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Introduction

Outline

@ The need for relational domains

@ Presentation of a few relational numerical abstract domains
o linear equality domain
o polyhedra domain

o weakly relational domains: zones, octagons

@ Bibliography
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Shortcomings of non-relational domains

Shortcomings of non-relational domains
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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y +< 0; while e 1=1 do X:  input signal
X « [-128,128]; D « [0,16]; v Oupt utfi "
S« Y; Y X; R« X-8; y Iastpout Et
if R < -D then Y « S - D fi; ' P
. . R: deltaY-—-S
if R > D then Y « S + D fi
D: max. allowed for |R)|
done
Y
X
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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y < 0; while e 1=1 do X inout sienal
X « [-128,128]; D « [0,16]; v Oupt utfi "
S« Y; Y« X; R+ X - S; i
if R < -D then Y « S - D fi; ' 2
. . R: deltaY -5
if R > D then Y < S + D fi

D: max. allowed for |R)|
done
Iterations in the interval domain (without widening):
X0 ooxr | x| xin
Y=0|[Y[<144 | [Y[<160 | ... | [Y[<128+16n

In fact, Y € [—128,128] always holds.

To prove that, e.g. Y > —128, we must be able to:
@ represent the properties R=X —S and R< —D
@ combine them to deduce S — X > D, and then Y =S —-D > X
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Shortcomings of non-relational domains

The need for relational loop invariants

To prove some invariant after the end of a loop,
we often need to find a loop invariant of a more complex form

relational loop invariant

X+ 0; I« 1;

while e I < 5000 do

if [0,1] =1 then X «+ X + 1 else X < X - 1 fi;
I+~ 1+1

done ¢

A non-relational analysis finds at ¢ that / = 5000 and X € Z
The best invariant is: (/ = 5000) A (X € [—4999,4999]) A (X =0 [2])

To find this non-relational invariant, we must find a relational loop invariant at
o (—I<X<)AX+T=1][2])A(I€]1,5000]),
and apply the loop exit condition C*[/ > 5000 ]
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z

max(X,Y,Z)

N

— X ;
if Y >Z then Z < Y ;
if Z < 0 then Z « 0;

Modular analysis:
@ analyze a procedure once (procedure summary)

@ reuse the summary at each call site (instantiation)
= improved efficiency
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z’

max (X,Y,Z)

X2 «— X; Y «VY; 27 < Z;

Z> +— X’;

if Y’ > Z’ then Z° <+ Y’;

if Z° < O then Z’ < 0;
(ZV>XNZ'>YNZ >20ANX =XAY' =Y)

Modular analysis:
@ analyze a procedure once (procedure summary)
@ reuse the summary at each call site (instantiation)
= improved efficiency

e infer a relation between input X,Y,Z and output X', Y’ ,Z’ values, in
P(V—R)x(V—=R)=P(VxV)—=R)
@ requires inferring relational information
[Anco10], [Jean09]
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Linear equality domain

Linear equality domain
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Linear equality domain Affine equalities

The affine equality domain

Here | € {Q,R}.

We look for invariants of the form:

Ay, (XCim1 Vi =B;), ajj, i €

where all the aj; and 3; are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

D! & { affine subspaces of V — | }

/
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Linear equality domain Affine equalities

Affine equality representation

Machine representation:  an affine subspace is represented as

@ either the constant ¥,

o or a pair (M, C) where
o M e 1™ isa mx nmatrix, n=|V| and m < n,
o C €17 is a row-vector with m rows.

(M, 6> represents an equation system, with solutions:
AWM, CH) E Vel MxV=C}
M should be in row echelon form: example:
e Vi < m:3ki: My, =1 and 1
Ve < ki Mic =0, VI # i My, =0,
o if i < i’ then kj < kii  (leading index)

Remarks:
the representation is unique
as m < n = |V|, the memory cost is in O(n?) at worst
T is represented as the empty equation system: m =0

o oo

O OO
O = O O
o N O
- O OO
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Linear equality domain Affine equalities

Galois connection

Galois connection: (actually, a Galois insertion)

between arbitrary subsets and affine subsets

(P(I"), ) == (AFF(I"),C)

° y(X) = X
o a(X) & smallest affine subset containing X

AfF(1") is closed under arbitrary intersections, so we have:
aX)=n{Y e Aff(I")| X C Y}

