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Concrete semantics

Concrete semantics
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Concrete semantics

Syntax of a toy-language
Simple numeric programs:

fixed, finite set of variables V
with value in some numeric set I

def= {Z,Q,R}
programs as CFG: (L, e, x ,A)
with nodes L, entry e ∈ L, exit x ∈ L, and arcs A ⊆ L× com× L

Atomic commands:
com ::= V ← exp assignment into V ∈ V

| exp ./ 0 test, ./∈ {=, <,>,≤,≥, 6=}

Arithmetic expressions:

exp ::= V variable V ∈ V

| −exp negation

| exp � exp binary operation: � ∈ {+,−,×, / }

| [c, c ′] constant range, c, c′ ∈ I ∪ {±∞}
| c constant, shorthand for [c, c]
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Concrete semantics

Expression semantics (remainder)

Expression semantics: EJ e K : E → P(I)

where E def= V→ I.

The evaluation of e in ρ ∈ E gives a set of values:

EJ [c, c ′] K ρ def= { x ∈ I | c ≤ x ≤ c ′ }
EJ V K ρ def= { ρ(V ) }
EJ− e K ρ def= {−v | v ∈ EJ e K ρ }
EJ e1 + e2 K ρ def= { v1 + v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }
EJ e1− e2 K ρ def= { v1 − v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }
EJ e1× e2 K ρ def= { v1 × v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }
EJ e1 / e2 K ρ def= { v1/v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ, v2 6= 0 }
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Concrete semantics

Forward semantics: state reachability
Transfer functions: CJ com K : P(E)→ P(E)

CJ V ← e KX def= { ρ[ V 7→ v ] | ρ ∈ X , v ∈ EJ e K ρ }
CJ e ./ 0 KX def= { ρ | ρ ∈ X , ∃v ∈ EJ e K ρ, v ./ 0 }

Fixpoint semantics: (X`)`∈L : P(E)


Xe = E (entry)

X` =
⋃

(`′,c,`)∈A
CJ c KX`′ if ` 6= e

Tarski’s Theorem: this smallest solution exists and is unique.

D def= (P(E),⊆,∪,∩, ∅, E) is a complete lattice,
each M` : X` 7→

⋃
(`′,c,`)∈A

CJ c KX`′ is monotonic in D.

⇒ the solution is the least fixpoint of (M`)`∈L.
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Concrete semantics

Resolution

Resolution by increasing iterations: X
0
e

def= E

X 0
6̀=e

def= ∅


X n+1

e
def= E

X n+1
6̀=e

def=
⋃

(`′,c,`)∈A
CJ c KX n

`′

Kleene theorem:
Converges in ω iterations to a least solution,
because each CJ c K is continuous in the CPO D.
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Concrete semantics

Backward refinement: state co-reachability
Semantics of commands:

←−
C J c K : P(E)→ P(E)

←−
C J V ← e KX def= { ρ | ∃v ∈ EJ e K ρ, ρ[ V 7→ v ] ∈ X }
←−
C J e ./ 0 KX def= CJ e ./ 0 KX

(necessary conditions on ρ to have a successor in X by c)

Refinement: given:
a solution (X`)`∈L of the forward system
an output criterion Y at exit node x

compute a least fixpoint by decreasing iterations [Bour93b]{
Y0

x
def= Xx ∩ Y

Y0
6̀=x

def= X`
Yn+1

x
def= Xx ∩ Y

Yn+1
` 6=x

def= X` ∩ (
⋃

(`,c,`′)∈A

←−
C J c KYn

`′)
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Concrete semantics

Limit to automation
We wish to perform automatic numerical invariant discovery.

Theoretical problems
the elements of P(V→ I) are not computer representable
the transfer functions CJ c K ,

←−
C J c K are not computable

the lattice iterations in P(E) are transfinite
Finding the best invariant is an undecidable problem

Note:

Even when I is finite, a concrete analysis is not tractable:
representing elements in P(V→ I) in extension is expensive
computing CJ c K ,

←−
C J c K explicitly is expensive

the lattice P(V→ I) has a large height (⇒ many iterations)
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Abstraction

Abstraction
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Abstraction

Numerical abstract domains

A numerical abstract domain is given by:

a subset of P(E)
(a set of environment sets)
together with a machine encoding,

effective and sound abstract operators,

an iteration strategy
ensuring convergence in finite time.
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Abstraction

Numerical abstract domain examples

signs intervals congruences

linear equalities polyhedra octagons

non relational

relational
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Abstraction

Academic implementation: Apron and Interproc
Apron: library of numerical abstractions [Jean09]
Interproc: on-line analyzer for a toy language, based on Apron

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
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Abstraction

Numerical abstract domains (cont.)
Representation: given by

a set D] of machine-representable abstract environments,

a partial order (D],v,⊥],>])
relating the amount of information given by abstract elements,

a concretization function γ: D] → P(E)
giving a concrete meaning to each abstract element,

an abstraction function α forming a Galois connection (α, γ) is optional.

Required algebraic properties:

γ should be monotonic: X ] v Y] =⇒ γ(X ]) ⊆ γ(Y]),
γ(⊥]) = ∅,
γ(>]) = E .

Note: γ need not be one-to-one.
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Abstraction

Numerical abstract domains (cont.)

Abstract operators: we require:

sound, effective, abstract transfer functions C]J c K ,
←−
C ]J c K for all

commands c,
sound, effective, abstract set operators ∪], ∩],
an algorithm to decide the ordering v.

Soundness criterion:

F ] is a sound abstraction of a n−ary operator F if:

∀X ]1 , . . . ,X
]
n ∈ D], F (γ(X ]1), . . . , γ(X ]n)) ⊆ γ(F ](X ]1 , . . . ,X

]
n))

F ](X ]1 , . . . ,X
]
n ) = α(F (γ(X ]1 ), . . . , γ(X ]n ))) is optional.

