Order Theory

MPRI 2-6: Abstract Interpretation,
application to verification and static analysis

Course 1

Antoine Miné

Year 2021-2022

Course 1
20 September 2021

Order Theory Antoine Miné

p.1/69



Plan

@ Partially ordered structures

@ (complete) partial orders
o (complete) lattices

@ Fixpoints

@ Abstractions
o Galois connections, upper closure operators
(first-class citizens)
o Concretization-only framework
o Operator abstraction
e Fixpoint abstraction
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Partial orders

Partial orders
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Partial orders

Partial orders

Given a set X, a relation C € X x X is a partial order
if it is:

Q reflexive: Vx € X, x C x

@ antisymmetric: Vx,y € X, (x Cy) A (y

111

) x=y
Q transitive: Vx,y,ze X, (xCy)A(yCz) = xLCz

(X,C) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
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Partial orders

Examples: partial orders

Partial orders:

e (Z,X)

(completely ordered)

° (P(X),<)

(not completely ordered: {1} Z {2}, {2} Z {1})

e (S5,=) is a poset for any S
° (

Z2,C), where (a,b) C (&', b)) <= (a>a)A(b< D)

(ordermg of interval bounds that implies inclusion)
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Partial orders

Examples: preorders

Preorders:

o (P(X),C), where aC b < |a| < |b]

(ordered by cardinal)

e (Z2,C), where
(a,b) C (d,b) <= {x|a<x<b}C{x|ad <x<Vb}
(inclusion of intervals represented by pairs of bounds)

not antisymmetric: [1,0] # [2,0] but [1,0] C [2,0] C [1,0]

Equivalence: =
X=Y < (XCY)A(YCX)
We obtain a partial order by quotienting by =.
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Partial orders

Examples of posets (cont.)

o Given by a Hasse diagram, e.g.:
/g \

e f

C
d

gL g
c fCf,g
; eCeg
b dCd,f.g
E CEC,e,f,g
b;b,C,d,e,f,g
a aga)bﬂc7d’e’f’g
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Partial orders

Examples of posets (cont.)

o Infinite Hasse diagram for (N U { 0o }, <):

o)
3
A
=
oo & oo
1
1521,2,...,00
0C0,1,2, , 00
0
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Partial orders

Use of posets (informally)

Posets are a very useful notion to discuss about:
o logic: formulas ordered by implication —

@ program verification: program semantics C specification

(e.g.: behaviors of program C accepted behaviors)

@ approximation: C is an information order

(“a C b" means: “a caries more information than b")

@ iteration: fixpoint computation
(e.g., a computation is directed, with a limit: X; C Xo C --- C X,)
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Partial orders

(Least) Upper bounds

@ cis an upper bound of aand bif: aC cand bC ¢

@ cis a least upper bound (lub or join) of a and b if

e cis an upper bound of a and b
o for every upper bound d of a and b, c C d

[
[
@ upper bounds of a and b
|
[
[
o

upper bound of b

7 N
7 N

o

!

[

[
o o
b
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Partial orders

(Least) Upper bounds

If it exists, the lub of a and b is unique, and denoted as allb.
(proof: assume that ¢ and d are both lubs of a and b; by definition of lubs, ¢ C d and d C c;

by antisymmetry of C, ¢ = d)

Generalized to upper bounds of arbitrary (even infinite) sets LY, Y C X

(well-defined, as LI is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) af b, MY.
(ambCa)A(almbC b)and Ve, (cCa)A(cC b) = (cC amb)

Note: not all posets have lubs, glbs
(e.g.: all b not defined on ({a,b},=))
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Partial orders

Chains

C C X is a chain in (X, ) if it is totally ordered by LC:
Vx,y € C, (x Cy) V(y Ex).

@®

I

©
1M
a
IM
-
1M
0
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Partial orders

Complete partial orders (CPO)

A poset (X, C) is a complete partial order (CPO)
if every chain C (including ()) has a least upper bound LI C.

A CPO has a least element LI(), denoted L.

Examples, Counter-examples:

, <) is not complete, but (N U { oo }, <) is complete.

o ({x€Q|0< x<1},<)is not complete, but

° (N
({
({xeR|0<x <1}, <) is complete.
e (P(Y),C) is complete for any Y.

