y=0 atl4: x=y =0

02: x,y €[0,102], x <y at /5: x,y €[0,102], x <y

l3: x €10,101], y € [1,102], x < y at /6 : x €[0,99], y €[0,99], x <y
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Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

1 yhile random do | x unchanged y unchanged | “* while random do

2 if x < y then | y incremented 0<x<y £ if y < 100 then

B x — x+1 0<y<102 Oy« y+ [1,3]

fi fi
done done
/1: x=y=0 atl4: x=y =0
02: x,y €[0,102], x <y at /5: x,y €[0,102], x <y
l3: x €10,101], y € [1,102], x < y at /6 : x €[0,99], y €[0,99], x <y

V. v

In this example:
@ guarantee exactly what is relied on  (R; = G; and Ry = Go)

@ rely and guarantee are global assertions

Benefits of rely-guarantee:

@ more precise: can prove x < y

@ invariants are still local to threads

@ checking a thread does not require looking at other threads,
only at an abstraction of their semantics
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Modularity: main idea

Thread

x=0

while x<y
X++;

/* bla bla */

Main idea: separate execution steps

@ from the current thread a
e found by analysis by induction on the syntax of a

@ from other threads b

e given as parameter in the analysis of a
e inferred during the analysis of b

= express the semantics from the point of view of a single thread
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

Reachable states projected on thread t: TRI(t)

@ attached to thread control point in £, not control state in T — L

@ remember other thread's control point as “auxiliary variables”

(required for completeness)
RI(t) £ 7(R) CLx (VU{pcy|t#t €T})—=R
where 7,(R) = {(L(t), p[Vt' # t: pcy — L(t)]) (L, p) € R}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

b b
o0 (] [ ]
b b
o—0=>-0 o0

'q v a7
a

Interferences generated by t:  A(t) (= guarantees on transitions)

Extract the transitions with action t observed in 7,

(subset of the transition system, containing only transitions actually used in reachability)
det |
A(t) = a'(Tp)(t)
an—

where o!(X)(t) & { (0}, 0j31)| o0 B oy S o, e Xiaj=1t}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

b b a
a
® e o o —o
\ K i
N et
\ SR A
L, !
.
Thread
x=0
while x<y
X++;
/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,

States: R/
Interleave:
@ transitions from the current thread t
@ transitions from interferences A by other threads

RI(t) = Ifp R:(A), where
Re(Y)(X) ' me(1) U {me(o”) | 3me(0) € X:0 —5, 0’} U
{me(c’)|Ime(o) € X: 3t # t: (o, 0") € Y(t')}

—> similar to reachability for a sequential program, up to A
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

b b a
a
@ @ ( [ _J @
] ]
I I
,,,,,, s
|
|
a
Thread
a
x=0
while x<y - - .
X++]
/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,

Interferences: A

Collect transitions from a thread t and reachable states R:

A(t) = B(RI)(t), where
B(Z)(t) % (0, 0") |m(0) € Z(t) Ao s o'}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

b b a
a
@ @ ( [ _J @
] ]
I I
,,,,,, s
|
|
a
Thread
a
x=0
while x<y - - .
X++]
/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,

Recursive definition:
@ RI(t) = Ifp R:(A)
@ A(t) = B(RI)(t)

—> express the most precise solution as nested fixpoints:

RI = Ifp AZ.At. Ifp Re(B(2))

Completeness: Vt:RI(t) @R (7 is bijective thanks to auxiliary variables)

any property provable with the interleaving semantics
can be proven with the thread-modular semantics!
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Fixpoint form

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:
o RI=Ifp H=|],en H"(At.0)

in the pointwise powerset lattice HteT {t} = P(Xv)

o H(Z)(t) = Ifp Re(B(Z)) = Unen(Re(B(2)))"(0)

in the powerset lattice P(X¢)

(similar to the sequential semantics of thread t in isolation)

— nested iterations
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

@ start from 72/ﬁ &t Ajj LNt Lt

@ while A,, is not stable

e compute Vt € T: 7?]5+1(t)
by iteration with widening Vv

def

Ifo RI(AL)

(~ separate analysis of each thread)
e compute A',i7+1 LAY Bﬁ(R/gH)
@ when At,i, = Ai_ﬂ, return RIE
—> thread-modular analysis

parameterized by abstract domains (only source of approximation)
able to easily reuse existing sequential analyses
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Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving thread-modular abstractions

Course 16 Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 56 / 77



Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:

@ reduce as much control information as possible

@ but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

o (X) = {(L o) (L p) eXFUX

Interference abstraction:  remove all control state

aZ (V) = {(p, ) IBLL €T = L((Lp), (L', p))) €Y}
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Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics:

We apply (15’{ and aQ\f to the nested fixpoint semantics.