Both semantic and algorithmic aspects.
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Abstraction

Abstract semantics

Abstract semantic inequation system

X ] : L → D]

X ]` w


>] if ` = e (entry)⋃]

(`′,c,`)∈A
C]J c KX ]`′ if ` 6= e (abstract transfer function)

for soundness, a post-fixpoint w is sufficient; a fixpoint = could be too restrictive

Soundness Theorem
Any solution (X ]` )`∈L is a sound over-approximation of the
concrete collecting semantics:

∀` ∈ L, γ(X ]` ) ⊇ X`

where X` is the smallest solution of
E entry
X` =

⋃
(`′,c,`)∈A

CJ c KX`′ if ` 6= e
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Abstraction

A first abstract analysis
Resolution by iteration in D]:
X ]0e

def= >]

X ]06̀=e
def= ⊥]

X ]n+1
`

def=

 >
] if ` = e⋃]
(`′,c,`)∈A C]J c KX ]n`′ if ` 6= e

Iteration until stabilisation: ∀` ∈ L:X ]δ+1
` v X ]δ`

Soundness: ∀` ∈ L, X` ⊆ γ(X ]δ` )

Termination: for monotonic operators on finite height lattices.
Quite restrictive !
Some improvements we will see later:

widening operators O to ensure termination in all cases
decreasing iterations to improve precision

Also, other iteration schemes (worklist, chaotic iterations, see [Bour93a])
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Abstraction

Backward abstract analysis

Backward refinement:

Given a forward analysis result (X ]` )`∈L and an abstract output Y] at x ,
we compute (Y]`)`∈L.

Y]0x
def= X ]x ∩] Y]

Y]0` 6=x
def= X ]`

Y]n+1
`

def=


X ]x ∩] Y] if ` = x

X ]` ∩]
⋃]

(`,c,`′)∈A
←−
C ]J c KY]n`′ if ` 6= x

Forward–backward analyses can be iterated [Bour93b].
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Non-relational domains

Non-relational domains
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Non-relational domains Value abstraction

Value abstract domains

Idea: start from an abstraction of values P(I)

Numerical value abstract domain:
B] abstract values, machine-representable

γb: B] → P(I) concretization

vb partial order

⊥]b, >]b represent ∅ and I

∪]b, ∩]b abstractions of ∪ and ∩

Ob extrapolation operator

αb: P(I)→ B] abstraction (optional)
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Non-relational domains Value abstraction

Abstract arithmetic operators
We also require sound abstract versions in B]
of all arithmetic operators:

[c, c ′]]b : { x | c ≤ x ≤ c ′ } ⊆ γb([c, c ′]]b)
−]b : {−x | x ∈ γb(X ]b) } ⊆ γb(−]b X

]
b)

+]
b : { x+y | x ∈ γb(X ]b), y ∈ γb(Y]b) } ⊆ γb(X ]b +]

b Y
]
b)

...

Using a Galois connection (αb, γb):
We can define best abstract arithmetic operators:

[c, c ′]]b
def= αb({ x | c ≤ x ≤ c ′ })

−]b X
]
b

def= αb({−x | x ∈ γ(X ]b) })

X ]b +]
b Y

]
b

def= αb({ x+y | x ∈ γ(X ]b), y ∈ γ(Y]b) })
...
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Non-relational domains Value abstraction

Derived abstract domain
Idea: associate an abstract value to each variable

D] def= (V→ (B] \ {⊥]b })) ∪ {⊥] }

point-wise extension: X ] ∈ D] is a vector of elements in B]
(e.g. using arrays of size |V|)

smashed ⊥] (avoids redundant representations of ∅)

Definitions on D] derived from B]:

γ(X ]) def=
{
∅ if X ] = ⊥]
{ ρ | ∀V , ρ(V ) ∈ γb(X ](V )) } otherwise

α(X ) def=
{
⊥] if X = ∅
λV .αb({ ρ(V ) | ρ ∈ X }) otherwise

>] def= λV .>]b
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Non-relational domains Value abstraction

Derived abstract domain (cont.)

X ] v Y] def⇐⇒ X ] = ⊥] ∨ (X ],Y] 6= ⊥] ∧ ∀V , X ](V ) vb Y](V ))

X ] ∪] Y] def=


Y] if X ] = ⊥]
X ] if Y] = ⊥]
λV .X ](V ) ∪]b Y](V ) otherwise

X ] ∩] Y] def=


⊥] if X ] = ⊥] or Y] = ⊥]
⊥] if ∃V , X ](V ) ∩]b Y](V ) = ⊥]b
λV .X ](V ) ∩]b Y](V ) otherwise

We will see later how to derive C]J c K ,
←−
C ]J c K

from abstract arithmetic operators +]
b, . . .
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Non-relational domains Value abstraction

On the loss of precision: Cartesian abstraction

Non-relational domains “forget” all relationships between variables.

Cartesian abstraction:
Upper closure operator ρc : P(E)→ P(E)

ρc(X ) def= { ρ ∈ E | ∀V ∈ V, ∃ρ′ ∈ X , ρ(V ) = ρ′(V ) }

A domain is non-relational if ρ ◦ γ = γ,
i.e. it cannot distinguish between X and X ′ if ρc(X ) = ρc(X ′).

Example: ρc ({(X ,Y ) | X ∈ {0, 2},Y ∈ {0, 2}, X + Y ≤ 2}) = {0, 2} × {0, 2}.
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Non-relational domains The sign domains

The sign domains
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Non-relational domains The sign domains

The sign lattices

Hasse diagram: for the lattice (B],vb,⊥]
b,>

]
b)

≤0≥0

0

⊑

>0 <0

≠0

⊤

⊥

simple signs extended signs

The extended sign domain is a refinement of the simple sign domain.