Aff(1") contains every point in 1"
we can also construct «(X) by abstract union:
o(X) = U {{x}|x € X}

Notes:
@ we have assimilated V — | to I”

@ we have used AfF(1") instead of the matrix representation D¥ for simplicity

Course 4 Relational Numerical Abstract Domains Antoine Miné

(identity)

p.10 /71



Linear equality domain Affine equalities

Normalisation and emptiness testing

Let Mx V =Cbea system, not necessarily in normal form.
The Gaussian reduction Gauss({M, C)) tells in O(n3) time:

@ whether the system is satisfiable, and in that case
@ gives an equivalent system (M’ 6’) in normal form

i.e. returns an element in DY,

Principle: reorder lines, and combine lines linearly to eliminate variables

Example:
2X + Y + Z = 19
2X + Y - zZ = 9
3Z = 15
I
X + 05Y = 7
Z =5
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Linear equality domain

Affine equality operators

Affine equalities

Applications
If Xﬁ,yﬁ #+ L% we define:

Xt pt 2ef Gauss [ M.s } , (_;X“
Myﬁ Cyﬁ

xt =iyt LMy, =My,

xtctyt &Ly pr =ty

Cﬁﬂzjoéjvj*ﬁzo]]Xﬁ def Gauss <<|: 041M~X~ua }7|: Egﬂ :|>>

Ctle0] X# dof yt for other tests

Remark:

Ct, =f nf, =% and Cﬁ[[zjaj\/j — [ =0] are exact:
XECEYE = (A7) Cy(VF), A (XFNE YR = o(XF) Ny (D), ...
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Linear equality domain Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector generators
Gi, ..., Gy and an origin point O, denoted as [G, O].

WG, 0) L {GxX+0|Xxel™} (Gel™ Oel
We can switch between a generator and a constraint representation:
o From generators to constraints: (M, C) = Cons([G, O])

Write the system V=GxX + 5 with variables \7 X.
Solve it in X (by row operations).
Keep the constraints involving only V.

X = A+2 X-2 = X
e.g. Y = 2A4+p+3 — 2X+Y+1 = pu
zZ = pu 2X-Y+Z-1 = 0

The result is: 2X — Y +Z =1.
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Linear equality domain Affine equalities

Generator representation (cont.)

o From constraints to generators: [G, O] &' Gen((M, C))

Assume (M, C) is normalized.
For each non-leading variable V/, assign a distinct Ay,
solve leading variables in terms of non-leading ones.

—0.5 7
X+05Y = 7
e.g. { 7 — 5 = (1) Ay + g
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Linear equality domain Affine equalities

Affine equality operators (cont.)

Applications

Given Xﬁ,yﬂ #* L%, we define:
Xt Ut Y8 L Cons ([Gyx Gys (Oye — Ont), Ot ])
CH[ V)« [~o0, +oo] ] X% =" Cons ([Gas %), Os])
CLV; Y Vi + ] &t =
if aj = 0,(CH[Y, Vi — Vj + B = 0] o CH[V; « [0, +00] | ) X*

if o # 0, X% where V; is replaced with (V; — Zi#j Vi — B)/aj

(proofs on next slide)

Ci[V; « e] At &f CHV; + [—o0, +o0] ] X* for other assignments

Remarks:

e U is optimal, but not exact.

o CH[V; + X, a;Vi+ B] and CF[ V; ¢+ [—o0, +00] ] are exact.
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Linear equality domain Affine equalities

Affine assignments: proofs

CHV; & 3 aiVi+ Bl xF

if o :0,(C’i[[zia;\/f— Vi+B=0] o Ct[V; + [—o00, +o0] ] )X#
if aj # 0, X where V; is replaced with (V; — Zi# o Vi — B)/aj

Proof sketch:
we use the following identities in the concrete

non-invertible assignment: o; = 0
C[Vj+e] =C[Vj<e] oC[V, « [-00,+0o0]] as the value of Vj is not used in e
so: C[Vj<+e] =C[V;—e=0] oC[V, < [—o00,+0o0]]
= reduces the assignment to a test
invertible assignment: «; # 0
ClVj«e] CcC[Vj+e] oC[V; + [-00,+x]] as e depends on V
(eg, C[IV«V+1] #C[V+ V+1] oC[V 4 [—o0,+00]])
peClVj+elR < 3p eR p=p[Vi= D aip/(V;)+ 8]
= 3p' € R plV; = (p(V) = 3, i (Vi) = B)/ay] = o/
= o1V = (0(V)) = 3o, 0ip(Vi) — ) o] € R
—> reduces the assignment to a substitution by the inverse expression
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Linear equality domain

Analysis example

Affine equalities

No infinite increasing chain: we can iterate without widening.