(

o (X,C) is complete if X is finite.
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Partial orders

Complete partial order examples

3 3
2 2
1 1
0 0
(N, <) (NU{o0}, <)
non-complete complete
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Lattices

Lattices

A lattice (X, C,LJ,11) is a poset with
@ a lub all b for every pair of elements a and b;

Q@ a glb am b for every pair of elements a and b.

Examples:

e integers (Z, <, max, min)
@ integer intervals (next slide)

o divisibility (in two slides)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [Birk76].
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Lattices

Example: the interval lattice

1,91

A Sl 1] .. 10,9

[10] [0,1] ... [19]

/\/\ / \"'

[1 -1 [0,0] [1,1] ... [9,9] ... »

Integer intervals: ({[a,b]|a,beZ,a<b}U{0},C,L,N)

def

where [a, b] U [2/, b'] = [min(a, &), max(b, b')].
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Lattices

Example: the divisibility lattice

B \/\/\/
\ / \ / 5

Divisibility (N*, |, lcm, gcd) where x|y <L JkeN, kx =y

Course 1 Order Theory Antoine Miné p. 18 / 69



Lattices

Example: the divisibility lattice (cont.)

Let P & {p1,p2,...} be the (infinite) set of prime numbers.

We have a correspondence + between N* and P — N:
@ a = ((x) is the (unique) decomposition of x into prime factors
o 1 1(a) & [ep 82 = x

@ ¢ is one-to-one on functions P — N with finite support

(a(a) = 0 except for finitely many factors a)

We have a correspondence between (N*, |, lem, ged)
and (N, <, max, min).

Assume that oo = ¢(x) and 8 = (y) are the decompositions of x and y, then:
o Haep amax(a(a),8(a)) — |cm(Haep 22(3), Haep af@) = lem(x, y)
° Haep amin(a(a),8(a)) = ng(HaeP aa(a)7Ha€P af(d) = ged(x, y)
® (Vaa(a) <B(a) <= ([Lcp @I Lep @) = xly

Course 1 Order Theory Antoine Miné p. 19 / 69



Lattices

Complete lattices

A complete lattice (X, C,LI,I1, L, T) is a poset with
Q alub LS for every set S C X
Q aglbms forevery set S C X
O a least element L

@ a greatest element T

Notes:

o limplies2asMS=U{y|VxeS,yCx}
(and 2 implies 1 as well),

@land2imply3and 4 L=Ud=1X,T=n0=0UX,

@ a complete lattice is also a CPO.
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Lattices

Complete lattice examples

o real segment [0,1]: ({x € R|0 <x <1}, <, max,min,0,1)

e powersets (P(S),C,U,N,0,S)
(next slide)

@ any finite lattice
(LY and MY for finite Y C X are always defined)

@ integer intervals with finite and infinite bounds:

({[a,b]|la€eZU{ -0}, beZU{+x},a<b}U{d},
C, U, N, 0, [-oo,+00])

. def .
with Uje [a;, bj] = [minjes aj, max;e; bi].
(in two slides)
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Lattices

Example: the powerset complete lattice

D),

e {-1,0,1,9 ...

{101} {019}

/\ /\

. {10} {01} ... {1,9 ...

Irn

AAVAVAY

.. {1y Ko} {1y ... {9 ...

Example: (P(2),<C,u,N,0,2Z)
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Lattices

Example: the intervals complete lattice

[-e0,+00]

. [-05,1]... [-05,9] v [-1,400] [O,vv-;-co]

[-1,91

. [11] ... 10,9]

'/\ /\"

[-1,0] [0,1] ... [1,9]

RVAVAVAY

[1 -1] 0,01 [1,1] ... [9,9] .

n

' \@//

The integer intervals with finite and infinite bounds:
({[a,b]lac ZU{ -0}, beZU{+x}, a<b}U{0},
g’ u, N, 07 [_OO» —‘rOO])
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Lattices

Derivation

Given a (complete) lattice or partial order (X,C, L, M, L, T)
we can derive new (complete) lattices or partial orders by:

o duality
(X, 2,r,u, T, 1)
o L is reversed
o LI and N are switched
o 1 and T are switched

o Iifting (adding a smallest element)
(Xu{Ll'}Chumi, T

al'b < a=1'vaCh

UWa=all'=a andall b=aUbifab# L’

I'Ma=ar L'=1'andar’ b=anbifa b# 1’

1’ replaces L

T is unchanged

e 6 6 o o
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Lattices

Derivation (cont.)

