Written exam
MPRI 2-6, year 20222023

28 November 2022

Duration: 2 hours

All written documents (printed course slides, personal notes, books, etc.) are allowed.

The use of connected electronic devices (computers, phones, tablets, smartwatches, buds, etc.) is not allowed.

The questions are written in English. You can answer either in English or in French, to your preference.

It will not be answered any question during the exam. In case of an ambiguity or an error in the definitions or the
questions, it is part of the exam to correct them and answer to the best of your abilities.

In case you cannot answer a question, it is often possible to assume its results and continue with the next questions.
Questions marked with (x) are more difficult.

Analysis of dynamic programs with eval

This exam studies the static analysis of dynamic code, that is, programs where the whole source code is not available
statically at the begining of the analysis; some of the code is discovered dynamically. We study a common case where
the program builds strings that are then interpreted at run-time as code, and executed. This is implemented, for
instance, as the eval statement in JavaScript, or the ezec statement in Python.

We consider the following language based on the numeric language used in the course, extended with strings
manipulation and eval:

() g « NEzp; (‘=)

(t:) 5+ SErp; (=)

(¢) if (BEzp) then { (‘) Stmt }; (=)
() while (BExp) do { (‘1) Stmt }; (&)
) Stmt 1) Stmi ¢=)

() eval(SExp); (=)

Stmt

(numeric assignment into © € N)
(string assignment into s € S)
(conditional)

(loop)

(sequence)

(execute string as code)

We assume a finite, fixed set N of integer-valued variables and a finite, fixed set S of string-valued variables. We
denote by ¥ the set of characters. Strings are sequences of characters of arbitrary length in ¥*, and ¢ € ¥* denotes
the empty string. Statements include: numeric and string assignments, as well as the conditional if (-) then { -}, the
loop while (-) do { -}, the sequence and, finally, eval. As in the course, statements are labelled with a control point
before ¢; and a control point after ¢, and, in some cases, an intermediate label /¢;.

The language of expressions is as follows:

NEzp == =z (variable © € N) SExp == s (variable s € S)
| 4 (constant i € 7Z,) | “o” (constant o € ¥*)
| 7 (random integer) | 7 (random string)
| NEzpo NExp (operatoro € {+,—,...}) | SEzp-SExp (concatenation)
BEzp == NEzxpo NExp (numeric comparison o € {<,<,=,...})
| SEzpo SExp (string comparison o € {=,#})
| startsWith(SEzp, SExp) (string prefix test)
| 7 (random Boolean)
| —BEzp (Boolean negation)

Numeric expressions NEzxp use the classic arithmetic operators, constants, variables, and the random choice “?” in
Z. String expressions SEzp also use variables, constants “o”, and the random choice “?” in ¥*, and feature a single
operator: string concatenation “.”. Boolean expressions BFEzp allow comparing two numbers as well as two strings.
startsWith(o, 0’) is true if and only if ¢’ is a prefix of o, i.e., 36" € X* : 0 = ¢’ - ¢”. “?” is the non-deterministic
choice (random Boolean) and — is the Boolean negation.

Informally, eval accepts a string expression, evaluates it into a string value, interprets the string as a statement in
the syntax of Stmt, and executes the statement immediately. Here are some examples programs using eval:

P, def g« ccxn; b 441277; eval(s- “oemot. u;n);
Py, = 54 “1007; if (?) then {s « “200”; }; eval(“while (z <7 -s5-%) {y«y+1; zz+1; };7);
Py = s ¢ while (?)do {s+ s “zcxx2;"; }; z+ 1; eval(s);

P4 s — “?77; eval(‘teval(\étx <_ ” ., S - “; \77);77);

Ps = s+« “eval(s);”; eval(s);

Py constructs the assignment x < 12 and executes it; at the end of P;, x equals 12. P; shows that an eval statement
can be called with different strings depending on a non-deterministic choice. It can also execute complex loops: in Ps,
incrementing x and y until x equals 100 or 200. P53 shows an example constructing a string with an arbitrary number
of assignments, computing some power of two. P, shows that the string evaluated by eval can, itself, contain an eval
statement. It assigns a random value to x. Finally, P5 loops executing non-terminating recursive calls to eval.