Forward analysis example: 10
X<10
1 Y <100
X + 10; Y + 100;
while °X # 0 do3 X=0
X « X-1; 20 —>o
Y « Y+10 4
done? X#0
XX-1
Y ~Y+10
e
0 1 2 #3 4
L I .7 ] X
1| TF BE TH TH RE
2| Lf |(10,100) | (10,100) | 10X 4+ Y =200 | 10X + Y = 200
3] L 1t (10, 100) (10, 100) 10X + Y = 200
4| 1t 1t 1t 1t (0,200)

Note in particular:

X = {(10,100)} U {(9,110)} = { (X, Y) | 10X + Y =200 }

Course 4
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Polyhedron domain

Polyhedron domain
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Polyhedron domain

The polyhedron domain

Here again, | € {Q,R}.

We look for invariants of the form: /\ (Z a;iVi > BJ-).

i i=1
We use the polyhedron domain proposed by [Cous78]:
D! & {closed convex polyhedra of V — I}

A

Note: polyhedra need not be bounded (# polytopes).
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Polyhedron domain

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem).
(see [Schr86])

Constraint representation

(M, C) with M € I™*" and C € I™
represents: (M, C)) & {V | M x V > C}

We will also often use a constraint set notation { >>; aj;V; > 5; }.

Generator representation

[P, R] where
o P € 1"™%P is a set of p points: P,..., I3p
@ Re ™" is a set of r rays: ﬁl,...,ﬁr

~(P,R]) &'

{(Zle aij> + <ij:1 [ijJ-) | Vi, 820, 37 a5 = 1}
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Double description of polyhedra (cont.) -

Generator representation examples:

Y(IP.R]) = {(C2, i) + (S BiR) Vi, 8 > 0: 37 oy =1}

P1 },

P1
P2
P5
P3
P3
P4
P2 I
R2

@ the points define a bounded convex hull

@ the rays allow unbounded polyhedra
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Polyhedron domain

Origin of duality

Dual A* = {RXel"|VicA 3-x<0}
o {d}* and {\F| A > 0}* are half-spaces,
o (AUB)* = A*n B¥,
o if A is convex, closed, and 0c A, then A™ = A.

Duality on polyhedral cones:

Cone: C={V|MxV >0}or C={XI,BR)|Vj B >0}

(polyhedron with no vertex, except 6)

o C* is also a polyhedral cone,

o C* =,

@ a ray of C corresponds to a constraint of C*,
@ a constraint of C corresponds to a ray of C*.

Extension to polyhedra: by homogenisation to polyhedral cones:

CP) ¥ {AV|A>0, (Vi,...,V,) €Y(P), Vpur =1} C I

(polyhedron in I" ~ polyhedral cone in I"*1
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Polyhedron domain

Polyhedra representations

@ No best abstraction «
(e.g., a disc has infinitely many polyhedral over-approximations, but no best one)

@ No memory bound on the representations

Course 4 Relational Numerical Abstract Domains Antoine Miné p.23 /71



Polyhedron domain

Polyhedra representations

Minimal representations

@ A constraint / generator system is minimal if no constraint /
generator can be omitted without changing the concretization

@ Minimal representations are not unique

@ No memory bound even on minimal representations

Example:  three different constraint representations for a point

(2) (®) (©

® (a)y+x2>20,y—x>0,y<0,y>-5 (non mimimal)
@ b)y+x2>0,y—x>0,y<0 (minimal)
® ()x<0,x>0,y<0,y>0 (minimal)
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Polyhedron domain

Chernikova's algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a constraint
system to an equivalent generator system

Why?  most operators are easier on one representation

Notes:

@ By duality, we can use the same algorithm to switch from generators to
constraints

@ The minimal generator system can be exponential in the original constraint

system
(e.g., hypercube: 2n constraints, 2" vertices)

@ Equality constraints and lines (pairs of opposed rays) may be handled
separately and more efficiently
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Polyhedron domain

Chernikova's algorithm (cont.)

Algorithm:  incrementally add constraints one by one
. Po={(0,...,0) } (origin)
Start with: { Ro—{%, -%|1<i<n} (axes)

For each constraint My -V > C, € (M, 6) update [Px_1, Rk—_1] to [Pk, Rk].