The diagram implicitly defines ∪]
b and ∩]

b as the least upper bound and greatest
lower bound for vb.
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Non-relational domains The sign domains

Abstract operators for simple signs

Abstraction α: there is a Galois connection between B] and P(I):

αb(S) def=


⊥]b if S = ∅
0 if S = {0}
≥ 0 else if ∀s ∈ S, s ≥ 0
≤ 0 else if ∀s ∈ S, s ≤ 0
>]b otherwise

Derived abstract arithmetic operators:

c]b
def= αb({c}) =

{
0 if c = 0
≤ 0 if c < 0
≥ 0 if c > 0

X ] +]b Y ] def= αb({ x + y | x ∈ γb(X ]), y ∈ γb(Y ]) })

=


⊥]b if X or Y ] = ⊥]b
0 if X ] = Y ] = 0
≤ 0 else if X ] and Y ] ∈ {0,≤ 0}
≥ 0 else if X ] and Y ] ∈ {0,≥ 0}
>]b otherwise
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Non-relational domains The sign domains

Generic non-relational abstract assignments
We can then define for all non-relational domains:

an abstract semantics of expressions: E]J e K : D] → B]

E]J e K⊥] def= ⊥]b
if X ] 6= ⊥] :

E]J [c, c′] KX ] def= [c, c′]]b
E]J V KX ] def= X ](V )
E]J−e KX ] def= −]b E]J e KX ]

E]J e1+e2 KX ] def= E]J e1 KX ] +]b E]J e2 KX ]
...

an abstract assignment:

C]J V ← e KX ] def=
{
⊥] if V]b = ⊥]b
X ][V 7→ V]b ] otherwise

where V]b = E]J e KX ].

Note: in general, E]J e K is less precise than αb ◦ EJ e K ◦ γ
e.g, on intervals: e = V − V and γb(X ](V )) = [0, 1]
then we get [−1, 1] instead of 0
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Non-relational domains The sign domains

Abstract tests on simple signs
Abstract test examples:

C]J X ≤ 0 KX ] def=


X ][X 7→ 0] if X ](X ) ∈ {0,≥ 0}
X ][X 7→≤ 0] if X ](X ) ∈ {>]

b,≤ 0}
⊥] otherwise


C]J X − c ≤ 0 KX ] def=

({
C]J X ≤ 0 KX ] if c ≤ 0
X ] otherwise

)
C]J X − Y ≤ 0 KX ] def={

C]J X ≤ 0 KX ] if X ](Y ) ∈ {0,≤ 0}
X ] otherwise ∩]{
C]J Y ≥ 0 KX ] if X ](X ) ∈ {0,≥ 0}
X ] otherwise

Other cases: C]J expr ./ 0 KX ] def= X ] is always a sound abstraction.

We will see later a systematic way to build tests, as we did for assignments. . .
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Non-relational domains The sign domains

Simple sign analysis example

Example analysis using the simple sign domain:

X ← 0;
while X < 40 do

X ← X + 1
done


X ]i+1

2 = C]J X ← 0 KX ]i1 ∪
C]J X ← X + 1 KX ]i3

X ]i+1
3 = C]J X < 40 KX ]i2
X ]i+1

4 = C]J X ≥ 40 KX ]i2
Program Iteration system

1

2

3

4

X←0

X ≥ 40

X < 40

X←X+1

` X ]0` X ]1` X ]2` X ]3` X ]4` X ]5`
1 >] >] >] >] >] >]
2 ⊥] X = 0 X = 0 X ≥ 0 X ≥ 0 X ≥ 0
3 ⊥] ⊥] X = 0 X = 0 X ≥ 0 X ≥ 0
4 ⊥] ⊥] X = 0 X = 0 X ≥ 0 X ≥ 0

CFG Iterations
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Non-relational domains The constant domain

The constant domain
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Non-relational domains The constant domain

The constant lattice

Hasse diagram:

B] = I ∪ {>]b,⊥
]
b}

The lattice is flat but infinite.
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Non-relational domains The constant domain

Operations on constants

Abstraction α: there is a Galois connection:

αb(S) def=


⊥]b if S = ∅
c if S = {c}
>]b otherwise

Derived abstract arithmetic operators:
c]b

def= c

(X ]) +]b (Y ]) def=

{
⊥]b if X ] or Y ] = ⊥]b
>]b else if X ] or Y ] = >]b
X ] + Y ] otherwise

(X ]) ×]b (Y ]) def=


⊥]b if X ] or Y ] = ⊥]b
0 else if X ] or Y ] = 0
>]b else if X ] or Y ] = >]b
X ] × Y ] otherwise

Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 33 / 81



Non-relational domains The constant domain

Operations on constants (cont.)

Abstract test examples:

C]J X − c = 0 KX ] def=
{
⊥] if X ](X ) /∈ {c,>]b}
X ][X 7→ c] otherwise

C]J X − Y − c = 0 KX ] def=({
C]J X − (X ](Y ) + c) = 0 KX ] if X ](Y ) /∈ {⊥]b,>

]
b}

X ] otherwise

)
∩]({

C]J Y − (X ](X )− c) = 0 KX ] if X ](X ) /∈ {⊥]b,>
]
b}

X ] otherwise

)
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Non-relational domains The constant domain

Constant analysis example

B] has finite height, the (X ]i` ) converge in finite time.
(even though B] is infinite. . . )

Analysis example:

X ← 0; Y ← 10;
while X < 100 do

Y ← Y - 3;
X ← X + Y; •
Y ← Y + 3

done

The constant analysis finds, at •, the invariant:
{

X = >]b
Y = 7

Note: the analysis can find constants that do not appear syntactically in
the program.
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Non-relational domains The interval domain

The interval domain
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Non-relational domains The interval domain

The interval lattice
Introduced by [Cous76].
B] def= { [a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b } ∪ {⊥]b }

⊑

[-1,-1] [1,1][0,0] [9,9]...

[-∞,+∞]

......

[-1,0] [0,1]

[-1,1]

[1,9]... ......

[0,9]... ......

...

[-1,9]... ...

[-1,+∞] [0,+∞][-∞,9][-∞,1] ... .........

... ... ... ...

⊥

Note: intervals are open at infinite bounds +∞, −∞.
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Non-relational domains The interval domain

The interval lattice (cont.)
Galois connection (αb, γb):

γb([a, b]) def= { x ∈ I | a ≤ x ≤ b }

αb(X ) def=
{
⊥]b if X = ∅
[minX ,maxX ] otherwise

If I = Q, αb is not always defined. . .