The first part of the exam studies the concrete semantics, while the second part studies string abstractions. These
parts are independent, and come together to build the final analysis in part three.

1 Concrete Semantics

We denote by £ an (infinite) set of labels usable by all programs. A control-flow graph (e, z, A) € CFG L LxLx
P(L x Cmd x L) is defined by an entry-point e € £, an exit point = € L, and a set A C L x Cmd x L of arcs decorated
by commands in the following language, including assignments, filtering by Boolean expressions, and eval:

Cmd ::= x < NEzp | s < SEzp | BExp | eval(SEzp)

Any statement P € Stmt can be converted into a control-flow graph.

Question 1.1.

Define the conversion function CFG : Stmt — CFG from statements to control-flow graphs. It is defined by induction
on the structure of statements (similarly to the way we derived transition relations or equation systems in the course).
A concrete state (p,u) € € = (N = Z) x (S8 — £*) is a pair of functions, assigning a numeric value to each numeric
variable in A/ and a string value to each string variable in S.

We first consider, in the following two questions, programs without eval.

Question 1.2.

Give the definition of the concrete evaluation S[SEzp] : € — P(X*) for string expressions: it returns the set of values
an expression can evaluate to in a concrete environment. We assume that N[NEzp] : € — P(Z) is similarly defined
for numeric expressions (it is not asked as part of the exam).

Give the concrete semantics C[Cmd] : P(E) — P(E) of (non-eval) commands that, given a set of states before the
command, returns the states reachable after the command.

Given a control-flow-graph (e, z, A) without eval and a set I C £ of environments at its entry point e, we denote as
G[(e,z, A)]I: L — P(E) its semantics, that gives the reachable environments at each label.

Question 1.3.
Give the definition of G[(e,x, A)] I as a fizpoint. Justify that the fixpoint indeed exists.

We now add back eval into our language. It remains to provide the definition of C[eval(SEzp)] to complete our
concrete semantics. We assume given a function parse : ¥* — Stmt U {w} that, given a string, outputs the statement
it represents, or w if it is not the string representation of any statement in the language (i.e., w denotes a parsing
error, which halts the program). All the labels used in parse(o) are fresh labels (i.e., previously unused) in L.

Question 1.4.(x)

Ezpress the semantics C[eval(SEzp)] : P(E) — P(E) of eval, using S[SExp], parse, and G[] .

Prove that G[]| and C[]| remain well-defined, despite their cyclic dependencies, and the fact that a program can trigger
unbounded nested calls to eval (example Ps). You can use use a fixpoint for this.

Compute the concrete semantics of examples Py, Py, and Ps using your definitions; detail each step carefully.

2 String Abstractions

We construct several domains to abstract strings. We start with non-relational domains of the form D! &S B
for different abstractions B* of sets of strings P(X*). Our first domain is a variation on the constant domain, which
maintains up to k different strings (where k is a fixed parameter), or reverts to T to represent all possible strings:

BL, & {SCE||S|<k}u{T}

Question 2.1.
Give a partial order on Bik.

Provide a Galois connection between P(X*) and Bugk, and prove that it is indeed a Galois connection.

Provide optimal abstract versions for string operators on Bik, including: U, N, string constants, random 7, concate-
nation -, equality and disequality testing, and startsWith. Prove the optimality.
State whether each operator is exact or not, providing a proof of your claim.

We now lift the restriction on the size of sets to get the following abstraction of P(¥*):
Bi = {8 C |8 is finite }U{T}

Question 2.2.
Give a partial order on B , and prove that there is no Galois connection between Bgc and P(X*).

Discuss how the operators from Bﬁ<k can be adapted to this new domain.
Discuss the need for a widening, and propose one if needed.

We then propose an abstraction Bf, that abstracts a set of strings as their longest common prefix (possibly ¢).

Question 2.3.

Provide a partial order on Bg and a Galois connection between P(X*) and Bg (provide a proof).