Start with P, = R, = 0,
@ for any Pec Py_1 s.t. I\7Ik .P > Cy, add P to Py

@ for any Re Ryx_1 s.t. I\7Ik ‘R >0, add R to Ry

@ for any ;3, é € Py_1 s.t. I\7Ik P> Cy and Mk Q< Cy, add to Py:
5 def G -M-Q@ B Ce—M PR

T P—Mh-B BP0

i.e., move Q towards P along [Q, P] until it saturates the constraint
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Polyhedron domain

Chernikova's algorithm (cont.)

o foranyﬁgeRk 1 s.t. I\7Ik R’>Oandl\7lk~§<0,addtoRk:

0 = (M- )R — (My - R)S
i.e., rotate S towards R until it is parallel to the constraint

1

~ <N

IS ~<

@ for any Pe Pr_1, Re Rx_1 s.t.
eitherl\7lk 5>Ck and I\7Ik §<0,oer~ﬁ’<Ck and I\_/‘Ik~l§>0

def = P=
addto Py: O = P+ %R
— >
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Polyhedron domain

Chernikova's algorithm example

Example:

Py = {(070)} Ro = {(170)7 (_1>0)7 (O’ 1)> (07 _1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
12 b an
g
(0) (1)
I:)0 - {(070)} RO - {(170)7 (_170)7 (O’ 1)> (07 _1)}
Y>1 P, ={(0,1)} R; = {(1,0), (-1,0), (0,1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
T—» ‘7 —>
&
(0) (1) )
Py = {(070)} Ro = {(170)7 (_170)7 (O’ 1)> (07 _1)}
Y>1 P, = {(07 1)} Ry = {(170)7 (_170)7 (O’ 1)}
X+Y >3 P,={(2,1)} R, ={(1,0), (-1,1), (0,1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
d s
&
(0) (1) (@) 3)
Py = {(070)} Ro = {(170)7 (_170)7 (O’ 1)7 (07 _1)}

Y>1 P, = {(07 1)} Ry = {(170)7 (_170)7 (O’ 1)}
X+Y>3 Py= {(27 1)} Ry = {(1’0)7 (717 1)7 (Oa 1)}
X-Y<1 P3= {(27 1)7 (172)} R; = {(07 1)7 (17 1)}
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Polyhedron domain

Redundancy removal

Goal: only introduce non-redundant points and rays during Chernikova's
algorithm
Definitions (for rays in polyhedral cones)
Given C={V|MxV>0}={Rx3|F>0}.
def n s

o R saturates IWk V> 0 <~ M -R=0
o S(R,C) & {k|My-R=0}.
Theorem:
assume C has no line (AL #0 s.t. Va, al € C) B
R is non-redundant w.rt. R < AR; € R, S(R,C) C S(R;, C)
° S(K’,-, 0), R; € R is maintained during Chernikova's algorithm in a
saturation matrix
@ extension to (non-conic) polyhedra and to lines

@ various improvements exist [LeVe92]
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Polyhedron domain

Operators on polyhedra

Given Xﬁ,yﬂ #* L% we define:

VP EP i, Mys x P >
xtctypt Qef T € FPxs Myg X P 2
<y VRERXn,MngRZO

(every generator of X!t must satisfy every constraint in :)Jﬁ)

xt=tyt &Lyt ctyt and Y CH ot

xttypt & [ My } C
My Gyt

(set union of sets of constraints)

Remarks:

o CF =% and Nf are exact.
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Polyhedron domain

Operators on polyhedra: join

Join: Ut yﬁ def [ [Pxﬁ Pyﬁ], [qu Ryli] ] (join generator sets)

Examples:

*

two polytopes a point and a line

U is optimal:
we get the topological closure of the convex hull of v(X*#) U ~()*)
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Polyhedron domain

Operators on polyhedra: tests

Forward operators: affine tests

M
o1 Qg

CIY,aiVi+5>0]xt = <[

CY iVt B =0] X% <
(CY aiVi+ B20] o C [ (—ai)Vi— B > 0] )X*

These test operators are exact.
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-~ Polyhedrondomain
Operators on polyhedra: non-deterministic assig_

Forward operators: forget

CHLV; ¢ [—00, +00] ] XF = [Pas, [Ras %5 (—%)]]

—-— —_—
I -

This operator is exact.
It is also a sound abstraction for any assignment.