Given (complete) lattices or partial orders:
(X17 Ela |—|17 |_|17 J—l; Tl) and (X27 EZ; |—|2a |_|27 J—27 TZ)
We can combine them by:

@ product
(X1 x Xo, 5,0, M, L, T) where

o (x,y)E(X,y) <= xCixX' ANyLay
o (y)U(x.y) = (xUix, ylhy')

o (x,y)M(x,y") = (xMx, yMay')

o L= (L1, 1s)

o T L (Ty,To)

@ smashed product (coalescent product, merging L1 and L»)
(XN { L) x(Xe\{L2})U{L},E N L T)

(as X1 x Xz, but all elements of the form (L1,y) and (x, L») are identified to a unique
1 element)
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Derivation (cont.)

Lattices

Given a (complete) lattice or partial order (X,C, L, M, L, T)

and a set S:

@ point-wise lifting (functions from S to X)

(S — X, C,u, ", L', T") where

xC'y <:>Vs€5x()gy(s)

Vs e S:(x U y)(
Vs e S:(xm y)(
Vse S:1/(s) =
Vs e S:T'(s) =

s) <

[N
<)
2

s)
L
-

@ smashed point-wise lifting

(S = (X\{LH)u{L} &, m, L', T")
as S — X, but identify to L’ any map x where 3s € S: x(s) =

(e.g. map each program variable in S to an interval in X)

Course 1

Order Theory

x(s)Uy
x(s) M

(
y(

5)
5)

Antoine Miné
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Lattices

Distributivity

A lattice (X, C, U, M) is distributive if:
e all(bMc)=(aub)m(allc) and
e all(bUc)=(amb)l(aMc)

Examples, Counter-examples:

o (P(X),<,U,N) is distributive

@ intervals are not distributive
([0,0]U[2,2]) M1 [1,1] = [0,2] M [1,1] = [1,1] but
([0,0] M [1, 1)U ([2,2] N [1,1]) = 0L =

common cause of precision loss in static analyses:
merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program
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Lattices

Sublattice

Given a lattice (X,C, U, M) and X' C X
(X',C,,M) is a sublattice of X if X’ is closed under U and 1

Example, Counter-examples:

o if YT X, (P(Y),C,U,n,0,Y) is a sublattice of
(P(X), S, u,N, 0, X)

e integer intervals are not a sublattice of (P(Z),C,U,N,0,Z)
[min(a, a’), max(b, b')] # [a, b] U [d, b']

another common cause of precision loss in static analyses:
LI cannot represent the exact union, and loses precision
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Functions and fixpoints

Functions and Fixpoints

Course 1 Order Theory Antoine Miné p. 29 / 69



Functions and fixpoints

Functions

A function f : (Xl, Cq, U4, J_l) — (XQ, o, Lo, J_Q) is

@ monotonic if
Vx,x', xC1 x' = f(x)Ca f(X)

(aka: increasing, isotone, order-preserving, morphism)

strict if f(Ll) =15

@ continuous between CPO if
VC chain C Xi, {f(c)|c € C}is achainin Xz
and f(LU; C) =1L {f(c)|ce C}

a (complete) LI—morphism between (complete) lattices
if VS C Xy, f(|_|15) = UQ{f(S)’S € 5}

extensive if X; = Xy and Vx, x C1 f(x)
reductive if X1 = Xz and Vx, f(x)Cq x
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Functions and fixpoints

Fixpoints

Given f : (X,C) — (X,C)
@ x is a fixpoint of f if f(x) = x

@ x is a pre-fixpoint of f if x C f(x)
@ x is a post-fixpoint of f if f(x) C x

We may have several fixpoints (or none)

o fp(f) = {x € X|f(x)=x}
o Ifp, f = minc {y € fp(f)|x C y} if it exists
(least fixpoint greater than x)
o Ifpf €ifp, f
(least fixpoint)
o dually: gfp, &of maxc {y € fp(f) |y C x }, gfpf oo gfpt f

(greatest fixpoints)
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Functions and fixpoints

Fixpoints: illustration

pre post pre
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Functions and fixpoints

Fixpoints: example

Monotonic function with two distinct fixpoints

Course 1 Order Theory Antoine Miné
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Functions and fixpoints

Fixpoints: example

Monotonic function with a unique fixpoint
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Functions and fixpoints