Partial order:

[a, b] vb [c, d ] def⇐⇒ a ≥ c and b ≤ d
>]b

def= [−∞,+∞]
[a, b] ∪]b [c, d ] def= [min(a, c),max(b, d)]

[a, b] ∩]b [c, d ] def=
{

[max(a, c),min(b, d)] if max ≤ min
⊥]b otherwise

If I 6= Q, it is a complete lattice.
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Non-relational domains The interval domain

Interval abstract arithmetic operators

[c, c′]]b
def= [c, c′]

−]b [a, b] def= [−b,−a]

[a, b] +]b [c, d] def= [a + c, b + d]

[a, b] −]b [c, d] def= [a − d , b − c]

[a, b] ×]b [c, d] def= [min(ac, ad , bc, bd),max(ac, ad , bc, bd)]

[a, b] /]b [c, d] def=


⊥]b if c = d = 0
[min(a/c, a/d , b/c, b/d), else if 0 ≤ c
max(a/c, a/d , b/c, b/d)]

[−b,−a]/]b [−d ,−c] else if d ≤ 0
([a, b]/]b [c, 0]) ∪]b ([a, b]/]b [0, d]) otherwise

where ±∞× 0 = 0, 0/0 = 0, ∀x , x/±∞ = 0
∀x > 0, x/0 = +∞, ∀x < 0, x/0 = −∞

Operators are strict: −]b⊥
]
b = ⊥]b , [a, b] +]b ⊥

]
b = ⊥]b , etc.
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Non-relational domains The interval domain

Exactness and optimality: Example proofs

Proof: exactness of +]b
{ x + y | x ∈ γb([a, b]), y ∈ γb([c, d]) }

= { x + y | a ≤ x ≤ b ∧ c ≤ y ≤ d }
= { z | a + c ≤ z ≤ b + d }
= γb([a + c, b + d])
= γb([a, b] +]b [c, d])

Proof optimality of ∪]b
αb(γb([a, b]) ∪ γb([c, d]))

= αb({ x | a ≤ x ≤ b } ∪ { x | c ≤ x ≤ d })
= αb({ x | a ≤ x ≤ b ∨ c ≤ x ≤ d })
= [min { x | a ≤ x ≤ b ∨ c ≤ x ≤ d },max { x | a ≤ x ≤ b ∨ c ≤ x ≤ d }]
= [min(a, c),max(b, d)]
= [a, b] ∪]b [c, d]

but ∪]b is not exact
. . .
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Non-relational domains The interval domain

Generic abstract tests, step 1

Example: C]J X + Y − Z ≤ 0 KX ]
with X ] = {X 7→ [0, 10],Y 7→ [2, 10],Z 7→ [3, 5] }

First step: annotate the expression tree with abstract values in B]
-
>]b

+
>]b

Z
[3, 5]KS

X
[0, 10]

Y
[2, 10]

-
[−3, 17]KS

+
[2, 20]

Z
[3, 5]

X
[0, 10]

Y
[2, 10]

(1) (2)

Bottom-up evaluation similar to abstract expression evaluation
using +]

b, −]b, etc. but storing abstract value at each node.
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Non-relational domains The interval domain

Generic abstract tests, step 2
Example: C]J X + Y − Z ≤ 0 KX ]

with X ] = {X 7→ [0, 10],Y 7→ [2, 10],Z 7→ [3, 5] }

Second step: top-down expression refinement.

��

-
[−3, 0]

+
[2, 20]

Z
[3, 5]

X
[0, 10]

Y
[2, 10]

-
[−3, 0]

��

+
[2, 5]

Z
[3, 5]

X
[0, 3]

Y
[2, 5]

(3) (4)

refine the root abstract value, knowing it should be negative;

propagate refined abstract values downwards;

values at leaf variables provide new information to store into X ].
{X 7→ [0, 3],Y 7→ [2, 5],Z 7→ [3, 5] }
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Backward arithmetic and comparison operators

In general, we need sound backward arithmetic and comparison operators
that refine their arguments given a result.

Soundness condition: for ←−≤ 0]b, ←−+ ]
b, ←−− ]

b, . . .

X ]b
′ =←−−≤ 0]b(X ]b ) =⇒
{ x ∈ γb(X ]b ) | x ≤ 0 } ⊆ γb(X ]b

′) ⊆ γb(X ]b )

X ]b
′ =←−− ]b(X ]b ,R

]
b) =⇒

{ x | x ∈ γb(X ]b ), − x ∈ γb(R]b) } ⊆ γb(X ]b
′) ⊆ γb(X ]b )

(X ]b
′,Y]b

′) =←−+ ]
b(X ]b ,Y

]
b ,R

]
b) =⇒

{ x ∈ γb(X ]b ) | ∃y ∈ γb(Y]b ), x + y ∈ γb(R]b) } ⊆ γb(X ]b
′) ⊆ γb(X ]b )

{ y ∈ γb(Y]b ) | ∃x ∈ γb(X ]b ), x + y ∈ γb(R]b) } ⊆ γb(Y]b
′) ⊆ γb(Y]b )

...