Course 4 Relational Numerical Abstract Domains _ p.33 /71



Polyhedron domain

Operators on polyhedra: affine assignments

Forward operators: affine assignments

CLV « X,V + Bl x* <
if ;= 0,(C}[ X2, Vi — Vi + B =0] o C[Vj = [—o00, +00] ] ) *

if aj #0, (M, C) where V; is replaced with O%(VJ =2 iyiVi—B)
Examples :
X+ X+Y -

X+Y Q - e

Affine assignments are exact.
They could also be defined on generator systems.
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Polyhedron domain

Affine assignments: proofs

CHV; & 3 aiVi+ Bl xF

if o :0,(C’i[[zia;\/f— Vi+B=0] o Ct[V; + [—o00, +o0] ] )X#
if aj # 0, X where V; is replaced with (V; — Zi# o Vi — B)/aj

Proof sketch:
we use the following identities in the concrete

non-invertible assignment: o; = 0
C[Vj+e] =C[Vj<e] oC[V, « [-00,+0o0]] as the value of Vj is not used in e
so: C[Vj<+e] =C[V;—e=0] oC[V, < [—o00,+0o0]]
= reduces the assignment to a test
invertible assignment: «; # 0
ClVj«e] CcC[Vj+e] oC[V; + [-00,+x]] as e depends on V
(eg, C[IV«V+1] #C[V+ V+1] oC[V 4 [—o0,+00]])
peClVj+elR < 3p eR p=p[Vi= D aip/(V;)+ 8]
= 3p' € R plV; = (p(V) = 3, i (Vi) = B)/ay] = o/
= o1V = (0(V)) = 3o, 0ip(Vi) — ) o] € R
—> reduces the assignment to a substitution by the inverse expression
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Polyhedron domain

Operators on polyhedra: backward assignments

Backward assignments:

UV,  [o0, +00] | (¥4, RE) 2 %0 (CH V] [0, +00] | RY)
TV, 0V + ] (A1, RE) &
X% NF (RF where V; is replaced with (3=, a; Vi + B3))
CHV, ¢ e (¥4, R?) 2 CHV, - [0, +oo] ] (X%, RY)
for other assignments

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

DF has strictly increasing infinite chains = we need a widening
Definition:

Take X! and V! in minimal constraint-set form
Xtoyt £ fcext|yict{c}}

We suppress any unstable constraint ¢ € X%, i.e., V¥ ¢¥ {c}

Example:
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Polyhedron domain

Polyhedra widening

DF has strictly increasing infinite chains = we need a widening
Definition:
Take X! and V! in minimal constraint-set form

Xtoyt £ fcext|yict{c}}

U {ced¥|3cdextxt =\ c)u{c}}

We suppress any unstable constraint ¢ € X%, i.e., V¥ ¢F {c}
We also keep constraints ¢ € J* equivalent to those in X%,
i.e., when 3¢’ € X% X =F (xF\ ') U {c}

Example:
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Polyhedron domain

Example analysis

X+ 2; I+« 0;
while @ I < 10 do
if [0,1] = O then X < X + 2 else X « X - 3 fi;

I < I+1
done ¢
Loop invariant: \/
1< V
Xy F(X) X X'

Increasing iterations with widening at e give:

X o= {X=2,1=0}

X = {X=21=0}v({X=21=0}U!{Xc[-1,4], I=1})
{X=2,1=0}v{lel0,1],2-3/<X<2/+2}
{1>0,2-31<X<2/+2}

Decreasing iterations (to find | < 10):

X = {X=21=0}U!{I€[1,10], 2 -3/ < X <2/ +2}
= {l€[0,10], 2—3/ < X <2/ +2}

We find, at the end of the loop ¢: [ = 10 A X € [—28,22].

Course 4 Relational Numerical Abstract Domains Antoine Miné

p.38 /71



Polyhedron domain

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X*¥ v ) all the constraints
from T satisfied by both X* and Y%,

Delayed widening:

We replace Xt v Yt with X% U VP a finite number of times

(this works for any widening and abstract domain).

See also [Bagn03|.
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Polyhedron domain

Integer polyhedra

How can we deal with | = Z7

Issue: integer linear programming is difficult.

Example: satsfiability of conjunctions of linear constraints:
@ polynomial cost in Q,

@ NP-complete cost in Z.