Propose abstract versions of U, N, concatenation, and startsWith; discuss their optimality and exactness.

Discuss the need for a widening and a narrowing; propose one if needed.

Our last domain is a relational version Di = P(S x S) U {L} of the prefix string abstraction. A set of string
environments is abstracted as either L, or a relation r# € P(S x S) where (s,t) € 7 means that, in each environment,
the value of variable s is a prefix of that of ¢.

Question 2.4.(x)

Propose a Galois connection between P(S — ¥*) and D¥.

Propose sound abstractions of U, N, C[s+ t-u], and C[s=1t].

Show that applying a transitive closure to r* € P(S x S) is sound, and important to ensure the precision of the abstract
U (an example is sufficient, no proof of optimality is required).

Question 2.5.
Propose a reduced product between the constant string domain S — Bik and the relational prefiz domain D¥.

String domains used in practice are generally non-relational domains that abstract sets of strings using regular expres-
sions and finite state automata. However, we do not consider their construction in this exam as it is quite complex.

3 Abstract Analysis with eval

We assume that we are given an abstract domain D¥ for P(£), and the corresponding sound abstractions C[z <
NExp]*, C[s < SEzp]*, C[BEzp]* and U as well as a widening Vv (for instance, D can combine a numeric
domain, such as intervals, with a string domain from Part 2).

Additionally, we need to extract the set of strings an expression evaluates to in an abstract environment. We use
reqular expression as a way to convey this information independently from the choice of domain. Thus, we assume
the existence of an abstract evaluation S[SEzp]* : D¥ — re, where regular expressions re are defined classically as:

re =0 € X" | (re|re) | re - re | rex

[{n))

using constant strings “c”, choice

w9 Wy ”

, and repetition “x”.

“|”, concatenation
We first construct a function parse? : re — Stmt that returns a statement over-approximating the possible statements
denoted by a regular expression. We observe that parse (from Part 1) can handle constant strings, while “|” and “x”
can be modeled using, respectively, if (-) then {-} and while (-) do { -} statements. Observe also that, as a sound
fallback, we can always revert to a non-deterministic program that exhibits all possible behaviors.

Question 3.1.

Propose a definition of parse! by induction on the structure of reqular expressions, trying to be as precise as possible
(you don’t need to specify the labels). In case you use a program exhibiting all behaviors, give its definition.

Hllustrate your function on examples Py, Py, and Ps: give a reqular expression modeling the (concrete) arguments of
each eval, and the result of your parse® function on these reqular expressions.

We assume given an iterator algorithm G[(e,z, A)]*X* : £ — D* that implements a static analysis, starting in
abstract state X* € DF at entry point e and calling abstract functions C[Cmd] # on arcs in A until stabilization with
widening (such iterators were discussed in the course).

It only remains to provide a sound abstraction C[eval(SEzp)]*# of eval to complete our analysis.

Question 3.2.(x)

Propose an abstraction C[eval(SEzp)]* using the functions S[SExp]*, parset, and G[(e,z, A)]* above.

Prove the soundness of your definition, and use it to prove the soundness of the whole analysis of programs with eval.
Propose a solution to ensure that the analysis always terminates with a sound result, even in the case of unbounded
nested calls to eval. Provide a proof that your solution indeed ensures termination.

Question 3.3.
Demonstrate your analysis on examples Py, Py, and Ps using the interval domain for numeric variables and the
constant string domain Bﬁ<2 from Part 2 for string variables.

Notes. This exam is inspired from the article:
e Vincenzo Arceri and Isabella Mastroeni. Analyzing Dynamic Code: A Sound Abstract Interpreter for evil eval.
In ACM Transactions on Privacy and Security, vol. 24, issue 2, May 2021.
See also:
e Simon Holm Jensen, Peter A. Jonsson, and Anders Mgller. Remedying the Eval that Men Do. In ISSTA ’12,
July 15-20, 2012.
e Vincenzo Arceri, Isabella Mastroeni, and Sunyi Xu. Static Analysis for ECMAScript String Manipulation
Programs. In Appl. Sci. 2020, 10(10), 3525.