Note: best backward operators can be designed with αb:
e.g. for ←−+ ]

b : X ]b
′ = αb({ x ∈ γb(X ]b ) | ∃y ∈ γb(Y]b ), x + y ∈ γb(R]b) })
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Generic backward operator construction
Synthesizing non necessarily optimal) backward arithmetic operators
from forward arithmetic operators.
←−−≤ 0]b(X ]b ) def= X ]b ∩

]
b [−∞, 0]]b

←−− ]b(X ]b ,R
]
b) def= X ]b ∩

]
b (−]b R

]
b)

(as R = −X =⇒ X = −R)

←−+ ]
b(X ]b ,Y

]
b ,R

]
b) def= (X ]b ∩

]
b (R]b −

]
b Y

]
b ), Y]b ∩

]
b (R]b −

]
b X

]
b ))

(as R = X + Y =⇒ X = R − Y and Y = R − X)

←−− ]b(X ]b ,Y
]
b ,R

]
b) def= (X ]b ∩

]
b (R]b +]b Y

]
b ), Y]b ∩

]
b (X ]b −

]
b R

]
b))

←−× ]b(X ]b ,Y
]
b ,R

]
b) def= (X ]b ∩

]
b (R]b /

]
b Y

]
b ), Y]b ∩

]
b (R]b /

]
b X

]
b ))

←−
/ ]b(X ]b ,Y

]
b ,R

]
b) def= (X ]b ∩

]
b (S]b ×

]
b Y

]
b ), Y]b ∩

]
b ((X ]b /

]
b S

]
b) ∪]b [0, 0]]b))

where S]b =
{
R]b if I 6= Z

R]b +]b [−1, 1]]b if I = Z (as / rounds)

Note: ←−� ]b(X ]b ,Y
]
b ,R

]
b) = (X ]b ,Y

]
b ) is always sound (no refinement).
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Application to the interval domain

Applying the generic construction to the interval domain:

←−−≤ 0]b([a, b]) def=
{

[a,min(b, 0)] if a ≥ 0
⊥]b otherwise

←−− ]b([a, b], [r , s]) def= [a, b] ∩]b [−s,−r ]

←−+ ]
b([a, b], [c, d], [r , s]) def= ([a, b] ∩]b [r − d , s − c],

[c, d] ∩]b [r − b, s − a])
. . .
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Generic non-relational backward assignment
Abstract function:

←−
C ]J V ← e K (X ],R])

over-approximates γ(X ]) ∩
←−
C J V ← e K γ(R]) given:

an abstract pre-condition X ] to refine,
according to a given abstract post-condition R].

Algorithm: similar to the abstract test
annotate variable leaves based on X ] ∩] (R][V 7→ >]b]);
evaluate bottom-up using forward operators �]b;
intersect the root with R](V );
refine top-down using backward operators ←−� ]b;
return X ] intersected with values at variable leaves.

Note:
local iterations can also be used
fallback:

←−
C ]J V ← e K (X ],R]) = X ] ∩] (R][V 7→ >]b ])
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Interval backward assignment example
Example:

←−
C ]J X ← X + Y − Z K (X ],R])

with X ] = {X 7→ [0, 10],Y 7→ [2, 10],Z 7→ [1, 5] }
and R] = {X 7→ [−6, 6],Y 7→ [2, 10],Z 7→ [2, 6] }

-
>]b

+
>]b

Z
[2, 5]KS

X
[0, 10]

Y
[2, 10]

-
[−3, 18]KS

+
[2, 20]

Z
[2, 5]

X
[0, 10]

Y
[2, 10]

��

-
[−3, 6]

+
[2, 20]

Z
[2, 5]

X
[0, 10]

Y
[2, 10]

-
[−3, 6]

��

+
[2, 8]

Z
[2, 5]

X
[0, 6]

Y
[2, 8]
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Widening

B] has an infinite height, so does D].
Naive iterations (X ]i` ) may not converge in finite time.
We will use a widening operator O.

Definition: widening O
Binary operator D] ×D] → D] ensuring

soundness: γ(X ]) ∪ γ(Y]) ⊆ γ(X ] O Y]),

termination:
for all sequences (X ]i ), the increasing sequence (Y]i )

defined by

 Y
]
0

def= X ]0
Y]i+1

def= Y]i O X
]
i+1

is stationary, i.e., ∃i , Y]i+1 = Y]i .
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Interval widening

Widening on non-relational domains:
Given a value widening Ob: B] × B] → B],
we extend it point-wise into a widening O: D] ×D] → D]:
X ] O Y] def= λV .(X ](V ) Ob Y](V ))

Interval widening example:

⊥] Ob X ] def= X ]

[a, b] Ob [c, d ] def=
[{

a if a ≤ c
−∞ otherwise ,

{
b if b ≥ d
+∞ otherwise

]

Unstable bounds are set to ±∞.
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Abstract analysis with widening
Take a set W⊆ L of widening points such that
every CFG cycle has a point in W.

Iteration with widening:
X ]0e

def= >]

X ]06̀=e
def= ⊥]

X ]n+1
`

def=


>] if ` = e⋃]

(`′,c,`)∈A C]J c KX ]n`′ if ` /∈ W, ` 6= e

X ]n` O
⋃]

(`′,c,`)∈A C]J c KX ]n`′ if ` ∈ W, ` 6= e

Theorem: we have:
termination: for some δ, ∀` ∈ L, X ]δ+1

` = X ]δ`
soundness: ∀` ∈ L, X` ⊆ γ(X ]δ` )

Note: the abstract operators C]J K do not have to be monotonic!
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Abstract analysis with widening (proof 1/2)

Proof of soundness:

Suppose that ∀`, X ]δ+1
`

= X ]δ
`

.

If ` = e, by definition: X ]δe = >] and γ(>]) = E.

If ` 6= e, ` /∈ W, then X ]δ
`

= X ]δ+1
`

= ∪](`′,c,`)∈A C]J c KX ]
`′
δ.

By soundness of ∪] and C]J c K , γ(X ]δ
`

) ⊇ ∪(`′,c,`)∈A CJ c K γ(X ]
`′
δ).

If ` 6= e, ` ∈ W, then X ]δ
`

= X ]δ+1
`

= X ]δ
`
O ∪](`′,c,`)∈A C]J c KX ]

`′
δ.

By soundness of O, γ(X ]δ
`

) ⊇ γ(∪](`′,c,`)∈A C]J c KX ]
`′
δ),

and so we also have γ(X ]δ
`

) ⊇ ∪(`′,c,`)∈A CJ c K γ(X ]
`′
δ).