Possible solutions:

@ Use some complete integer algorithms.
(e.g. Presburger arithmetics)
Costly, and we do not have any abstract domain structure.

@ Keep Q—polyhedra as representation, and change the concretization
into: z(X%) = (X Nz
However, operators are no longer exact / optimal.
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Weakly relational domains

Weakly relational domains
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Weakly relational domains Zone domain

Zone domain
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Weakly relational domains Zone domain

The zone domain

Here, 1 € {Z,Q,R}.

We look for invariants of the form:
ANVi—-Vi<cor £V;<c, cel

A subset of 1” bounded by such constraints is called a zone.

[MineO1a]
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Machine representation

A potential constraint has the form: V; — V; < c.

Potential graph: directed, weighted graph G

@ nodes are labelled with variables in V,
@ we add an arc with weight ¢ from V; to V; for each constraint
Vi—Vi<c
Difference Bound Matrix (DBM)

Adjacency matrix m of G:

@ m is square, with size n x n, and elements in | U {400},
@ mj = ¢ < +oo denotes the constraint V; — V; < ¢,

@ mj = +oo if there is no upper bound on V; — V.

Concretization:
~v(m) def { (vi,...,vn) €17 Vi, j, vi—vi < mj }.
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Machine representation (cont.)

Unary constraints add a constant null variable V.

@ m has size (n+1) x (n+1);

@ Vi<cisdenoted as V; — Vy < c, i.e., mjg = c;
@ V; > cisdenoted as Vy — V; < —c, i.e., mg;i = —c;
°

v is now: yo(m) = { (vi,...,vn) | (0,v1,...,vp) € y(m) }.

Example:

Vo | +o0 4 3
Vi -1 400 +oo
V5> -1 1 +oo
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The DBM lattice

D contains all DBMs, plus L.

< on lU{+oc} is extended point-wisely.

If m,n# L%
mChn £S5 Vi, my<ny
m=In JELN Vi, j, mj = nj;
e ] ij
[m N n}ij et min(mj;, nj;)
[m Ut n}l_j ef max(mjj, njj)
M, e
ij

(D, CF U Nf, LE TE) is a lattice.

Remarks:
o D! is complete if < is (=R or Z, but not Q),
o m Cf n = ~9(m) C o(n), but not the converse,
o m =% n = ~9(m) = 4o(n), but not the converse.
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Normal form, equality and inclusion testing

Issue:  how can we compare 75(m) and ~(n)?

Idea: find a normal form by propagating/tightening constraints.

Vo— V1 <3 Vo— W1 <3
ViV <1 Vi W< -1

Vo—- V<4 Vo—Va<2

Definition: shortest-path closure m*

N—1
x def .
my; = min E M iy
N
L. . . k=1
(i=i,...,in=J)

Exists only when m has no cycle with strictly negative weight.
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Floyd—Warshall algorithm

Properties:

@ 1(m) =0 <= G has a cycle with strictly negative weight.

o if vo(m) # 0, the shortest-path graph m* is a normal form:
m* = ming { n ‘ ”/O(m) = "/’0(") }
@ If y0(m),y0(n) # 0, then

o Yo(m) = y(n) <= m* =f n*,
o Y(m) C yp(n) <= m* Cin.

Floyd—Warshall algorithm

0 def
def
m{<.+l =

SOk k K
p mln(m,-j,mik—l—mkj)

@ If vo(m) # 0, then m* = m"*1, (normal form)
° y(m)=0 < 3i, mi*t <0, (emptiness testing)
@ m™! can be computed in O(n?) time.
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Abstract operators

Abstract join: naive version Ut (element-wise max)

@ U! is a sound abstraction of U

but 4o(m U* n) is not necessarily the smallest zone
containing vo(m) and 7o(n) !

The union of two zones with U? is no more precise in the zone domain
than in the interval domain!
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Abstract operators (cont.)

Abstract join:  precise version: U? after closure

@ (m*) U (n*) is however optimal
we have: (m*) U? (n*) = minc: { 0| 0(0) 2 yo(m) U~o(n) }

which implies:
~o((m*) UF (n*)) = minc { 70(0) | 70(0) 2 ~0(m) U~o(n) }

after closure, new constraints ¢ < X — Y < d give an increase in precision
@ (m*) U (n*) is always closed.
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Abstract operators (cont.)