R Y (o AZ. AL Ifp R ,(B™ (Z)), where

© B (2)(t) = {(p, 0/ )13 €L (L p) € Z()A (L p) e (€, ')}

(extract interferences from reachable states)
def
@ RIF(Y)(X) = RPE(X)UAY(Y)(X)
(interleave steps)
def i
® REUX) = {4, AV.0)} UL, p') |3l p) € X: (L, p) = (£, ') }
(thread step)

0 AY(Y)(X) L ({4 p')|Tp, ut t: (L p)EXA(p, p') € Y(u)}

(interference step)

Cost/precision trade-off:

@ less variables
— subsequent numeric abstractions are more efficient

@ insufficient to analyze x +— x+ 1 || x + x+1
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Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

o forget the relations between variables

o forget the relations between values before and after transitions

(input-output relationship)

@ only remember which variables are modified, and their value:
o (V) EAVx e V[I(p, o) € Yip(V) #x Ap/(V) = x}

@ to apply interferences, we get, in the nested fixpoint form:

AT(YYX) S 108, o[V s V) (8 p) EX,V EV,u# v e Y(u)(V)}

@ no modification on the state
(the analysis of each thread can still be relational)

— we get back our simple interference analysis!

Finally, use a numeric abstract domain o : P(V — R) — D#
for interferences, V — P(R) is abstracted as V — D*
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Beyond non-relational interferences Retrieving thread-modular abstractions

From traces to thread-modular analyses

abstract states abstract interferences
(TxL)— & E T &t

foe

non-relational interferences

ag —@ — @ — @
T— P(E)
fox
local states flow-insensitive interferences
o000 o—0 06— 0 o0 0o
(T x L) = P(E) T — P(E x &)
tos fay
local states interferences
®® e ® e o e o e
R, (8 = P A:T = P(E x 5)

7\7& ’Taitf
interleaved execution trace prefixes
® ® @ @ 7,cP(xY)
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Beyond non-relational interferences Relational thread-modular abstractions

Relational thread-modular abstractions
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Beyond non-relational interferences Relational thread-modular abstractions

Fully relational interferences with numeric domains

Reachability : RI(t) : £L — P(V, — Z)
approximated as usual with one numeric abstract element per label

auxiliary variables pc, € V, are kept (program labels as numbers)

Interferences : A(t) € P(X X X)
a numeric relation can be expressed in a classic numeric domain
as P((Va = Z) x (Vo = Z)) = P((V,UV,) = 2Z)
@ X €V, value of variable X or auxiliary variable in the pre-state
@ X’ € V) value of variable X or auxiliary variable in the post-state
e.g.: {(x,x+1)|x €[0,10] } is represented as x’ = x + 1 A x € [0, 10]

—> use one global abstract element per thread

Benefits and drawbacks:

@ simple: reuse stock numeric abstractions and thread iterators
@ precise: the only source of imprecision is the numeric domain

@ costly: must apply a (possibly large) relation at each program step
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Beyond non-relational interferences

Relational thread-modular abstractions

Experiments with fully relational interferences

27

time (s)

0.08

84l =

batman
=& concurinterproc

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

number of threads

t1 to

while z < 10000 while z < 10000
z+z+1 z+—z+1
ify<ctheny<+ y+1 if x <y thenx <+ x+1

done done

Experiments by R. Monat

Scalability in the number of threads (assuming fixed number of variables)
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Beyond non-relational interferences Relational thread-modular abstractions

Partially relational interferences

Abstraction: keep relations maintained by interferences
@ remove control state in interferences (a27)
@ keep mutex state M (set of mutexes held)
o forget input-output relationships