Fixpoints: example

Non-monotonic function with no fixpoint
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Functions and fixpoints

Uses of fixpoints: examples

@ Express solutions of mutually recursive equation systems

Example:

x1 = f(x1,x2)

with x7, x2 in lattice X
x2 = g(x1,x2) ’

The solutions of {

are exactly the fixpoint of F in lattice X x X, where
,‘_—‘( X1, ) :( f(x1, ), )
x2 g(x1,x)

The least solution of the system is Ifp =
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Functions and fixpoints

Uses of fixpoints: examples

o Close (complete) sets to satisfy a given property

Example:

r C X x X is transitive if:
(a,b) e rn(b,c)er = (a,c)€r

The transitive closure of r is the smallest transitive relation containing r.

Let f(s) =rU{(a,c)|(a,b) € sA(b,c) €s}, then Ifpf:
o Ifpf contains r
o Ifpf is transitive
o Ifpf is minimal

= Ifp f is the transitive closure of r.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifp f =11 { x| f(X) C X} (meet of post-fixpoints).

A

\

pre post pre
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifp f =11 { x| f(X) C X} (meet of post-fixpoints).
Let f*={x|f(x) Ex}and a=Tf*

Vx € f*, aC x  (by definition of 1)
SO f(a) C f(X) (as f is monotonic)
SO f(a) C x (as x is a post-fixpoint).

We deduce that f(a) C 1%, ie. f(a)C a.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifp f =11 { X | f(X) C X} (meet of post-fixpoints).

f(a)C a

SO f(f(a)) C f(a) (as f is monotonic)

SO f(a) € f*  (by definition of f*)

so a L f(a).

We deduce that f(a) = a, so a € fp(f).

Note that y € fp(f) implies y € *.
As a=T1f* aLC y, and we deduce a = Ifpf.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
Given S C fp(f), we prove that Ifp s f exists.

Consider X' = {x e X| U SC x}.

X' is a complete lattice.

Moreover Vx" € X', f(x") € X'.

f can be restricted to a monotonic function f’ on X’.

We apply the preceding result, so that Ifp f" = Ifp s f exists.
By definition, Ifp ;s f € fp(f) and is smaller than any fixpoint
larger than all s € S.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
By duality, we construct gfp f and gfpsf.

The complete lattice of fixpoints is:
(fp(f), C, AS.Ifp s f, AS.gfprsf, Ifpf, gfpf).

Not necessarily a sublattice of (X,C, L, M, L, T)!
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Functions and fixpoints

Tarski's fixpoint theorem: example

Q

~
o ®

( fpl fp2 )
Ifp

O

Lattice: ({ Ifp, fpl,fp2, pre, gfp },U, M, Ifp, gfp)
Fixpoint lattice: ({ Ifp, fpl,fp2,gfp }, LV, 17, Ifp, gfp)
(not a sublattice as fpl L fp2 = gfp while fp1 U fp2 = pre,

but gfp is the smallest fixpoint greater than pre)

Course 1 Order Theory Antoine Miné p. 39 / 69



Functions and fixpoints

“Kleene" fixpoint theorem

“Kleene" fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

Inspired by Kleene [Klee52].
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Functions and fixpoints

“Kleene" fixpoint theorem

“Kleene" fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =U{f"(a)|neN}.

A

\/
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Functions and fixpoints

“Kleene" fixpoint theorem

“Kleene" fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =U{f"(a)|neN}.

a C f(a) by hypothesis.

f(a) C f(f(a)) by monotony of f.

(Note that any continuous function is monotonic.

Indeed, xCy — xUy=y = f(xUy)=f(y);

by continuity f(x) U f(y) = f(xUy) = f(y), which implies f(x) C f(y).)

By recurrence Vn, f"(a) C f"T1(a).
Thus, {f"(a)|ne N} is achainand LU{f"(a)|ne N}
exists.
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Functions and fixpoints

“Kleene" fixpoint theorem

“Kleene" fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

F(U{f"(a)[neN})

= |_|{ f"“(a) ’ neN }) (by continuity)

=all (|_|{ f"+1(a) |neN }) (as all f"+1(a) are greater than a)
=U{f"(a)|neN}.