Abstract intersection N¥: element-wise min

@ N is an exact abstraction of N (zones are closed under intersection):

Yo(m N*n) = y5(m) N yo(n)

@ (m*)N*(n*) is not necessarily closed. ..

Remark

The set of closed matrices, with L#, and the operations C#, U, Am, n.(m gt n)*is a
sub-lattice, where 7 is injective.
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Abstract operators (cont.)

We can define:

V. — V. def [ min(my,c) if (i,j) = (io, o),
[C [V MOSC]]m]ij o { mj; otherwise.

” *
U

def | Hoo if i=jo orj=jo,
[Cﬁ[[ Vi, [—OO,+OO]]]m] = { mj;  otherwise.

(not optimal on non-closed arguments)

CH V4 Vip + alm = (CH[ V), — Vi, = a] o CH[ V], « [0, +oc] [)m if ip # o

def mjj — a if i =joandj#jo
[C1Vy = Vi +alm] = ¢ myta ifijoandj=]o
mj; otherwise.

These transfer functions are exact.
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Abstract operators (cont.)

Backward assignment:

TH[V)y  [—o0, +od] [ (m, 1) & m i (CH[ V), « [—oc, +od] ] 1)

<~ def
Cj[[\ﬁo<—\40+aﬂ(m,r) = mﬁﬁ(cﬁ[[vjo Vip —alr)

[T Vi, Vi +al ()], <

m|n(rU7 JOJ+a) if i =1ip and j # io, jo
m At mm(rU7 A —a) If_/ = I.o and. i ;é i0,Jjo
400 if i=joorj=jo
r;‘j otherwise.
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Abstract operators (cont.)

Issue: given an arbitrary linear assignment Vj, < ag + >, ax x Vi
@ there is no exact abstraction, in general;

@ the best abstraction ao C[c] o+ is costly to compute.
(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:
Given a (more general) assignment e = [ag, bg] + Zk[ak, bi] x Vi

we define an approximate operator as follows:

max(E#[ e] m) if i=0andj=jp
et —min(Ef[ e]m) ifi=joand j=0
[Cu[[\/j0<—e]]mj|i, = max(Ef[e — V;]m) if i #0,jo and j = jo
Y —min(E!e+ V;]m) ifi=joandj#0,jp
mij; otherwise

where Ef[ e] m evaluates e using interval arithmetics with Vj € [=migs mg,]-

Quadratic total cost (plus the cost of closure).
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Abstract operators (cont.)

Example:
Argument
0<Y<10
0<2<10
0<Y-Z<10
I XeY-2Z
~10< X <10 ~10< X <10 0<X<10
-20<X-Y <10 -10<X-Y <0 -100<X-Y <0
~20< X —Z<10 ~10< X - Z<10 ~10< X - Z<10
Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Widening and narrowing

The zone domain has both strictly increasing and decreasing infinite
chains.

Widening Vv

def mi; if njj < mi;

N +00 otherwise

Unstable constraints are deleted.

[m v n];

Narrowing A

def nj if mj =400
- mj; otherwise
Only 400 bounds are refined.

[mAn]ij

Remarks:
@ We can construct widenings with thresholds.

@ V (resp. A) can be seen as a point-wise extension of an interval
widening (resp. narrowing).

Course 4 Relational Numerical Abstract Domains Antoine Miné p. 56 / 71



Weakly relational domains Zone domain

Interaction between closure and widening

Widening V and closure * cannot always be mixed safely:
L miji1 d:ef m; vV (n,*) OK
e mj ot (m¥)vn; wrong!
e my = (m;vn) wrong

otherwise the sequence (m;) may be infinite!

Example:
X+ 0; Y« [-1,11; iter. | X | Y | X—¥
L P 0 0 [1,1] [-1,1]
while ¢ 1 = 1 do
R «— [_1 1]. 1 [_2)2 [_171] [_111]
i v 2 [-2,2 [-3,3] [-1,1]
if X =Y then Y «<— X + R
else X < Y + R fi A .
done 2j [—2,2]] -2/ —1,2j+1] | [-1,1]
2j+1 | [-2j—2,2j4+2] | [-2j—1,2j+1] | [-1,1]

Applying the closure after the widening at e prevents convergence.
Without the closure, we would find in finite time X — Y € [-1,1].