We have proved that λ`.γ(X ]δ
`

) is a postfixpoint of the concrete equation system.
Hence, it is greater than its least solution.
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Abstract analysis with widening (proof 2/2)

Proof of termination:
Suppose that the iteration does not terminate in finite time.
Given a label ` ∈ L, we denote by i1

` , . . . , i
k
` , . . . the increasing sequence of unstable indices,

i.e., such that ∀k, X ] ik
`

+1
`
6= X ]

`
ik
` .

As the iteration is not stable, ∀n, ∃`, X ]
`

n 6= X ]
`

n+1.
Hence, the sequence (ik

` )k is infinite for at least one ` ∈ L.

We argue that ∃` ∈ W such that (ik
` )k is infinite as, otherwise, N = max { ik

` | ` ∈ W }+ |L| is
finite and satisfies: ∀n ≥ N, ∀` ∈ L, X ]

`
n = X ]

`
n+1, contradicting our assumption.

For such a ` ∈ W, consider the subsequence Y]k = X ]
`

ik
` comprised of the unstable iterates of

X ]
`

.
Then Y]k+1 = Y]k O Z]k for some sequence Z]k .
The subsequence is infinite and ∀k, Y]k+1 6= Y]k , which contradicts the definition of O.
Hence, the iteration must terminate in finite time.

Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 52 / 81
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Interval analysis with widening example

Analysis example with W = {2}
1

2

3

4

X←0

X ≥ 40

X < 40

X←X+1

` X ]0
`

X ]1
`

X ]2
`

X ]3
`

X ]4
`

X ]5
`

1 >] >] >] >] >] >]
2 O ⊥] = 0 = 0 ≥ 0 ≥ 0 ≥ 0
3 ⊥] ⊥] = 0 = 0 ∈ [0, 39] ∈ [0, 39]
4 ⊥] ⊥] ⊥] ⊥] ≥ 40 ≥ 40

More precisely, at the widening point:
X ]12 = ⊥] Ob ([0, 0] ∪]b ⊥

]) = ⊥] Ob [0, 0] = [0, 0]
X ]22 = [0, 0] Ob ([0, 0] ∪]b ⊥

]) = [0, 0] Ob [0, 0] = [0, 0]
X ]32 = [0, 0] Ob ([0, 0] ∪]b [1, 1]) = [0, 0] Ob [0, 1] = [0,+∞[
X ]42 = [0,+∞]Ob ([0, 0] ∪]b [1, 40]) = [0,+∞]Ob [0, 40] = [0,+∞]

Note that the most precise interval abstraction would be X ∈ [0, 40] at 2,
and X = 40 at 4.
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Non-relational domains The interval domain

Influence of the widening point and iteration strategy

Changing W changes the analysis result

Example: The analysis is less precise for W = {3}.
1

2

3

4

X←0

X ≥ 40

X < 40

X←X+1

` X ]1
`

X ]2
`

X ]3
`

X ]4
`

X ]5
`

X ]6
`

1 >] >] >] >] >] >]
2 = 0 = 0 ∈ [0, 1] ∈ [0, 1] ≥ 0 ≥ 0
3 O ⊥] = 0 = 0 ≥ 0 ≥ 0 ≥ 0
4 ⊥] ⊥] ⊥] ⊥] ⊥] ≥ 40

Intuition: extrapolation to +∞ is no longer contained by the tests.

Chaotic iterations
Changing the iteration order changes the analysis result in the presence
of a widening [Bour93b].
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A simple technique: Widening delay

V← 0;
while 0 = [0,1] do

if V = 0 then V← 1 fi
done

V is only incremented once, from 0 to 1.

Problem:
O considers V unstable and sets it to [0,+∞] =⇒ precision loss
([0, 0] O [0, 1] = [0,+∞])

Solution: delay widening application for one or more iterations:

X ]n+1
`

def=

F ](X ]n` ) if n < N
X ]n` O F ](X ]n` ) if n ≥ N

with N = 1, X ]1 = [0, 0] ∪] [1, 1] = [0, 1], X ]2 = [0, 1] O [0, 1] = [0, 1] = X ]1
(after some point, the widening must be applied continuously)
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Narrowing

Using a widening makes the analysis less precise.
Some precision can be retrieved by using a narrowing M.

Definition: narrowing M
Binary operator D] ×D] → D] such that:

γ(X ]) ∩ γ(Y]) ⊆ γ(X ] M Y]) ⊆ γ(X ]),
for all sequences (X ]i ), the decreasing sequence (Y]i )

defined by

 Y
]
0

def= X ]0
Y]i+1

def= Y]i M X
]
i+1

is stationary.

This is not the dual of a widening!
The widening must jump above the least fixpoint (to any post-fixpoint).
The narrowing must stay above the least fixpoint (or any fixpoint actually).
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Non-relational domains The interval domain

Narrowing examples

Trivial narrowing:

X ] M Y] def= X ] is a correct narrowing.

Finite-time intersection narrowing:

X ]i M Y] def=
{
X ]i ∩] Y] if i ≤ N
X ]i if i > N

(indexed by an iteration counter i)

Interval narrowing:

[a, b] Mb [c, d ] def=
[{

c if a = −∞
a otherwise ,

{
d if b = +∞
b otherwise

]
(refine only infinite bounds)

Point-wise extension to D]: X ] M Y] def= λV .(X ](V ) Mb Y](V ))

Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 57 / 81
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Iterations with narrowing

Let X ]δ` be the result after widening stabilisation, i.e.:

X ]δ` w


>] if ` = e⋃]

(`′,c,`)∈A
C]J c KX ]δ`′ if ` 6= e

The following sequence is computed:

Y]0`
def= X ]δ` Y]i+1

`
def=



>] if ` = e⋃]

(`′,c,`)∈A
C]J c KY]i`′ if ` /∈ W

Y]i` M
⋃]

(`′,c,`)∈A
C]J c KY]i`′ if ` ∈ W

the sequence (Y]i` ) is decreasing and converges in finite time,
all the (Y]i` ) are sound abstractions of the concrete system.
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Interval analysis with narrowing example

Example with W = {2}
1

2

3

4

X←0

X ≥ 40

X < 40

X←X+1

` Y]0
`

Y]1
`

Y]2
`

Y]3
`

1 >] >] >] >]
2 M ≥ 0 ∈ [0, 40] ∈ [0, 40] ∈ [0, 40]
3 ∈ [0, 39] ∈ [0, 39] ∈ [0, 39] ∈ [0, 39]
4 ≥ 40 ≥ 40 = 40 = 40

Narrowing at 2 gives:
Y]12 = [0,+∞]Mb ([0, 0] ∪]b [1, 40]) = [0,+∞[Mb [0, 40] = [0, 40]
Y]22 = [0, 40] Mb ([0, 0] ∪]b [1, 40]) = [0, 40] Mb [0, 40] = [0, 40]

Then Y]22 : X ∈ [0, 40] gives Y]34 : X = 40.