So, LU{f"(a)|ne N} e fp(f)

Moreover, any fixpoint greater than a must also be greater
than all f"(a), n € N.
So, U{f"(a)|ne N} =Ifp,f.
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Functions and fixpoints

Well-ordered sets

(5,C) is a well-ordered set if:
o L is a total order on S
@ every X C S such that X # () has a least element 11X € X
Consequences:
e any element x € S has a successor x +1 < M {y|[xCy}
(except the greatest element, if it exists)
o if Ay, x=y+1, xisalimitand x=U{y|yC x}

(every bounded subset X C Shasalub UX =M{y|Vxe X,xCy})

Examples:

o (N,<) and (NU{ o0}, <) are well-ordered

e (Z,<), (R, <), (RT, <) are not well-ordered

e ordinals 0,1,2,...,w,w+1,... are well-ordered (w is a limit)
well-ordered sets are ordinals up to order-isomorphism

(i.e., bijective functions f such that f and f~1 are monotonic)
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Functions and fixpoints

Constructive Tarski theorem by transfinite iterations

Given a function f : X — X and a € X,
the transfinite iterates of f from a are:
X0 d:ef a
x, & f(Xn—1) if nis a successor ordinal

Xo Z U {xm|m<n} ifnisa limit ordinal

Constructive Tarski theorem

If f: X — X is monotonic in a CPO X and a C f(a),
then Ifp, f = x5 for some ordinal §.

Generalisation of “Kleene" fixpoint theorem, from [Cous79].
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Functions and fixpoints

Proof

f is monotonic in a CPO X,
def

xo = aLC f(a)

def . . .
xp = f(xp-1) if nis a successor ordinal
def . . . . .
xn = U {xm|m<n} ifnisa limit ordinal
Proof:

We prove that 39, x5 = xs541.

We note that m < n — x,, C x,.

Assume by contradiction that AJ, x5 = Xs+1-

If nis a successor ordinal, then x,_1 C X,.

If nis a limit ordinal, then Vm < n, x,,; C x,.
Thus, all the x, are distinct.

By choosing n > | X|, we arrive at a contradiction.
Thus ¢ exists.
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Functions and fixpoints

Proof

f is monotonic in a CPO X,
xo & aC f(a)
x, & f(Xn—1) if nis a successor ordinal

Xp Z U {xm|m<n} ifnisa limit ordinal

Proof:
Given § such that x54; = xs, we prove that xs = Ifp, f.

f(xs) = xs11 = x5, s0 xs € fp(f).

Given any y € fp(f), y 3 a, we prove by transfinite induction
that Vn, x, C y.

By definition xp = aC y.

If nis a successor ordinal, by monotony,

Xp1 By = f(Xn—l) C f()/)y e, xp £y,

If nis a limit ordinal, Vm < n, x, C y implies
xp=U{xm|m<n}Cy.

Hence, xs C y and x5 = Ifp, f.
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Functions and fixpoints

Ascending chain condition (ACC)

An ascending chain C in (X,C) is a sequence ¢; € X
such that i <j = ¢ C g.

A poset (X, C) satisfies the ascending chain condition (ACC)
iff for every ascending chain C, 3i € N, Vj > i, ¢; = ¢;.

Similarly, we can define the descending chain condition (DCC).

Examples:

o the powerset poset (P(X), C) is ACC when X is finite

o the pointed integer poset (ZU{ L },C) where
xCy < x=1Vx=yis ACC and DCC

o the divisibility poset (N*,]) is DCC but not ACC.
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Functions and fixpoints

Kleene fixpoints in ACC posets

“Kleene" finite fixpoint theorem

If f: X — X is monotonic in an ACC poset X and a C f(a)
then Ifp, f exists.

Proof:

We prove 3n € N, Ifp, f = f"(a).

By monotony of f, the sequence x, = f"(a) is an increasing chain.
By definition of ACC, 3n € N, x, = X511 = f(x5).

Thus, x, € fp(f).

Obviously, a = xg C f(xy).

Moreover, if y € fp(f) and y J a, then Vi, y O fi(a) = x;.

Hence, y 1 x,, and x, = Ifp, (f).
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Functions and fixpoints

Comparison of fixpoint theorems

theorem function domain fixpoint method
Tarski monotonic | complete fp(f) meet of
lattice post-fixpoints
Kleene continuous CPO Ifp,(f) countable
iterations
constructive | monotonic CPO Ifp,(f) transfinite
Tarski iteration
ACC Kleene | monotonic poset Ifp,(f) finite
iteration
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Galois connections
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Galois connections

Galois connections

Given two posets (C, <) and (A,C), the pair («: C - A, v:A— C)is
a Galois connection iff:

VacA ceC,alc)C a <= c<~(a)

which is noted (C, <) % (A D).