Note: this situation also occurs in reduced products.
(here, D*¥ ~reduced product of n X n intervals, * ~reduction)
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Zone domain

Interaction between closure and widening (illustration)

X< 0 Y« [-1,11; iter. X Y X-Y
. N 0 0 [=1,1] [—1,1]
while @ 1 = 1 do
1 [_27 2] [_17 1] [_la 1]
R [, 2 2,2 3,3 1,1
if X =Y then Y < X + R [-2.2] [=3.3] [=1.1]
else X « Y + R fi e A .
done 2j (—2),2i] [-2/-1.2j+1] | [-L,1]
2j+1 | [-2j—2,2j+2] | [-2j—1,2j+1] | [-1,1]
widening
without
closure
widening
with
closure
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Octagon domain
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The octagon domain

Now, | € {Q,R}.
We look for invariants of the form: /\ +Vi+V;<c, cel
A subset of 1" defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).

[Mine01b]
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Machine representation

Idea: use a variable change to get back to potential constraints.

Let V/ < {V{,..., V4 }.

the constraint: ‘ is encoded as:
Vi—Vi<c (i#)) [Z V2/j—1 < ¢ and Vzlj -V; <c
Vi+V;<c (i#})) Vi -V, < ¢ and V2’j_17 Vj.<c
—Vi=Vi<c (i#)) Vo= Vioy < ¢ and V=V <c
Vi<c Vo1 — V3 S 2
V,>c V5, — V3, <-2c
We use a matrix m of size (2n) x (2n) with elements in | U {400} and
def
ye(m) = {(v1,...,vn) | (vi,—va, ..., Vn,—Vy) € y(m) }.
Note:

Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that Vi, j, mj = m;; where 7=i@ 1.
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Machine representation (cont.)

Example:

Vi4+ W, <3
Vo—- V1 <3
Vi—W, <3
-i—-Wwv<-3
2V, <2
-2V, <8

(A

Lattice

Constructed by point-wise extension of < on U {+0o0}.

Course 4 Relational Numerical Abstract Domains Antoine Miné p. 62 /71



Weakly relational domains Octagon domain

Algorithms

m* is not a normal form for ..

Idea use two local transformations instead of one:

vIi-Vv/<c
k> A\
{v’k’—\/j’gd = V/-V/ <c+d

and

VI —-Vvi<c
{ Vievicqg = Vi-Vis(ctd)2
J J —

Modified Floyd—Warshall algorithm

m® dZEf S(m2n+1)

ml def
(A { k+: def .
where: [m ]y = min(ny, ny + nyg), 1 < k< 2n

(B) [S(m]; ' min(ny, (7 + n3)/2)
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Algorithms (cont.)

Applications
o y+(m) =0 < 3i, m§ <0,
o if y1(m) # 0, m® is a normal form:
m® = minc; { n | yx(n) =7+(m) },

o (m®)UF (n®) is the best abstraction for the set-union 44 (m)U~x(n).

Widening and narrowing

@ The zone widening and narrowing can be used on octagons.

@ The widened iterates should not be closed.
(prevents convergence)

Abstract transfer functions are similar to the case
of the zone domain.
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Analysis example

Rate limiter

Y < 0; while e 1=1 do

X « [-128,128]; D « [0,16]; )\S'_ g‘ﬁ:ﬁj:'ggal
S+ Y; Y+ X; R+ X -8; 5: s @uEIe
if R < -D then Y «+ S - D fi; ;
if R > D then Y « S + D fi R ddin V=5
= D: max. allowed for |R|

done

Analysis using:
@ the octagon domain,

@ an abstract operator for Vj, < [ao, bo] + >_[ak, bk] X Vi similar to
the one we defined on zones,

@ a widening with thresholds T.

Result: we prove that | Y| is bounded by: min { t € T |t > 144 }.

Note: the polyhedron domain would find | Y| < 128 and does not require
thresholds, but it is more costly.
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Summary

Summary of numerical domains

domain invariants memory cost | time cost (per operation)
intervals Vel h O(|n)) O(|nl)
linear equalities | >, a;V; = 5 O(|n|?) O(|nl®)
zones Vi—V,<c O(|n|?) O(|n]?)
polyhedra YooV > B unbounded, exponential in practice

@ abstract domains provide trade-offs between cost and precision

@ relational invariants are often necessary
even to prove non-relational properties

@ an abstract domain is defined by the choice of:

e some properties of interest and operators
e data-structures and algorithms

@ an analysis mixes two kinds of approximations:

e static approximations

e dynamic approximations
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