We found the most precise invariants!
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Another use of narrowing: Backward analysis
Backward refinement:
Given a forward analysis result (X ]` )`∈L and an abstract output Y] at x ,
we compute (Y]`)`∈L.

Y]0x
def= X ]x ∩] Y]

Y]0` 6=x
def= X ]`

Y]n+1
`

def=



X ]x ∩] Y] if ` = x

X ]` ∩]
⋃]

(`,c,`′)∈A
←−
C ]J c KY]n`′ if ` /∈ W, ` 6= x

Y]n` M (X ]` ∩]
⋃]

(`,c,`′)∈A
←−
C ]J c KY]n`′ ) if ` ∈ W, ` 6= x

M overapproximates ∩ while enforcing the convergence of decreasing
iterations

Forward–backward analyses can be iterated [Bour93b].
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Improving the interval widening

Example of imprecise analysis
1

2

3

4

X←40

X = 0

X ≠ 0

X←X-1

intervals extended intervals
` with Ob signs with O′

b
1 >] >] >]
2 O X ≤ 40 X ≥ 0 X ∈ [0, 40]
3 X ≤ 40 X > 0 X ∈ [0, 40]
4 X = 0 X = 0 X = 0

The interval domain cannot prove that X ≥ 0 at 2,
while the (less powerful) sign domain can!
(narrowing does not help)

Solution: improve the interval widening

[a, b] O′
b [c, d] def=

[{
a if a ≤ c
0 if 0 ≤ c < a
−∞ otherwise

,

{
b if b ≥ d
0 if 0 ≥ b > d
+∞ otherwise

]
(O′

b checks the stability of 0)
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Widening with thresholds

Analysis problem: X ← 0;
while • 1 = 1 do

if [0,1] = 0 then
X ← X + 1;
if X > 40 then X ← 0 fi

fi
done

We wish to prove that X ∈ [0, 40] at •.

Widening at • finds the loop invariant X ∈ [0,+∞].
X ]• = [0, 0] Ob ([0, 0] ∪] [0, 1]) = [0, 0] Ob [0, 1] = [0,+∞[

Narrowing is unable to refine the invariant:
Y]• = [0,+∞] Mb ([0, 0] ∪] [0,+∞[) = [0,+∞[

(the code that limits X is not executed at every loop iteration)
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Widening with thresholds (cont.)

Solution:
Choose a finite set T of thresholds containing +∞ and −∞.

Definition: widening with thresholds OT
b

[a, b] OT
b [c, d ] def=

[{
a if a ≤ c
max {x ∈ T | x ≤ c} otherwise ,

{
b if b ≥ d
min {x ∈ T | x ≥ d} otherwise

]

The widening tests and stops at the first stable bound in T .
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Widening with thresholds (cont.)
Applications:

On the previous example, we find:
X ∈ [ 0, min {x ∈ T | x ≥ 40} ].

Useful when it is easy to find a ’good’ set T .
Example: array bound-checking

Useful if an over-approximation of the bound is sufficient.
Example: arithmetic overflow checking

Limitations: only works if some non-∞ bound in T is stable.
Example: with T = { 5, 15 }

while 1 = 1 do
X ← X + 1;
if X > 10 then X ← 0 fi

done

while 1 = 1 do
X ← X + 1;
if X 6= 10 then X ← 0 fi

done
15 is stable no stable bound

Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 64 / 81
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The congruence domain
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The congruence lattice

B] def= { (aZ + b) | a ∈ N, b ∈ Z } ∪ {⊥]b }
1Z + 0

2Z 2Z + 1

6Z 6Z + 3

3Z

...

...

...

...

...

...

...0Z + 6 0Z + 3

⊥

Introduced by Granger [Gran89].
We take I = Z.
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The congruence lattice (cont.)

Concretization:

γb(X ]b) def=
{
{ ak + b | k ∈ Z } if X ]b = (aZ + b)
∅ if X ]b = ⊥]b

Note that γ(0Z + b) = {b}.
γb is not injective: γb(2Z + 1) = γb(2Z + 3).

Definitions:
Given x , x ′ ∈ Z, y , y ′ ∈ N, we define:

y/y ′ def⇐⇒ y divides y ′ (∃k ∈ N, y ′ = ky) (note that ∀y : y/0)

x≡x ′ [y ] def⇐⇒ y/|x − x ′| (in particular, x ≡ x ′ [0] ⇐⇒ x = x ′)

∨ is the LCM, extended with y ∨ 0 def= 0 ∨ y def= 0
∧ is the GCD, extended with y ∧ 0 def= 0 ∧ y def= y

(N, /,∨,∧, 1, 0) is a complete distributive lattice.
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Abstract congruence operators

Complete lattice structure on B]:
(aZ + b) vb (a′Z + b′) def⇐⇒ a′/a and b ≡ b′ [a′]

>]b
def= (1Z + 0)

(aZ + b) ∪]b (a′Z + b′) def= (a ∧ a′ ∧ |b − b′|)Z + b

(aZ + b) ∩]b (a′Z + b′) def=
{

(a ∨ a′)Z + b′′ if b ≡ b′ [a ∧ a′]
⊥]b otherwise

b′′ such that b′′ ≡ b [a ∨ a′] ≡ b′ [a ∨ a′] is given
by Bezout’s Theorem.