«

@ « is the upper adjoint or abstraction; A is the abstract domain.
@ ~ is the lower adjoint or concretization; C is the concrete domain.
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Galois connections

Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).
We have: (P(Z),C) < (/,C)

def

o | = (ZU{—0}) x (ZU {+0})
o (a,b)C(d,b) < (a>a)N(b< D)

o y(a,b) = {xeZ|la<x<b}
o a(X) = (min X, max X)

proof:
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Galois connections

Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).
We have: (P(Z),C) = (I,C)

def

o | = (ZU{—0}) x (ZU {+0})
o (a,b)C(d,b) < (a>a)N(b< D)

o y(a,b) = {xeZ|la<x<b}
o a(X) = (min X, max X)

proof:

(X

Q

~

C (a,b)

min X > aAmaxX < b
VxeXia<x<b
VxeX:xe{ylal<y<b}
Vx € X:x € v(a, b)

X C~y(a,b)

1reny
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Galois connections

Properties of Galois connections

Assuming Va, ¢, a(c) C a <= ¢ < ~(a), we have:

Q yoais extensive: Ve, ¢ < v(a(c))
proof: a(c) C a(c) = ¢ < vy(a(c))

@ « o is reductive: Va, a(v(a)) C a

© « is monotonic
proof: c < ¢/ = ¢ <~v(a(c')) = a(c) C a(c)
@ v is monotonic
Q voaoy=2y
proof: a(vy(a)) E a(y(a)) = ~(a) < ~(a(v(a))) and
ada(y(a)) = ~(a) =2 v(a(v(a)))

Q aoyoa=a«a
@ «aovisidempotent: coyoaoy=aovy
@ 7o« isidempotent
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Galois connections

Alternate characterization

If the pair (a: C — A, : A— C) satisfies:

Q@ 1~ is monotonic,
@ « is monotonic,
© 7o« is extensive

@ « o~y is reductive

then (a,7) is a Galois connection.

(proof left as exercise)
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Galois connections

Uniqueness of the adjoint

Given (C,<) £ (A,C),

each adjoint can be uniquely defined in term of the other:
Q afc)=m{alc<~(a)}
Q 1(a) =Vv{cla(c)Ea}

Proof: of 1

Va, c <v(a) = afc)C a.

Hence, a(c) is a lower bound of { a|c < ~v(a) }.

Assume that a’ is another lower bound.

Then, Va, c < ~v(a) = &' C a.

By Galois connection, we have then Va, a(c) Ca = a' C a.
This implies a’ C a(c).

Hence, the greatest lower bound of { a|c < ~(a)} exists,

and equals a(c).

The proof of 2 is similar (by duality).
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Galois connections

Properties of Galois connections (cont.)

If (a: C— Ay:A— C), then:

Q VX C C, if VX exists, then a(V X) =U{a(x)|xe X} .
Q@ VX CA, ifMX exists, then y(MX) = A{~(x)|x € X }.

Proof: of 1

By definition of lubs, Vx € X, x <V X.

By monotony, Vx € X, a(x) T a(V X).

Hence, a(V X) is an upper bound of { a(x)|x € X }.
Assume that y is another upper bound of { a(x)|x € X }.
Then, Vx € X, a(x) C y.

By Galois connection Vx € X, x < y(y).

By definition of lubs, vV X < (y).

By Galois connection, a(V X) C y.

Hence, { a(x)|x € X } has a lub, which equals a(V X).

The proof of 2 is similar (by duality).
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Galois connections

Deriving Galois connections

Given (C,<) &= (A, IZ) we have:
@ duality: (A )<= (C,>)

(a(c)Ca <= c< ﬂ/( ) is exactly v(a) > ¢ <= a Ja(c))

@ point-wise lifting by some set S: (S — C,<) &= (S — A, L)
where
fFSF = Vs, f(s) < F(s),  (3(F))(s) = (f(s)).
fCf’ < Vs, f(s) C f'(s), (&(f))(s) = a(f(s)).