@ keep relationships between variables

Qv (Y) LM, p) |30/ (M, p), (M, p')) € YV ((M, ), (M, p)) €Y}

(M, p) € aV(Y) = (M, p) € alf¥(Y) after any sequence of interferences from Y

Lock invariant:
{p|3te T, M:(M,p)€ag(I(t), m¢ M}
@ property mamtamed outside code protected by m
@ possibly broken while m is locked

@ restored before unlocking m
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lock unlock

Improved interferences:  mixing simple interferences and lock invariants




Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock
t1

lock unlock

Improved interferences: mixing simple interferences and lock invariants

@ apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock

Improved interferences: mixing simple interferences and lock invariants

@ apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

@ apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

@ gather lock invariants for lock / unlock pairs
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock
[

lock unlock

Improved interferences: mixing simple interferences and lock invariants

@ apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

@ apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

@ gather lock invariants for lock / unlock pairs
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Beyond non-relational interferences Relational thread-modular abstractions

Monotonicity abstraction

Abstraction:
map variables to /' monotonic or T don’t know

def

a/r:ono(y) = \V.if V(p, p’> c Yp(\/) < p/(\/) then /\ else T

@ keep some input-output relationships
o forgets all relations between variables
o flow-insensitive

Inference and use

@ gather:
Amere(t)(V) =/ «—
all assignments to V in t have the form V < V 4 e, with e > 0
@ use: combined with non-relational interferences
if Ve: Amore(t)(V) =/
then any test with non-relational interference C[ X < (V/|[a, b])]
can be strengthened into C[ X < V]
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Beyond non-relational interferences Relational thread-modular abstractions

Weakly relational interference example

analyzing t; analyzing t,

t1 | tr t1 | to
while random do | x unchanged y unchanged while random do
lock(m); y incremented 0<x, x<y lock(m);
if x < y then 0 <y < 102 if y < 100 then
X & x + 1; y <y + [1,3];
unlock (m) unlock (m)
” ”

Using all three interference abstractions:
@ non-relational interferences (0 <y <102,0 < x)
@ lock invariants, with the octagon domain (x <y)

@ monotonic interferences (y monotonic)

we can prove automatically that x < y holds
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Application: The AstréeA analyzer

Application: The AstréeA analyzer
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Application: The AstréeA analyzer

The Astrée analyzer

Astrée:

@ started as an academic project by : P. Cousot, R. Cousot, J. Feret, A. Miné,
X. Rival, B. Blanchet, D. Monniaux, L. Mauborgne

@ checks for absence of run-time error in embedded synchronous C code
@ applied to Airbus software with zero alarm (A340 in 2003, A380 in 2004)

Ci
@ industrialized by AbsInt since 2009

Design by refinement:

@ incompleteness: any static analyzer fails on infinitely many programs
@ completeness: any program can be analyzed by some static analyzer

@ in practice:
e from target programs and properties of interest
e start with a simple and fast analyzer (interval)
o while there are false alarms, add new / tweak abstract domains

L4 ain)
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Application: The AstréeA analyzer

The AstréeA analyzer

From Astrée to AstréeA:

@ follow-up project: Astrée for concurrent embedded C code (2012-2016)
interferences abstracted using stock non-relation domains

memory domain instrumented to gather / inject interferences

added an extra iterator = minimal code modifications

o
o
o
@ additionally: 4 KB ARINC 653 OS model

Target application:
@ ARINC 653 embedded avionic application
15 threads, 1.6 Mlines

embedded reactive code + network code + string formatting

o
o
@ many variables, arrays, loops
o

shallow call graph, no dynamic allocation
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Application: The AstréeA analyzer

From simple interferences to relational interferences

monotonicity | relational lock | analysis time | memory | iterations | alarms
domain invariants

X X 25h 26mn 22 GB 6 4616

v X 30h 30mn 24 GB 7 1100

v v 110h 38mn 90 GB 7 1009
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Conclusion

Conclusion

We presented static analysis methods that are:

Course 16

inspired from thread-modular proof methods

abstractions of complete concrete semantics
(for safety properties)

sound for all interleavings

sound for weakly consistent memory semantics

(when using non-relational, flow-insensitive interference abstraction)
aware of scheduling, priorities and synchronization

parameterized by (possibly relational) abstract domains
(independent domains for state abstraction and interference abstraction)
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