Galois connection: αb(X ) =
⋃]

b
c∈X

(0Z + c)

(up to equivalence aZ + b ≡ a′Z + b′ def⇐⇒ a = a′ ∧ b ≡ b′ [a])
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Abstract congruence operators (cont.)

Arithmetic operators:

[c, c′]]b
def=

{
0Z + c if c = c′

>]b otherwise

−]b (aZ + b) def= aZ + (−b)

(aZ + b) +]b (a′Z + b′) def= (a ∧ a′)Z + (b + b′)

(aZ + b) −]b (a′Z + b′) def= (a ∧ a′)Z + (b − b′)

(aZ + b) ×]b (a′Z + b′) def= (aa′ ∧ ab′ ∧ a′b)Z + bb′

(aZ + b) /]b (a′Z + b′) def=
⊥]b if a′Z + b′ = 0Z + 0
(a/|b′|)Z + (b/b′) if a′ = 0, b′ 6= 0, b′|a, and b′|b

>]b otherwise (not optimal)
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Abstract congruence operators (cont.)

Test operators:
←−−≤ 0]b (aZ + b) def=

{
⊥]b if a = 0, b > 0
aZ + b otherwise

...

Note: better than the generic ←−≤ 0]b (X ]b) def= X ]b ∩
]
b [−∞, 0]]b = X ]b

Extrapolation operators:
no infinite increasing chain =⇒ no need for O
infinite decreasing chains =⇒ M needed

(aZ + b) Mb (a′Z + b′) def=
{

a′Z + b′ if a = 1
aZ + b otherwise

Note: X ] M Y] def= X ] is always a narrowing.
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Congruence analysis example

X ← 0; Y ← 2;
while • X < 40 do

X ← X + 2;
if X < 5 then Y ← Y+18 fi;
if X > 8 then Y ← Y-30 fi

done

We find, at •, the loop invariant
{

X ∈ 2Z
Y ∈ 6Z + 2
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Reduced products
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Reduced products

Non-reduced product of domains

Product representation:

Cartesian product D]1×2 of D]1 and D]2:

D]1×2
def= D]1 × D

]
2

γ1×2(X ]1 ,X
]
2) def= γ1(X ]1) ∩ γ2(X ]2)

α1×2(X ) def= (α1(X ), α2(X ))
(X ]1 ,X

]
2) v1×2 (Y]1,Y

]
2) def⇐⇒ X ]1 v1 Y]1 and X ]2 v2 Y]2

Abstract operators: performed in parallel on both components:

(X ]1 ,X
]
2) ∪]1×2 (Y]1,Y

]
2) def= (X ]1 ∪

]
1 Y

]
1,X

]
2 ∪

]
2 Y

]
2)

(X ]1 ,X
]
2) O1×2 (Y]1,Y

]
2) def= (X ]1 O1 Y]1,X

]
2 O2 Y]2)

C]J c K 1×2(X ]1 ,X
]
2) def= (C]J c K 1(X ]1),C]J c K 2(X ]2))
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Non-reduced product example

The product analysis is no more precise than two separate analyses.

Example: interval–congruence product:

X ← 1;
while X - 10 ≤ 0 do

X ← X + 2
done;
•if X - 12 ≥ 0 then� X ← 0F fi

interval congruence product
• X ∈ [11, 12] X ≡ 1 [2] X = 11
� X = 12 X ≡ 1 [2] ∅
F X = 0 X = 0 X = 0

We cannot prove that the if branch is never taken!
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Reduced products

Fully-reduced product

Definition:
Given the Galois connections (α1, γ1) and (α2, γ2) on D]1 and D]2
we define the reduction operator ρ as:

ρ : D]1×2 → D
]
1×2

ρ(X ]1 ,X
]
2) def= (α1(γ1(X ]1) ∩ γ2(X ]2)), α2(γ1(X ]1) ∩ γ2(X ]2)))

ρ propagates information between domains.

Application:
We can reduce the result of each abstract operator, except O:

(X ]1 ,X
]
2) ∪]1×2 (Y]1,Y

]
2) def= ρ(X ]1 ∪

]
1 Y

]
1,X

]
2 ∪

]
2 Y

]
2),

C]J c K 1×2(X ]1 ,X
]
2) def= ρ(C]J c K 1(X ]1),C]J c K 2(X ]2)).

We refrain from reducing after a widening O,
this may jeopardize the convergence (octagon domain example).
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Reduced products

Fully-reduced product example
Reduction example: between the interval and congruence domains:

Noting: a′ def= min { x ≥ a | x ≡ d [c] }
b′ def= max { x ≤ b | x ≡ d [c] }

We get:

ρb([a, b], cZ + d) def=


(⊥]b,⊥

]
b) if a′ > b′

([a′, a′], 0Z + a′) if a′ = b′
([a′, b′], cZ + d) if a′ < b′

extended point-wisely to ρ on D].

Application:

ρb([10, 11], 2Z + 1) = ([11, 11], 0Z + 11)
(proves that the branch is never taken on our example)

ρb([1, 3], 4Z) = (⊥]b, ⊥
]
b)
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Reduced products

Partially-reduced product
Definition: of a partial reduction:
any function ρ : D]1×2 → D

]
1×2 such that:

(Y]1,Y
]
2) = ρ(X ]1 ,X

]
2) =⇒


γ1×2(Y]1,Y

]
2) = γ1×2(X ]1 ,X

]
2)

γ1(Y]1)⊆ γ1(X ]1)
γ2(Y]2)⊆ γ2(X ]2)

Useful when:
there is no Galois connection, or
a full reduction exists but is expensive to compute.

Partial reduction example:

ρ(X ]1 ,X
]
2) def=

{
(⊥],⊥]) if X ]1 = ⊥] or X ]2 = ⊥]
(X ]1 ,X

]
2) otherwise

(works on all domains)
For more complex examples, see [Blan03].
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