Given (X1,Cq) <;_—11> (X2,5)) <L_2> (X3,53):

e composition: (Xi,C1) <71——72> (X3,C3)

(a2 0a1)(c) 3 a <= au(c );2 n( ) = cE1(ne)(a)
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Galois connections

Galois embeddings

If (C,<) == (A, C), the following properties are equivalent:
Q ais surJect|ve (Va€ A 3ce C,alc) = a)
Q 7 is injective (Va,a’ € A,y(a) =v(a') = a=2a")
Q aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C.<) == (A D)

Proof:
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Galois connections

Galois embeddings

If (C,<) == (A, C), the following properties are equivalent:
Q «ais surJect|ve (Va€ A 3ce C,alc) = a)
@ v is injective (Va,a’ € A,y(a) =v(a') = a=2a")
Q aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C.<) == (A D)

Proof: 1 — 2

Assume that v(a) = v(a’).

By surjectivity, take c, ¢’ such that a = a(c), a’ = a(c’).
Then 7(a(c)) = v(a(c')).

And a(y(a(c))) = a(y(a(c)).

Asaoyoa =a, a(c) = ad).

Hence a = a’.
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Galois connections

Galois embeddings

If (C,<) == (A, C), the following properties are equivalent:
Q ais surJect|ve (Va€ A 3ce C,alc) = a)
Q 7 is injective (Va,a’ € A,y(a) =v(a') = a=2a")
Q aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C.<) == (A D)

Proof: 2 — 3

Given a € A, we know that v(a(y(a))) = v(a).
By injectivity of v, a(v(a)) = a.
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Galois connections

Galois embeddings

If (C,<) == (A, C), the following properties are equivalent:
Q ais surJect|ve (Va€ A 3ce C,alc) = a)
Q 7 is injective (Va,a’ € A,y(a) =v(a') = a=2a")
Q aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C.<) == (A D)

Proof: 3 — 1

Given a € A, we have a(v(a)) = a.
Hence, 3c € C, a(c) = a, using ¢ = ~(a).
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Galois connections

Galois embeddings (cont.)

(C,<) == (AL)

Y
y(a(C))
a
y(a(c)) °: v > o a(c)

<

o x
C

C o A

A Galois connection can be made into an embedding by quotienting A by
the equivalence relation a = 3’ < ~v(a) = (4’
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Galois connections

Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.

We have: (P(2),C) % (1,©)

o | £ {(ab)|lacZU{—x},beZU{+x},a<b}uU{L}
o (a,b)C(d,b) < (a>d)N(b<P), VxLCx

def

o y(a,b) = {x€eZ|la<x<b}, ~A(L)=0
o a(X) ot (min X, max X), or L if X =10

proof:
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Galois connections

Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.

We have: (P(2),C) % (1,6)

o | £ {(ab)|lacZU{—x},beZU{+x},a<b}uU{L}
o (a,b)C(d,b) < (a>d)N(b<P), VxLCx

o y(a,b) = {x€eZ|la<x<b}, ~A(L)=0
o a(X) ot (min X, max X), or L if X =10

proof:

Quotient of the “pair of bounds” domain (Z U {—o00}) x (ZU {40o0}) by the relation
(3,b) = (. b) <= ~(a,b) = (. b)

ie, (a<bnra=a ANb=b)Vv(a>bra >Db).

Course 1 Order Theory Antoine Miné p. 57 / 69



Galois connections

Upper closures

p: X — X is an upper closure in the poset (X, C) if it is:
@ monotonic: x C x' = p(x) C p(x'),
@ extensive: x C p(x), and
© idempotent: pop = p.
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Galois connections

Upper closures and Galois connections

Given (C,<) &= (A,D),
~voais an upper closure on (C, <).

Given an upper closure p on (X,E), we have a Galois embedding:

(X,5) == (p(X),C)

— we can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

@ the notion of abstract representation

(a data-structure A representing elements in p(X))

@ the ability to have several distinct abstract representations
for a single concrete object

(non-necessarily injective « versus id)
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Operator approximations
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Operator approximations

Abstractions in the concretization framework

Given a concrete (C, <) and an abstract (A, C) poset
and a monotonic concretization v : A — C

(y(a) is the “meaning” of a in C; we use intervals in our examples)

@ ac Ais a sound abstraction of ¢ € C if ¢ < 7(a).

(e.g.: [0,10] is a sound abstraction of {0,1,2,5} in the integer interval domain)

@ g: A— Ais asound abstraction of f : C — C
if Va € A: (fory)(a) < (vog)(a).
(e.g.: A([a, b].[-00, +00] is a sound abstraction of AX.{x + 1|x € X } in the interval
domain)

@ g:A— Ais an exact abstractionof f: C - Cif foy=vo0g.

(e.g.: A([a, b].[a+ 1, b+ 1] is an exact abstraction of AX.{x 4+ 1|x € X } in the

interval domain)
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Operator approximations

Abstractions in the Galois connection framework

Assume now that (C, <) % (A D).

@ sound abstractions
o ¢ < (a) is equivalent to a(c) C a.
o (foy)(a) < (vog)(a)is equivalent to (awo f o)(a) C g(a).

e Given c € C, its best abstraction is a(c).

(proof: recall that a(c) =M {a|c < ~v(a) }, so, a(c) is the smallest sound abstraction

of ¢)

(e.g.: «({0,1,2,5}) =[0,5] in the interval domain)

o Given f : C — C, its best abstraction is o f o7y

(proof: g sound <= Va, (awofo~)(a) C g(a), so ao for is the smallest sound
abstraction of f)

(e.g.: g([a, b]) = [2a,2b] is the best abstraction in the interval domain of

f(X) ={2x|x € X}; it is not an exact abstraction as

7(g([0,1])) = {0,1,2} 2 {0,2} = f(+([0,1]))
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Operator approximations

Composition of sound, best, and exact abstractions

If g and g’ soundly abstract respectively f and f’ then:

e if f is monotonic,
then g o g’ is a sound abstraction of f o f/,
(proof: Va, (fof'oy)(a) < (fovyog')(a) < (yogog')(a))
o if g, g’ are exact abstractions of f and f,
then g o g’ is an exact abstraction,
(proof: fof'oy=foyog =yogog’)
o if g and g’ are the best abstractions of f and £,
then g o g’ is not always the best abstraction!

(e.g.: g([a, b]) = [a, min(b,1)] and g’([a, b]) = [2a, 2b] are the best abstractions of
f(X)={xe€X|x<1}and f(X)={2x|x € X} in the interval domain, but go g’ is
not the best abstraction of f o f' as (g o g’)([0,1]) = [0, 1] while

(aofof oy)([0,1]) =[0,0])
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Fixpoint approximations

Fixpoint approximations
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Fixpoint approximations

Fixpoint transfer

If we have:
@ a Galois connection (C, <) % (A,C) between CPOs
@ monotonic concrete and abstract functions
f:CoC fl:ASA
@ a commutation condition a o f = floa

@ an element a and its abstraction af = a(a)

then a(Ifp, f) = Ifp,: fF.

(proof on next slide)
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Fixpoint approximations

Fixpoint transfer (proof)

Proof:

. . . - - . . def
By the constructive Tarski theorem, Ifp, f is the limit of transfinite iterations: ag = a,
def def
ans1 = f(ap), and a, = \/ {am|m < n} for limit ordinals n.
Likewise, Ifp,; ff is the limit of a transfinite iteration ag.
We prove by transfinite induction that ag = «(ap) for all ordinals n:
o ag = a(ap), by definition;

] ‘954-1 = fﬁ(ag) = ff(a(an)) = a(f(an)) = aans1) for successor ordinals, by
commutation;

@ af=||{ahIm<n}=|]{a(am)|m<n}=a(\/{am|m<n})=a(a) for limit
ordinals, because « is always continuous in Galois connections.

Hence, Ifp,; f# = a(Ifp, f).
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Fixpoint approximations

Fixpoint approximation

If we have:
@ a complete lattice (C,<,V, A, L, T)
@ a monotonic concrete function f
@ a sound abstraction f#: A — A of f
(VxP: (Foy)(x¥) < (v o F)(xF))
@ a post-fixpoint a' of f1  (ri(at) C at)
then a' is a sound abstraction of Ifp f: Ifp f < (af).

Proof:

By definition, f#(a) C af.

By monotony, ~(f%(at)) < ~(a).

By soundness, f(v(a%)) < ~v(at).

By Tarski's theorem Ifp f = A{x|f(x) < x }.

Hence, Ifp f < ~(a).
Other fixpoint transfer / approximation theorems can be constructed. . .
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